Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique)

Size: px
Start display at page:

Download "Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique)"

Transcription

1 Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine Nicole Spillane (CNRS, CMAP, École Polytechnique) C. Bovet (ONERA), P. Gosselet (ENS Cachan), A. Parret Fréaud (SafranTech), D.J. Rixen (TU Munich), F.-X. Roux (ONERA) 17 novembre 2017 Séminaire du LJLL

2 Find u Rn s.t. Ku = f where I K is symmetric positive definite (spd) X I K= Kτ {τ Th } I All Kτ are symmetric positive semi-definite (spsd). Nicole Spillane (CNRS,CMAP) 2/29

3 Nicole Spillane (CNRS,CMAP) 3/29 Two observations about parallel linear solvers 1. Direct solvers are robust (but require a lot of memory). e.g., Cholesky factorization w/ forward backward substitutions K = L L u = L \ 2. Iterative solvers are naturally parallel (but not robust). e.g., Preconditioned Conjugate Gradient L f \ Error Bound (log scale) κ = 10 κ = 100 κ = 1000 [ ] m u u m A κ 1 2, κ = λ max. u u 0 A κ + 1 λ min Iterations

4 Nicole Spillane (CNRS,CMAP) 3/29 Two observations about parallel linear solvers 1. Direct solvers are robust (but require a lot of memory). e.g., Cholesky factorization w/ forward backward substitutions K = L L u = L \ 2. Iterative solvers are naturally parallel (but not robust). e.g., Preconditioned Conjugate Gradient L f \ Error Bound (log scale) Iterations κ = 10 κ = 100 κ = 1000 [ ] m u u m A κ 1 2, κ = λ max. u u 0 A κ + 1 λ min Hybrid Direct/Iterative solvers should be both naturally parallel and robust e.g., Domain Decomposition

5 1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD Balancing Domain Decomposition

6 Balancing Domain Decomposition (BDD) : Ku = f (K spd) Global Formulation Ω Γ Ω s Γ s J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9(3) : , ( ) ( ) KΓΓ K ΓI u,γ = K IΓ BDD is a hybrid solver : K II It solves Au,Γ = b with PCG. u,i ( fγ f I Ku = f ) (boundaries) (interiors) u,i = K 1 II (f I K IΓ u,γ ) and (K ΓΓ K ΓI K 1 II K IΓ ) u,γ = f Γ K ΓI K 1 II f I. }{{}}{{} :=A :=b Within each iteration, a direct solve is performed : K 1 II. Nicole Spillane (CNRS,CMAP) 4/29

7 Nicole Spillane (CNRS,CMAP) 5/29 Balancing Domain Decomposition (BDD) : Ku = f (K spd) Parallel Formulation Ω Γ Ω s Γ s A = K ΓΓ K ΓI K 1 II K IΓ ; K II = K 1 I 1I 1... K N I N I N.

8 Nicole Spillane (CNRS,CMAP) 5/29 Balancing Domain Decomposition (BDD) : Ku = f (K spd) Parallel Formulation Ω Γ Ω s Γ s A = K ΓΓ K ΓI K 1 II K IΓ ; K II = K 1 I 1I 1... K N I N I N. The operator A is a sum of local contributions : S s := K s Γ N s Γ K s s Γ s I (K s s I s I s) 1 K s I s Γ s A = R s S s R s R s s=1 Γ s Γ R s

9 Balancing Domain Decomposition (BDD) : Ku = f (K spd) Parallel Formulation Ω Γ Ω s Γ s Good preconditioner : good approximation of A 1, cheap to compute. A = K ΓΓ K ΓI K 1 II K IΓ ; K II = K 1 I 1I 1... K N I N I N. The operator A is a sum of local contributions : S s := K s Γ N s Γ K s s Γ s I (K s s I s I s) 1 K s I s Γ s A = R s S s R s R s s=1 Γ s Γ R s The preconditioner H also : N H := R s D s S s 1 D s R s, with s=1 N R s D s R s = I. Nicole Spillane (CNRS,CMAP) 5/29 s=1

10 Nicole Spillane (CNRS,CMAP) 6/29 Some remarks The kernel of S s is handled by deflation and H := N R s D s S s D s R s s=1 ( : pseudoinverse). Eigenvalues of the preconditioned operator satisfy λ min (HA) 1 as a consequence of : N s=1 Rs D s R s = I. The choice of the scaling matrices D s is important (problems with heterogeneous coefficients or subdomains)

11 Nicole Spillane (CNRS,CMAP) 7/29 Elasticity with homogeneous subdomains N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = Young s modulus E Regular Partition Error (log scale) Iterations

12 Lack of Robustness : Heterogeneous Elasticity N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = Young s modulus E Error (log scale) Metis Partition Three obectives for new DD methods : Iterations Reliability : robustness and scalability. Efficiency : adapt automatically to difficulty. Simplicity : non invasive implementation. Nicole Spillane (CNRS,CMAP) 8/29

13 1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD GenEO Coarse Space

14 Nicole Spillane (CNRS,CMAP) 9/29 Deflation, Coarse space : Ideal choice ((H)Ax = (H)b) General convergence result for PCG : [ ] m x x m A κ 1 2, where κ = λ max(ha) x x 0 A κ + 1 λ min (HA).

15 Nicole Spillane (CNRS,CMAP) 9/29 Deflation, Coarse space : Ideal choice ((H)Ax = (H)b) Convergence result for BDD [Mandel, Tezaur, 1996] : [ ] m x x m A λmax 1 2, because λ min 1. x x 0 A λmax + 1

16 Nicole Spillane (CNRS,CMAP) 9/29 Deflation, Coarse space : Ideal choice ((H)Ax = (H)b) Convergence result for BDD [Mandel, Tezaur, 1996] : [ ] m x x m A λmax 1 2, because λ min 1. x x 0 A λmax + 1 Deflation strategy [Nicolaides, 1987] [Dostál, 1988] (i) Compute (λ k, x k ) such that HAx k = λ k x k. (ii) Define U := {x k; λ k τ} (span(u) is the coarse space) (I Π) : A-orthogonal projection onto span(u). (iii) Solve Π Ax = Π b }{{} DD solver and Guaranteed Convergence : x x m A x x 0 A 2 (I Π )Ax = (I Π) b. }{{} direct solver [ ] m τ 1 τ + 1 BUT too expensive to compute.

17 GenEO coarse space for BDD (Generalized Eigenvalues in the Overlaps) 1. In each subdomain we want x s, S s x s τ x s, R s AR s x s for all x s so we solve : ) N S s x s k = λs k Rs AR s x s k (A, = R s S s R s. 2. Let the coarse space be } U := {R s x s k ; s = 1,, N and λs k τ ( w/ e.g. τ = 0.1). 3. Let (I Π) be the A-orthogonal projection onto span(u) Ax = b Π Ax = Π b }{{} DD solver and s=1 (I Π )Ax = (I Π) b. }{{} direct solver Guaranteed convergence : [ ] m x x m A N /τ 1 2, N : number of neighbours. x x 0 A N /τ + 1 Nicole Spillane (CNRS,CMAP) 10/29

18 Numerical Illustration : Heterogeneous Elasticity N = 81 subdomains, ν = 0.4, E 1 = 10 7 and E 2 = 10 12, τ = 0.1 Young s modulus E Metis Partition Error (log scale) BDD BDD + GenEO Iterations Size of the coarse space : n 0 = 349 including 212 rigid body modes. N. S. and D. J. Rixen. Int. J. Numer. Meth. Engng., N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Numer. Math., Nicole Spillane (CNRS,CMAP) 11/29

19 1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD Multipreconditioned BDD

20 Nicole Spillane (CNRS,CMAP) 12/29 What is multipreconditioning? (H)Ax = (H)b PCG : Minimize x x i+1 A over x i + span(hr i ). An enlarged minimization space implies better convergence : deflation (e.g. with a spectral coarse space), block methods,

21 Nicole Spillane (CNRS,CMAP) 12/29 What is multipreconditioning? (H)Ax = (H)b PCG : Minimize x x i+1 A over x i + span(hr i ). An enlarged minimization space implies better convergence : deflation (e.g. with a spectral coarse space), block methods, or multipreconditioning! MPCG : Minimize x x i+1 A over x i + span(h 1 r i,, H N r i ) where H 1,..., H N are N preconditioners. R. Bridson and C. Greif. A multipreconditioned conjugate gradient algorithm. SIAM J. Matrix Anal. Appl., Very natural for DD : one preconditioner per subdomain H = N } R s D s S {{ s 1 D s R } s. :=H s s=1

22 What is multipreconditioning? (H)Ax = (H)b PCG : Minimize x x i+1 A over x i + span(hr i ). An enlarged minimization space implies better convergence : deflation (e.g. with a spectral coarse space), block methods, or multipreconditioning! MPCG : Minimize x x i+1 A over x i + span(h 1 r i,, H N r i ) where H 1,..., H N are N preconditioners. D. J. Rixen. Substructuring and Dual Methods in Structural Analysis. PhD thesis, R. Bridson and C. Greif. A multipreconditioned conjugate gradient algorithm. SIAM J. Matrix Anal. Appl., C. Greif, T. Rees, and D. Szyld. MPGMRES : a generalized minimum residual method with multiple preconditioners. Technical report, 2011 (now published in SeMA Journal). C. Greif, T. Rees, and D. Szyld. Additive Schwarz with variable weights. DD21 proceedings, P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S. Simultaneous FETI and block FETI...International Journal for Numerical Methods in Engineering, Nicole Spillane (CNRS,CMAP) 12/29

23 Multipreconditioned CG for Ax = b prec. by {H s } s=1,,n A, H R n n spd, MPCG H = N s=1 Hs, where H s spsd. 1 x 0 given ; Initial Guess 2 r 0 = b Ax 0; 3 Z 0 = [ H 1 r 0 H N r 0 ] ; 4 P 0 = Z 0; Initial search directions 5 for i = 0, 1,, convergence do 6 Q i = AP i ; 7 α i = (Q i P i ) (P i r i ); 8 x i+1 = x i + P i α i ; Update approximate solution 9 r i+1 = r i Q i α i ; Update residual 10 Z i+1 = [ H 1 r i+1 H N r i+1 ] ; Multiprecondition 11 β i,j = (Q j P j ) (Q j Z i+1 ), j = 0,, i; 12 P i+1 = Z i+1 i j=0 P jβ i,j ; Project and orthog. 13 end 14 Return x i+1 ; PCG x 0 given ; r 0 = b Ax 0 ; z 0 = Hr 0; p 0 = z 0; for i = 0, 1,, conv. do end q i = Ap i ; α i = (q i p i ) 1 (p i r i ); x i+1 = x i + α i p i ; r i+1 = r i α i q i ; z i+1 = Hr i+1 ; β i = (q i p i ) 1 (q i z i+1 ); p i+1 = z i+1 β i p i ; Return x i+1 ; Nicole Spillane (CNRS,CMAP) 13/29

24 MultiPreconditioned CG for Ax = b prec. by {H s } s=1,,n A, H R n n spd, MPCG H = N s=1 Hs, where H s spsd. 1 x 0 given ; Initial Guess 2 r 0 = b Ax 0; 3 Z 0 = [ H 1 r 0 H N r i+1 ] ; Multiprecondition 4 P 0 = Z 0; Initial search directions 5 for i = 0, 1,, convergence do 6 Q i = AP i ; 7 α i = (Q i P i ) (P i r i ); 8 x i+1 = x i + P i α i ; Update approximate solution 9 r i+1 = r i Q i α i ; Update residual 10 Z i+1 = [ H 1 r i+1 H N r i+1 ] ; Multiprecondition 11 β i,j = (Q j P j ) (Q j Z i+1 ), j = 0,, i; 12 P i+1 = Z i+1 i j=0 P jβ i,j ; Orthogonalize 13 end 14 Return x i+1 ; Remark x i, r i R n. Z i, P i, R n N n : size of problem, N : nb of precs. Properties 1. Global minimization over x 0 + i 1 j=0 range(p j) of dimension : i N. 2. P i AP j = 0 (i j), but no short recurrence. Nicole Spillane (CNRS,CMAP) 14/29

25 Numerical Illustration (Heterogeneous Elasticity E 2 /E 1 = 10 5 ) Error (log scale) MPBDD BDD BDD+GenEO Iterations Dimension of the minimization space 1,500 1, MPBDD BDD BDD+GenEO Iterations Iterations Nicole Spillane (CNRS,CMAP) 15/29 Number of local solves MPBDD BDD

26 Balancing Domain Decomposition GenEO Coarse Space Multipreconditioned BDD Adaptive Multipreconditioned BDD Solid propellant (linear elasticity with FETI) in collaboration with C. Bovet (ONERA) 6721 stiff inclusions, E2 /E , 57 Mdofs, 360 subdomains on 1440 cores Nicole Spillane (CNRS,CMAP) 16/29

27 Nicole Spillane (CNRS,CMAP) 17/29 Good convergence but a possible limitation Local contributions H s r i form a good minimization space. Not adaptive : invert P i AP i R N N at each iteration in α i = (P i AP i ) (P i r i ). Introduce adaptativity into multipreconditioned CG. a few local vectors should suffice to accelerate convergence (previous work on GenEO).

28 1 Balancing Domain Decomposition 2 GenEO Coarse Space 3 Multipreconditioned BDD 4 Adaptive Multipreconditioned BDD Adaptive Multipreconditioned BDD

29 Adaptive Multipreconditioned CG for Ax = b preconditioned by N s=1 Hs. (τ R + is chosen by the user e.g., τ = 0.1) 1 x 0 chosen; 2 r 0 = b Ax 0 ; Z 0 = Hr 0 ; P 0 = Z 0; 3 for i = 0, 1,, convergence do 4 Q i = AP i ; 5 α i = (Qi P i ) (P i r i ); 6 x i+1 = x i + P i α i ; 7 r i+1 = r i Q i α i ; 8 t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 9 if t i < τ then τ-test 10 Z i+1 = [ H 1 r i+1 H N ] r i+1 ; Multiprec. 11 else 12 Z i+1 = Hr i+1 ; Precondition 13 end 14 β i,j = (Qj P j ) (Qj Z i+1 ), j = 0,, i; 15 P i+1 = Z i+1 i P j β i,j ; j=0 16 end 17 Return x i+1 ; Remark x i, r i R n. Z i, P i R n N or R n, n : size of problem, N : nb of precs. Properties 1. Global minimization over x 0 + i 1 j=0 range(p j) of dim i dim i N. 2. P i AP j = 0 (i j), but no short recurrence. Nicole Spillane (CNRS,CMAP) 18/29

30 Theoretical Results (1/2) : Choice of the τ-test? Theorem If the τ test returns t i τ then x x i+1 A x x i A ( ) 1 1/ τ Proof (inspired by [Axelsson, Kaporin, 01]) : n n x = x 0 + P i α i = x i + P j α j x x i 2 A = x x i 1 2 A x x i 2 A i=0 j=i x i+1 = x i + P i α i ; t i = (P iα i ) A(P i α i ) r i+1 Hr ; i+1 if t i < τ then ] Z i+1 = [H 1 r i+1 H N r i+1 else end Z i+1 = Hr i+1 ; n P j α j 2 A x x i 1 2 A = x x i 2 A+ P i 1 α i 1 2 A. j=i r i 2 H P i 1 α i 1 2 A = 1+ x x i 2 A r i 2 H }{{} = x x i 2 AHA/ x x i 2 A λ min 1 1+ P i 1α i 1 2 A r i 2 H } {{ } =t i 1 1+τ. Nicole Spillane (CNRS,CMAP) 19/29

31 Nicole Spillane (CNRS,CMAP) 20/29 Theoretical Results (2/2) : No extra work for well conditioned problems Theorem t i 1/λ max so if τ < 1/λ max then AMPCG is PCG.

32 Nicole Spillane (CNRS,CMAP) 21/29 Local Adaptive MPCG for N s=1 As x = b preconditioned by N s=1 Hs. (τ R + is chosen by the user) 1 x 0 chosen ; r 0 = b Ax 0 ; Z 0 = Hr 0 ; P 0 = Z 0; 2 for i = 0, 1,, convergence do 3 Q i = AP i ; 4 α i = (Q i P i ) (P i r i ); 5 x i+1 = x i + P i α i ; 6 r i+1 = r i Q i α i ; 7 Z i+1 = Hr i+1 ; initialize Z i+1 8 for s = 1,, N do 9 ti s = P iα i, A s P i α i r ; i+1 Hs r i+1 10 if ti s < τ then local τ-test 11 Z i+1 = [ Z i+1 H s ] r i+1 ; 12 end 13 end 14 β i,j = (Qj P j ) (Qj Z i+1 ), j = 0,, i; 15 P i+1 = Z i+1 i P j β i,j ; j=0 16 end 17 Return x i+1 ; An additional assumption A = Benefits N R } s {{ S s R } s. :=A s s=1 Between 1 and N search directions per iteration. Reduces the cost of storage and of inverting P i AP i.

33 Numerical Illustration (0/6) : Homogenous subdomains Dimension of the minimization space AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO Error (log scale) Iterations AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO Iterations Iterations Nicole Spillane (CNRS,CMAP) 22/29 Number of local solves 4,000 3,000 2,000 1,000 0 AMPBDD-G AMPBDD-L MPBDD BDD

34 Numerical Illustration (1/6) Elasticity with E 2 /E 1 = Error (log scale) AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO Iterations Dimension of the minimization space 1,500 1, AMPBDD (Global) AMPBDD (Local) MPBDD BDD BDD+GenEO Iterations Iterations Nicole Spillane (CNRS,CMAP) 23/29 Number of local solves AMPBDD (Global) AMPBDD (Local) MPBDD BDD

35 Numerical Illustration (2/6) : Zoom on new methods Dimension of the minimization space 1,500 1, AMPBDD (Global) AMPBDD (Local) MPBDD BDD+GenEO Error (log scale) Iterations AMPBDD (Global) AMPBDD (Local) MPBDD BDD+GenEO Iterations Iterations Nicole Spillane (CNRS,CMAP) 24/29 Number of local solves 8,000 6,000 4,000 2,000 0 AMPBDD (Global) AMPBDD (Local) MPBDD

36 Numerical Illustration (3/6) : Weak Scalability FETI Software : Z-Set Wall time [s] 2,500 2,000 1,500 1, FETI AMPFETIL AMPFETIG Cluster : Cobalt at CCRT/TGCC 1422 computational nodes with Intel Broadwell Processors : 2.4 GHz, 28 cores 128 Go SDRAM, infiniband Mellanox network 7 cores per subdomain and local factorizations are performed with mumps Nb. of subdomains N #DOFs ( 10 6 ) #cores #iter. # min. space time (s) C. Bovet, P. Gosselet, A. Parret Freaud, and N. S. Adaptive multi preconditioned FETI : scalability results and robustness assessment. Computers and Structures, Nicole Spillane (CNRS,CMAP) 25/29

37 Nicole Spillane (CNRS,CMAP) 26/29 Numerical Illustration (4/6) : Composite Weave Pattern FETI in collaboration with A. Parret Freaud (Safran Tech)

38 Numerical Illustration (5/6) : Choice of τ 1 35 Global Local Contraction factor ρ Number of iterations Threshold τ (log scale) Threshold τ (log scale) Dimension of the minimization space 1, Global Local Number of local solves 7,000 6,000 5,000 Global Local Threshold τ (log scale) Threshold τ (log scale) Nicole Spillane (CNRS,CMAP) 27/29

39 Nicole Spillane (CNRS,CMAP) 28/29 Numerical Illustration (6/6) : 400 stiff inclusions FETI in collaboration with C. Bovet (ONERA) τ = 0.01, E max /E min = 10 5, 480 subdomains, 32 Mdofs

40 Conclusion AMPDD Robustness and Efficiency. Perspectives Best adaptation process in non symmetric cases? Best adaptation process in a fully algebraic context? Implementation of AMPDD in an open source code. Restart! Recycle! within AMPDD Krylov subspace solvers. Theoretical Analysis at the PDE level. N. S. An Adaptive Multipreconditioned Conjugate Gradient SISC, N. S. Algebraic Adaptive Multi Preconditioning applied to Restricted Additive Schwarz. DD23 Proceedings, C. Bovet, P. Gosselet, A. Parret Freaud, and N. S. Adaptive multi preconditioned FETI : scalability results and robustness assessment. Computers and Structures, C. Bovet, P. Gosselet, and N. S. Multipreconditioning for nonsymmetric problems : the case of orthomin and bicg. Note au CRAS, Nicole Spillane (CNRS,CMAP) 29/29

Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms

Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms Nicole Spillane Center for Mathematical Modelling at the Universidad de Chile in Santiago. July 9th,

More information

An Adaptive Multipreconditioned Conjugate Gradient Algorithm

An Adaptive Multipreconditioned Conjugate Gradient Algorithm An Adaptive Multipreconditioned Conjugate Gradient Algorithm Nicole Spillane To cite this version: Nicole Spillane. An Adaptive Multipreconditioned Conjugate Gradient Algorithm. 2016. HAL Id: hal-01170059

More information

Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz

Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz Nicole Spillane To cite this version: Nicole Spillane. Algebraic Adaptive Multipreconditioning applied to Restricted Additive

More information

Toward black-box adaptive domain decomposition methods

Toward black-box adaptive domain decomposition methods Toward black-box adaptive domain decomposition methods Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI joint work with Victorita Dolean (Univ. Nice Sophia-Antipolis)

More information

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI Victorita Dolean (Univ. Nice

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

Auxiliary space multigrid method for elliptic problems with highly varying coefficients

Auxiliary space multigrid method for elliptic problems with highly varying coefficients Auxiliary space multigrid method for elliptic problems with highly varying coefficients Johannes Kraus 1 and Maria Lymbery 2 1 Introduction The robust preconditioning of linear systems of algebraic equations

More information

Master Thesis Literature Study Presentation

Master Thesis Literature Study Presentation Master Thesis Literature Study Presentation Delft University of Technology The Faculty of Electrical Engineering, Mathematics and Computer Science January 29, 2010 Plaxis Introduction Plaxis Finite Element

More information

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Jan Mandel University of Colorado at Denver Bedřich Sousedík Czech Technical University

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Multilevel spectral coarse space methods in FreeFem++ on parallel architectures

Multilevel spectral coarse space methods in FreeFem++ on parallel architectures Multilevel spectral coarse space methods in FreeFem++ on parallel architectures Pierre Jolivet Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann DD 21, Rennes. June 29, 2012 In collaboration with

More information

Domain Decomposition solvers (FETI)

Domain Decomposition solvers (FETI) Domain Decomposition solvers (FETI) a random walk in history and some current trends Daniel J. Rixen Technische Universität München Institute of Applied Mechanics www.amm.mw.tum.de rixen@tum.de 8-10 October

More information

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic Short title: Total FETI Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ-70833 Ostrava, Czech Republic mail: zdenek.dostal@vsb.cz fax +420 596 919 597 phone

More information

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems Outline A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems Azzam Haidar CERFACS, Toulouse joint work with Luc Giraud (N7-IRIT, France) and Layne Watson (Virginia Polytechnic Institute,

More information

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Conference Applications of Mathematics 2012 in honor of the 60th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 2012 SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Jakub Šístek1,2,

More information

New constructions of domain decomposition methods for systems of PDEs

New constructions of domain decomposition methods for systems of PDEs New constructions of domain decomposition methods for systems of PDEs Nouvelles constructions de méthodes de décomposition de domaine pour des systèmes d équations aux dérivées partielles V. Dolean?? F.

More information

Deflated Krylov Iterations in Domain Decomposition Methods

Deflated Krylov Iterations in Domain Decomposition Methods 305 Deflated Krylov Iterations in Domain Decomposition Methods Y.L.Gurieva 1, V.P.Ilin 1,2, and D.V.Perevozkin 1 1 Introduction The goal of this research is an investigation of some advanced versions of

More information

On the choice of abstract projection vectors for second level preconditioners

On the choice of abstract projection vectors for second level preconditioners On the choice of abstract projection vectors for second level preconditioners C. Vuik 1, J.M. Tang 1, and R. Nabben 2 1 Delft University of Technology 2 Technische Universität Berlin Institut für Mathematik

More information

A MULTIPRECONDITIONED CONJUGATE GRADIENT ALGORITHM

A MULTIPRECONDITIONED CONJUGATE GRADIENT ALGORITHM SIAM J. MATRIX ANAL. APPL. Vol. 27, No. 4, pp. 1056 1068 c 2006 Society for Industrial and Applied Mathematics A MULTIPRECONDITIONED CONJUGATE GRADIENT ALGORITHM ROBERT BRIDSON AND CHEN GREIF Abstract.

More information

Jae Heon Yun and Yu Du Han

Jae Heon Yun and Yu Du Han Bull. Korean Math. Soc. 39 (2002), No. 3, pp. 495 509 MODIFIED INCOMPLETE CHOLESKY FACTORIZATION PRECONDITIONERS FOR A SYMMETRIC POSITIVE DEFINITE MATRIX Jae Heon Yun and Yu Du Han Abstract. We propose

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow Michel Kern Inria Paris Rocquencourt Maison de la Simulation C2S@Exa Days, Inria Paris Centre, Novembre 2016 M. Kern

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Dirichlet-Neumann and Neumann-Neumann Methods

Dirichlet-Neumann and Neumann-Neumann Methods Dirichlet-Neumann and Neumann-Neumann Methods Felix Kwok Hong Kong Baptist University Introductory Domain Decomposition Short Course DD25, Memorial University of Newfoundland July 22, 2018 Outline Methods

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

From Direct to Iterative Substructuring: some Parallel Experiences in 2 and 3D

From Direct to Iterative Substructuring: some Parallel Experiences in 2 and 3D From Direct to Iterative Substructuring: some Parallel Experiences in 2 and 3D Luc Giraud N7-IRIT, Toulouse MUMPS Day October 24, 2006, ENS-INRIA, Lyon, France Outline 1 General Framework 2 The direct

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver Multilevel and Adaptive Iterative Substructuring Methods Jan Mandel University of Colorado Denver The multilevel BDDC method is joint work with Bedřich Sousedík, Czech Technical University, and Clark Dohrmann,

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

Substructuring for multiscale problems

Substructuring for multiscale problems Substructuring for multiscale problems Clemens Pechstein Johannes Kepler University Linz (A) jointly with Rob Scheichl Marcus Sarkis Clark Dohrmann DD 21, Rennes, June 2012 Outline 1 Introduction 2 Weighted

More information

An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors

An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors Contemporary Mathematics Volume 218, 1998 B 0-8218-0988-1-03024-7 An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors Michel Lesoinne

More information

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method 346 Two new enriched multiscale coarse spaces for the Additive Average Schwarz method Leszek Marcinkowski 1 and Talal Rahman 2 1 Introduction We propose additive Schwarz methods with spectrally enriched

More information

JOHANNES KEPLER UNIVERSITY LINZ. Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps

JOHANNES KEPLER UNIVERSITY LINZ. Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps Nicole Spillane Frédérik Nataf Laboratoire

More information

Parallel sparse linear solvers and applications in CFD

Parallel sparse linear solvers and applications in CFD Parallel sparse linear solvers and applications in CFD Jocelyne Erhel Joint work with Désiré Nuentsa Wakam () and Baptiste Poirriez () SAGE team, Inria Rennes, France journée Calcul Intensif Distribué

More information

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Nina Dokeva and Wlodek Proskurowski University of Southern California, Department of Mathematics Los Angeles,

More information

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1 Parallel Numerics, WT 2016/2017 5 Iterative Methods for Sparse Linear Systems of Equations page 1 of 1 Contents 1 Introduction 1.1 Computer Science Aspects 1.2 Numerical Problems 1.3 Graphs 1.4 Loop Manipulations

More information

Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials

Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials Comput Mech (2012) 50:321 333 DOI 10.1007/s00466-011-0661-y ORIGINAL PAPER Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials T. B. Jönsthövel

More information

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Nina Dokeva and Wlodek Proskurowski Department of Mathematics, University of Southern California, Los Angeles,

More information

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Marcella Bonazzoli 2, Victorita Dolean 1,4, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

arxiv: v1 [math.na] 16 Dec 2015

arxiv: v1 [math.na] 16 Dec 2015 ANALYSIS OF A NEW HARMONICALLY ENRICHED MULTISCALE COARSE SPACE FOR DOMAIN DECOMPOSITION METHODS MARTIN J. GANDER, ATLE LONELAND, AND TALAL RAHMAN arxiv:52.05285v [math.na] 6 Dec 205 Abstract. We propose

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY, USA. Dan_Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

Two-scale Dirichlet-Neumann preconditioners for boundary refinements

Two-scale Dirichlet-Neumann preconditioners for boundary refinements Two-scale Dirichlet-Neumann preconditioners for boundary refinements Patrice Hauret 1 and Patrick Le Tallec 2 1 Graduate Aeronautical Laboratories, MS 25-45, California Institute of Technology Pasadena,

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method direct and indirect methods positive definite linear systems Krylov sequence spectral analysis of Krylov sequence preconditioning Prof. S. Boyd, EE364b, Stanford University Three

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center Multispace and Multilevel BDDC Jan Mandel University of Colorado at Denver and Health Sciences Center Based on joint work with Bedřich Sousedík, UCDHSC and Czech Technical University, and Clark R. Dohrmann,

More information

C. Vuik 1 R. Nabben 2 J.M. Tang 1

C. Vuik 1 R. Nabben 2 J.M. Tang 1 Deflation acceleration of block ILU preconditioned Krylov methods C. Vuik 1 R. Nabben 2 J.M. Tang 1 1 Delft University of Technology J.M. Burgerscentrum 2 Technical University Berlin Institut für Mathematik

More information

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8 GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8 MÉXICO 2014 MEMORIAS GGMC INSTITUTO DE GEOFÍSICA UNAM MIEMBROS DEL GGMC Dr. Ismael Herrera Revilla iherrerarevilla@gmail.com Dr. Luis Miguel de

More information

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation Fourteenth nternational Conference on Domain Decomposition Methods Editors: smael Herrera, David E Keyes, Olof B Widlund, Robert Yates c 23 DDMorg 18 Balancing Neumann-Neumann for (n)compressible Linear

More information

Architecture Solutions for DDM Numerical Environment

Architecture Solutions for DDM Numerical Environment Architecture Solutions for DDM Numerical Environment Yana Gurieva 1 and Valery Ilin 1,2 1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia 2 Novosibirsk State

More information

An Accelerated Block-Parallel Newton Method via Overlapped Partitioning

An Accelerated Block-Parallel Newton Method via Overlapped Partitioning An Accelerated Block-Parallel Newton Method via Overlapped Partitioning Yurong Chen Lab. of Parallel Computing, Institute of Software, CAS (http://www.rdcps.ac.cn/~ychen/english.htm) Summary. This paper

More information

Some Geometric and Algebraic Aspects of Domain Decomposition Methods

Some Geometric and Algebraic Aspects of Domain Decomposition Methods Some Geometric and Algebraic Aspects of Domain Decomposition Methods D.S.Butyugin 1, Y.L.Gurieva 1, V.P.Ilin 1,2, and D.V.Perevozkin 1 Abstract Some geometric and algebraic aspects of various domain decomposition

More information

Various ways to use a second level preconditioner

Various ways to use a second level preconditioner Various ways to use a second level preconditioner C. Vuik 1, J.M. Tang 1, R. Nabben 2, and Y. Erlangga 3 1 Delft University of Technology Delft Institute of Applied Mathematics 2 Technische Universität

More information

Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015

Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015 spcl.inf.ethz.ch @spcl eth Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015 Introduction Domain decomposition methods The

More information

On deflation and singular symmetric positive semi-definite matrices

On deflation and singular symmetric positive semi-definite matrices Journal of Computational and Applied Mathematics 206 (2007) 603 614 www.elsevier.com/locate/cam On deflation and singular symmetric positive semi-definite matrices J.M. Tang, C. Vuik Faculty of Electrical

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES ITERATIVE METHODS BASED ON KRYLOV SUBSPACES LONG CHEN We shall present iterative methods for solving linear algebraic equation Au = b based on Krylov subspaces We derive conjugate gradient (CG) method

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices DICEA DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING PhD SCHOOL CIVIL AND ENVIRONMENTAL ENGINEERING SCIENCES XXX CYCLE A robust multilevel approximate inverse preconditioner for symmetric

More information

WHEN studying distributed simulations of power systems,

WHEN studying distributed simulations of power systems, 1096 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 21, NO 3, AUGUST 2006 A Jacobian-Free Newton-GMRES(m) Method with Adaptive Preconditioner and Its Application for Power Flow Calculations Ying Chen and Chen

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

On Iterative Substructuring Methods for Multiscale Problems

On Iterative Substructuring Methods for Multiscale Problems On Iterative Substructuring Methods for Multiscale Problems Clemens Pechstein Introduction Model Problem Let Ω R 2 or R 3 be a Lipschitz polytope with boundary Ω = Γ D Γ N, where Γ D Γ N = /0. We are interested

More information

Open-source finite element solver for domain decomposition problems

Open-source finite element solver for domain decomposition problems 1/29 Open-source finite element solver for domain decomposition problems C. Geuzaine 1, X. Antoine 2,3, D. Colignon 1, M. El Bouajaji 3,2 and B. Thierry 4 1 - University of Liège, Belgium 2 - University

More information

Some Domain Decomposition Methods for Discontinuous Coefficients

Some Domain Decomposition Methods for Discontinuous Coefficients Some Domain Decomposition Methods for Discontinuous Coefficients Marcus Sarkis WPI RICAM-Linz, October 31, 2011 Marcus Sarkis (WPI) Domain Decomposition Methods RICAM-2011 1 / 38 Outline Discretizations

More information

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Key words. conjugate gradients, normwise backward error, incremental norm estimation. Proceedings of ALGORITMY 2016 pp. 323 332 ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD: NORMWISE BACKWARD ERROR PETR TICHÝ Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300 322

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine P. Jolivet and Frédéric Nataf Laboratory J.L. Lions, Univ. Paris VI, Equipe Alpines INRIA-LJLL et CNRS joint

More information

Notes on PCG for Sparse Linear Systems

Notes on PCG for Sparse Linear Systems Notes on PCG for Sparse Linear Systems Luca Bergamaschi Department of Civil Environmental and Architectural Engineering University of Padova e-mail luca.bergamaschi@unipd.it webpage www.dmsa.unipd.it/

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Eun-Joo Lee Department of Computer Science, East Stroudsburg University of Pennsylvania, 327 Science and Technology Center,

More information

Is there life after the Lanczos method? What is LOBPCG?

Is there life after the Lanczos method? What is LOBPCG? 1 Is there life after the Lanczos method? What is LOBPCG? Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver SIAM ALA Meeting, July 17,

More information

FETI domain decomposition method to solution of contact problems with large displacements

FETI domain decomposition method to solution of contact problems with large displacements FETI domain decomposition method to solution of contact problems with large displacements Vít Vondrák 1, Zdeněk Dostál 1, Jiří Dobiáš 2, and Svatopluk Pták 2 1 Dept. of Appl. Math., Technical University

More information

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1. J. Appl. Math. & Computing Vol. 15(2004), No. 1, pp. 299-312 BILUS: A BLOCK VERSION OF ILUS FACTORIZATION DAVOD KHOJASTEH SALKUYEH AND FAEZEH TOUTOUNIAN Abstract. ILUS factorization has many desirable

More information

Preconditioning for Nonsymmetry and Time-dependence

Preconditioning for Nonsymmetry and Time-dependence Preconditioning for Nonsymmetry and Time-dependence Andy Wathen Oxford University, UK joint work with Jen Pestana and Elle McDonald Jeju, Korea, 2015 p.1/24 Iterative methods For self-adjoint problems/symmetric

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach Clark R. Dohrmann 1 Sandia National Laboratories, crdohrm@sandia.gov. Sandia is a multiprogram laboratory operated by Sandia

More information

arxiv: v1 [math.na] 28 Feb 2008

arxiv: v1 [math.na] 28 Feb 2008 BDDC by a frontal solver and the stress computation in a hip joint replacement arxiv:0802.4295v1 [math.na] 28 Feb 2008 Jakub Šístek a, Jaroslav Novotný b, Jan Mandel c, Marta Čertíková a, Pavel Burda a

More information

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Atle Loneland 1, Leszek Marcinkowski 2, and Talal Rahman 3 1 Introduction In this paper

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Schwarz-type methods and their application in geomechanics

Schwarz-type methods and their application in geomechanics Schwarz-type methods and their application in geomechanics R. Blaheta, O. Jakl, K. Krečmer, J. Starý Institute of Geonics AS CR, Ostrava, Czech Republic E-mail: stary@ugn.cas.cz PDEMAMIP, September 7-11,

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

THEORETICAL AND NUMERICAL COMPARISON OF PROJECTION METHODS DERIVED FROM DEFLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS

THEORETICAL AND NUMERICAL COMPARISON OF PROJECTION METHODS DERIVED FROM DEFLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS THEORETICAL AND NUMERICAL COMPARISON OF PROJECTION METHODS DERIVED FROM DEFLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS J.M. TANG, R. NABBEN, C. VUIK, AND Y.A. ERLANGGA Abstract. For various applications,

More information

ADDITIVE SCHWARZ FOR SCHUR COMPLEMENT 305 the parallel implementation of both preconditioners on distributed memory platforms, and compare their perfo

ADDITIVE SCHWARZ FOR SCHUR COMPLEMENT 305 the parallel implementation of both preconditioners on distributed memory platforms, and compare their perfo 35 Additive Schwarz for the Schur Complement Method Luiz M. Carvalho and Luc Giraud 1 Introduction Domain decomposition methods for solving elliptic boundary problems have been receiving increasing attention

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 09-08 Preconditioned conjugate gradient method enhanced by deflation of rigid body modes applied to composite materials. T.B. Jönsthövel ISSN 1389-6520 Reports of

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems U. Langer A. Pohoaţǎ O. Steinbach 27th September 2004 Institute of Computational Mathematics Johannes Kepler University

More information

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Martin J. Gander and Felix Kwok Section de mathématiques, Université de Genève, Geneva CH-1211, Switzerland, Martin.Gander@unige.ch;

More information

Department of Computer Science, University of Illinois at Urbana-Champaign

Department of Computer Science, University of Illinois at Urbana-Champaign Department of Computer Science, University of Illinois at Urbana-Champaign Probing for Schur Complements and Preconditioning Generalized Saddle-Point Problems Eric de Sturler, sturler@cs.uiuc.edu, http://www-faculty.cs.uiuc.edu/~sturler

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

c 2000 Society for Industrial and Applied Mathematics

c 2000 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 21, No. 4, pp. 1279 1299 c 2 Society for Industrial and Applied Mathematics AN AUGMENTED CONJUGATE GRADIENT METHOD FOR SOLVING CONSECUTIVE SYMMETRIC POSITIVE DEFINITE LINEAR

More information

Preconditioning Techniques Analysis for CG Method

Preconditioning Techniques Analysis for CG Method Preconditioning Techniques Analysis for CG Method Huaguang Song Department of Computer Science University of California, Davis hso@ucdavis.edu Abstract Matrix computation issue for solve linear system

More information