Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Size: px
Start display at page:

Download "Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota"

Transcription

1 Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013

2 First: Joint work with Ruipeng Li Work supported by NSF 2 SIAM-CSE March 1, 2013

3 Introduction Preconditioned Krylov subspace methods offer a good alternative to direct solution methods Especially for 3D problems Compromise between performance and robustness... But there are challenges: Highly indefinite systems [Helmholtz, Maxwell,...] Highly ill-conditioned systems [structures,..] Problems with extremely irregular nonzero pattern Recent: impact of new architectures [many core, GPUs] 3 SIAM-CSE March 1, 2013

4 Introduction (cont.) Main issue in using GPUs for sparse computations: Huge performance degradation due to irregular sparsity Matrices: Matrix -name N NNZ FEM/Cantilever 62,451 4,007,383 Boeing/pwtk 217,918 11,634,424 Performance of Mat-Vecs on NVIDIA Tesla C1060 Single Precision Double Precision Matrix CSR JAD DIA CSR JAD DIA FEM/Cantilever Boeing/pwtk SIAM-CSE March 1, 2013

5 Sparse Forward/Backward Sweeps Next major ingredient of precond. Krylov subs. methods ILU preconditioning operations require L/U solves: x U 1 L 1 x Sequential outer loop. for i=1:n for j=ia(i):ia(i+1) x(i) = x(i) - a(j)*x(ja(j)) end end Parallelism can be achieved with level scheduling: Group unknowns into levels Unknowns x(i) of same level can be computed simultaneously 1 nlev n 5 SIAM-CSE March 1, 2013

6 ILU: Sparse Forward/Backward Sweeps Very poor performance [relative to CPU] Matrix N CPU GPU-Lev Mflops #lev Mflops Boeing/bcsstk36 23, , FEM/Cantilever 62, , COP/CASEYK 696, COP/CASEKU 208, Prec: miserable :-) GPU Sparse Triangular Solve with Level Scheduling Very poor performance when #levs is large A few things can be done to reduce the # levels but perf. will remain poor 6 SIAM-CSE March 1, 2013

7 So... 7 SIAM-CSE March 1, 2013

8 Either GPUs must go... 8 SIAM-CSE March 1, 2013

9 or ILUs must go... 9 SIAM-CSE March 1, 2013

10 Or perhaps: Alternative preconditioners? What would be a good alternative? Wish-list: A preconditioner requiring few irregular computations Something that trades volume of computations for speed If possible something that is robust for indefinite case Good candidate: Multilevel Low-Rank (MLR) approximate inverse preconditioners 10 SIAM-CSE March 1, 2013

11 Related work: Work on HSS matrices [e.g., JIANLIN XIA, SHIVKUMAR CHAN- DRASEKARAN, MING GU, AND XIAOYE S. LI, Fast algorithms for hierarchically semiseparable matrices, Numerical Linear Algebra with Applications, 17 (2010), pp ] Work on H-matrices [Hackbusch,...] Work on balanced incomplete factorizations (R. Bru et al.) Work on sweeping preconditioners by Engquist and Ying. Work on computing the diagonal of a matrix inverse [Jok Tang and YS (2010)..] 11 SIAM-CSE March 1, 2013

12 Low-rank Multilevel Approximations Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on n x n y grid A = A = A 1 D 2 D 2 A 2... D D α A α D α+1 D α+1 A α D ny A ny ( ) A11 A 12 A 21 A 22 ( A11 A22) + ( A 21 A 12 ) 12 SIAM-CSE March 1, 2013

13 Corresponding splitting on FD mesh: SIAM-CSE March 1, 2013

14 A 11 R m m, A 22 R (n m) (n m) In the simplest case second matrix is: ( ) A11 A 12 = A 21 A 22 ( A11 A22) + I I Write 2nd matrix as: I I = + I + I I I I I E T = I I E E T 14 SIAM-CSE March 1, 2013

15 Above splitting can be rewritten as A = (A + EE T ) }{{} B EE T B := ( B1 B2) A = B EE T, R n n, E := ( E1 E 2 ) R n n x, Note: B 1 := A 11 + E 1 E T 1, B 2 := A 22 + E 2 E T SIAM-CSE March 1, 2013

16 Shermann-Morrison formula: {}}{ A 1 = B 1 + B 1 E( I E T B 1 E) 1 E T B 1 X A 1 B 1 + B 1 EX 1 E T B 1 X = I E T B 1 E Note: E R n n x, X R n x n x n x = number of points in separator [O(n 1/2 ) for 2-D mesh, O(n 2/3 ) for 3-D mesh] Use in a recursive framework Similar idea was used for computing the diagonal of the inverse [J. Tang YS 10] 16 SIAM-CSE March 1, 2013

17 Multilevel Low-Rank (MLR) algorithm Method: Use lowrank approx. for B 1 E B 1 E U k V T k, U k R n k, V k R n x k, Replace B 1 E by U k Vk T in X = I (ET B 1 )E: X G k = I V k U T k E, ( Rn x n x ) Leads to... Preconditioner: M 1 = B 1 + U k [V T k G 1 k V k]u T k Use recursivity 17 SIAM-CSE March 1, 2013

18 Note: From A 1 = B 1 [I + EX 1 E T B 1 ] could define: M 1 1 = B 1 [I + EG 1 k V ku T k ]. [rationale: approximation made on one side only ] It turns out M 1 and M are equal! We have: M 1 = B 1 + U k H k U T k, with H k = V T k G 1 k V k. No need to store V k : Only keep U k and H k (k k). We can show : H k = (I U T k EV k) 1... and : H k is symmetric 18 SIAM-CSE March 1, 2013

19 Recursive multilevel framework ( A i = B i + E i Ei T, B Bi1 i. Bi2) Next level, set A i1 B i1 and A i2 B i2 Repeat on A i1, A i2 Last level, factor A i (IC, ILU) Binary tree structure: SIAM-CSE March 1, 2013

20 Generalization: Domain Decomposition framework Domain partitioned into 2 domains with an edge separator Ω 2 Ω 1 Matrix can be permuted to: P AP T = ˆB 1 ˆF 1 ˆF 1 T C 1 X X T ˆF 2 T C 2 ˆB 2 ˆF 2 Interface nodes in each domain are listed last. 20 SIAM-CSE March 1, 2013

21 Each matrix ˆB i is of size n i n i (interior var.) and the matrix C i is of size m i m i (interface var.) P AP T = Let: E α = ( B1 B2) and α used for balancing 0 αi 0 X T α EE T with B i = then we have: { D1 = α 2 I D 2 = 1 α 2 X T X. ( ˆB i ˆF 1 Better results when using diagonals instead of αi ˆF T i C i + D i 21 SIAM-CSE March 1, 2013 )

22 Theory: 2-level analysis for model problem Interested in eigenvalues γ j of A 1 B 1 = B 1 EX 1 E T B 1 when A = Pure Laplacean.. They are: γ j = β j = α j = β j 1 α j, j = 1,, n x with: n y /2 k=1 n y /2 k=1 4 ( sin 2 sin 2 sin 2 n y kπ n y +1 kπ n y +1 + sin2 sin 2 n y kπ n y +1 kπ n y +1 + sin2 ) 2, jπ 2(n x +1) jπ 2(n x +1). 22 SIAM-CSE March 1, 2013

23 Decay of the γ j s when nx = ny = β j sqrt(β j ) 1 α j γ j Note β j are the singular values of B 1 E. In this particular case 3 eigenvectors will capture 92 % of the inverse whereas 5 eigenvectors will capture 97% of the inverse. 23 SIAM-CSE March 1, 2013

24 EXPERIMENTS

25 Experimental setting Hardware: Intel Xeon X5675 processor (12 MB Cache, 3.06 GHz, 6-core) C/C++; Intel Math Kernel Library (MKL,version 10.2) Stopping criteria: r i 10 8 r 0 Maximum number of iterations: SIAM-CSE March 1, 2013

26 2-D/3-D model problems (theory) u cu = ( x 2 + y 2 + c ) e xy in (0, 1) 2, + Dirichlet BC FD discret.: n x = n y = 256 Eigenvalues of B 1 i E i X 1 i i = 0, 1, 3 Rapid decay. Ei T B 1 i Lev 1 Lev 2 Lev SIAM-CSE March 1, 2013

27 3-D elliptic PDE u cu = 6 c ( x 2 + y 2 + z 2) in (0, 1) 3, + Dirichlet BC FD discret.: n x = n y = 32, nz = 64 Eigenvalues of B 1 i E i X 1 i i = 0, 1, 3 Rapid decay. Ei T B 1 i Lev 1 Lev 2 Lev SIAM-CSE March 1, 2013

28 Tests: SPD cases SPD cases, pure Laplacean (c = 0 in previous equations) MLR + PCG compared to IC + PCG 2-D problems: #lev= 5, rank= 2 3-D problems: #lev= 5, 7, 10, rank= 2 28 SIAM-CSE March 1, 2013

29 Grid N ICT-CG MLR-CG fill p-t its i-t fill p-t its i-t K K , 048K K K ,097K Set-up times for MLR preconditioners are higher Bear in mind the ultimate target architecture [SIMD...] 29 SIAM-CSE March 1, 2013

30 Symmetric indefinite cases c > 0 in u cu; i.e., shifted by si. 2D case: s = 0.01, 3D case: s = 0.05 MLR + GMRES(40) compared to ILDLT + GMRES(40) 2-D problems: #lev= 4, rank= 5, 7, 7 3-D problems: #lev= 5, rank= 5, 7, 7 ILDLT failed for most cases Difficulties in MLR: #lev cannot be large, [no convergence] inefficient factorization at the last level (memory, CPU time)

31 Grid ILDLT-GMRES MLR-GMRES fill p-t its i-t fill p-t its i-t F F F F F F F 31 SIAM-CSE March 1, 2013

32 General symmetric matrices - Test matrices MATRIX N NNZ SPD DESCRIPTION Andrews/Andrews 60, ,154 yes computer graphics pb. Williams/cant 62,451 4,007,383 yes FEM cantilever UTEP/Dubcova2 65,025 1,030,225 yes 2-D/3-D PDE pb. Rothberg/cfd1 70,656 1,825,580 yes CFD pb. Schmid/thermal1 82, ,458 yes thermal pb. Rothberg/cfd2 123,440 3,085,406 yes CFD pb. Schmid/thermal2 1,228,045 8,580,313 yes thermal pb. Cote/vibrobox 12, ,700 no vibroacoustic pb. Cunningham/qa8fk 66,127 1,660,579 no 3-D acoustics pb. Koutsovasilis/F2 71,505 5,294,285 no structural pb. 32 SIAM-CSE March 1, 2013

33 Generalization of MLR via DD DD: PartGraphRecursive from METIS balancing with diagonals higher ranks used in two problems (cant and vibrobox) Show SPD cases first then non-spd 33 SIAM-CSE March 1, 2013

34 MATRIX ICT/ILDLT MLR-CG/GMRES fill p-t its i-t k lev fill p-t its i-t Andrews cant F Dubcova cfd thermal cfd F thermal SIAM-CSE March 1, 2013

35 MATRIX ICT/ILDLT MLR-CG/GMRES fill p-t its i-t k lev fill p-t its i-t vibrobox F qa8fk F F SIAM-CSE March 1, 2013

36 Conclusion Promising approach Many more avenues to explore: Nonsymmetric case, Implementation on GPUS, Storage for 3D case SIAM-CSE March 1, 2013

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014 Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Modelling 24 June 2,24 Dedicated to Owe Axelsson at the occasion of his 8th birthday

More information

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota ICME, Stanford April 2th, 25 First: Partly joint work with

More information

Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Syracuse University, Sep. 20, 2013 First: Joint work with Ruipeng

More information

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM Applied Linear Algebra Valencia, June 18-22, 2012 Introduction Krylov

More information

1. Introduction. We consider the problem of solving the linear system. Ax = b, (1.1)

1. Introduction. We consider the problem of solving the linear system. Ax = b, (1.1) SCHUR COMPLEMENT BASED DOMAIN DECOMPOSITION PRECONDITIONERS WITH LOW-RANK CORRECTIONS RUIPENG LI, YUANZHE XI, AND YOUSEF SAAD Abstract. This paper introduces a robust preconditioner for general sparse

More information

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Robust Preconditioned Conjugate Gradient for the GPU and Parallel Implementations

Robust Preconditioned Conjugate Gradient for the GPU and Parallel Implementations Robust Preconditioned Conjugate Gradient for the GPU and Parallel Implementations Rohit Gupta, Martin van Gijzen, Kees Vuik GPU Technology Conference 2012, San Jose CA. GPU Technology Conference 2012,

More information

Fine-grained Parallel Incomplete LU Factorization

Fine-grained Parallel Incomplete LU Factorization Fine-grained Parallel Incomplete LU Factorization Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Sparse Days Meeting at CERFACS June 5-6, 2014 Contribution

More information

Schur complement-based domain decomposition preconditioners with low-rank corrections

Schur complement-based domain decomposition preconditioners with low-rank corrections NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. (206) Published online in Wiley Online Library (wileyonlinelibrary.com)..205 Schur complement-based domain decomposition preconditioners

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices DICEA DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING PhD SCHOOL CIVIL AND ENVIRONMENTAL ENGINEERING SCIENCES XXX CYCLE A robust multilevel approximate inverse preconditioner for symmetric

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Domain Decomposition-based contour integration eigenvalue solvers

Domain Decomposition-based contour integration eigenvalue solvers Domain Decomposition-based contour integration eigenvalue solvers Vassilis Kalantzis joint work with Yousef Saad Computer Science and Engineering Department University of Minnesota - Twin Cities, USA SIAM

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

c 2015 Society for Industrial and Applied Mathematics

c 2015 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 37, No. 2, pp. C169 C193 c 2015 Society for Industrial and Applied Mathematics FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper

More information

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1 1 Deparment of Computer

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1. J. Appl. Math. & Computing Vol. 15(2004), No. 1, pp. 299-312 BILUS: A BLOCK VERSION OF ILUS FACTORIZATION DAVOD KHOJASTEH SALKUYEH AND FAEZEH TOUTOUNIAN Abstract. ILUS factorization has many desirable

More information

FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING

FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING Daniel Thuerck 1,2 (advisors Michael Goesele 1,2 and Marc Pfetsch 1 ) Maxim Naumov 3 1 Graduate School of Computational Engineering, TU Darmstadt

More information

A Numerical Study of Some Parallel Algebraic Preconditioners

A Numerical Study of Some Parallel Algebraic Preconditioners A Numerical Study of Some Parallel Algebraic Preconditioners Xing Cai Simula Research Laboratory & University of Oslo PO Box 1080, Blindern, 0316 Oslo, Norway xingca@simulano Masha Sosonkina University

More information

Effective matrix-free preconditioning for the augmented immersed interface method

Effective matrix-free preconditioning for the augmented immersed interface method Effective matrix-free preconditioning for the augmented immersed interface method Jianlin Xia a, Zhilin Li b, Xin Ye a a Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA. E-mail:

More information

The flexible incomplete LU preconditioner for large nonsymmetric linear systems. Takatoshi Nakamura Takashi Nodera

The flexible incomplete LU preconditioner for large nonsymmetric linear systems. Takatoshi Nakamura Takashi Nodera Research Report KSTS/RR-15/006 The flexible incomplete LU preconditioner for large nonsymmetric linear systems by Takatoshi Nakamura Takashi Nodera Takatoshi Nakamura School of Fundamental Science and

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

Fine-Grained Parallel Algorithms for Incomplete Factorization Preconditioning

Fine-Grained Parallel Algorithms for Incomplete Factorization Preconditioning Fine-Grained Parallel Algorithms for Incomplete Factorization Preconditioning Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology, USA SPPEXA Symposium TU München,

More information

Some Geometric and Algebraic Aspects of Domain Decomposition Methods

Some Geometric and Algebraic Aspects of Domain Decomposition Methods Some Geometric and Algebraic Aspects of Domain Decomposition Methods D.S.Butyugin 1, Y.L.Gurieva 1, V.P.Ilin 1,2, and D.V.Perevozkin 1 Abstract Some geometric and algebraic aspects of various domain decomposition

More information

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Eun-Joo Lee Department of Computer Science, East Stroudsburg University of Pennsylvania, 327 Science and Technology Center,

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

MARCH 24-27, 2014 SAN JOSE, CA

MARCH 24-27, 2014 SAN JOSE, CA MARCH 24-27, 2014 SAN JOSE, CA Sparse HPC on modern architectures Important scientific applications rely on sparse linear algebra HPCG a new benchmark proposal to complement Top500 (HPL) To solve A x =

More information

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota PMAA 14 Lugano, July 4, 2014 Collaborators: Joint work with:

More information

FAST STRUCTURED EIGENSOLVER FOR DISCRETIZED PARTIAL DIFFERENTIAL OPERATORS ON GENERAL MESHES

FAST STRUCTURED EIGENSOLVER FOR DISCRETIZED PARTIAL DIFFERENTIAL OPERATORS ON GENERAL MESHES Proceedings of the Project Review, Geo-Mathematical Imaging Group Purdue University, West Lafayette IN, Vol. 1 2012 pp. 123-132. FAST STRUCTURED EIGENSOLVER FOR DISCRETIZED PARTIAL DIFFERENTIAL OPERATORS

More information

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009 Parallel Preconditioning of Linear Systems based on ILUPACK for Multithreaded Architectures J.I. Aliaga M. Bollhöfer 2 A.F. Martín E.S. Quintana-Ortí Deparment of Computer Science and Engineering, Univ.

More information

Parallel Preconditioning Methods for Ill-conditioned Problems

Parallel Preconditioning Methods for Ill-conditioned Problems Parallel Preconditioning Methods for Ill-conditioned Problems Kengo Nakajima Information Technology Center, The University of Tokyo 2014 Conference on Advanced Topics and Auto Tuning in High Performance

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

Jae Heon Yun and Yu Du Han

Jae Heon Yun and Yu Du Han Bull. Korean Math. Soc. 39 (2002), No. 3, pp. 495 509 MODIFIED INCOMPLETE CHOLESKY FACTORIZATION PRECONDITIONERS FOR A SYMMETRIC POSITIVE DEFINITE MATRIX Jae Heon Yun and Yu Du Han Abstract. We propose

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC LINEAR SYSTEMS

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC LINEAR SYSTEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 5, Number 1-2, Pages 21 30 c 2014 Institute for Scientific Computing and Information A SPARSE APPROXIMATE INVERSE PRECONDITIONER

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Algorithm for Sparse Approximate Inverse Preconditioners in the Conjugate Gradient Method

Algorithm for Sparse Approximate Inverse Preconditioners in the Conjugate Gradient Method Algorithm for Sparse Approximate Inverse Preconditioners in the Conjugate Gradient Method Ilya B. Labutin A.A. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 3, acad. Koptyug Ave., Novosibirsk

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems Iterative Methods for Sparse Linear Systems Luca Bergamaschi e-mail: berga@dmsa.unipd.it - http://www.dmsa.unipd.it/ berga Department of Mathematical Methods and Models for Scientific Applications University

More information

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations Akira IMAKURA Center for Computational Sciences, University of Tsukuba Joint work with

More information

Accelerating linear algebra computations with hybrid GPU-multicore systems.

Accelerating linear algebra computations with hybrid GPU-multicore systems. Accelerating linear algebra computations with hybrid GPU-multicore systems. Marc Baboulin INRIA/Université Paris-Sud joint work with Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

More information

A sparse multifrontal solver using hierarchically semi-separable frontal matrices

A sparse multifrontal solver using hierarchically semi-separable frontal matrices A sparse multifrontal solver using hierarchically semi-separable frontal matrices Pieter Ghysels Lawrence Berkeley National Laboratory Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB), François-Henry

More information

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

An advanced ILU preconditioner for the incompressible Navier-Stokes equations An advanced ILU preconditioner for the incompressible Navier-Stokes equations M. ur Rehman C. Vuik A. Segal Delft Institute of Applied Mathematics, TU delft The Netherlands Computational Methods with Applications,

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 3: Preconditioning 2 Eric de Sturler Preconditioning The general idea behind preconditioning is that convergence of some method for the linear system Ax = b can be

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering High performance numerical linear algebra: trends and new challenges. Yousef Saad Department of Computer Science and Engineering University of Minnesota HPC days in Lyon April 8, 216 First: A personal

More information

Notes on PCG for Sparse Linear Systems

Notes on PCG for Sparse Linear Systems Notes on PCG for Sparse Linear Systems Luca Bergamaschi Department of Civil Environmental and Architectural Engineering University of Padova e-mail luca.bergamaschi@unipd.it webpage www.dmsa.unipd.it/

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

EFFECTIVE AND ROBUST PRECONDITIONING OF GENERAL SPD MATRICES VIA STRUCTURED INCOMPLETE FACTORIZATION

EFFECTIVE AND ROBUST PRECONDITIONING OF GENERAL SPD MATRICES VIA STRUCTURED INCOMPLETE FACTORIZATION EFFECVE AND ROBUS PRECONDONNG OF GENERAL SPD MARCES VA SRUCURED NCOMPLEE FACORZAON JANLN XA AND ZXNG XN Abstract For general symmetric positive definite SPD matrices, we present a framework for designing

More information

Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Purdue Univ., Math & CS colloquium Purdue, Apr. 6, 2011 Introduction:

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

Parallel Algorithms for Solution of Large Sparse Linear Systems with Applications

Parallel Algorithms for Solution of Large Sparse Linear Systems with Applications Parallel Algorithms for Solution of Large Sparse Linear Systems with Applications Murat Manguoğlu Department of Computer Engineering Middle East Technical University, Ankara, Turkey Prace workshop: HPC

More information

Partial Left-Looking Structured Multifrontal Factorization & Algorithms for Compressed Sensing. Cinna Julie Wu

Partial Left-Looking Structured Multifrontal Factorization & Algorithms for Compressed Sensing. Cinna Julie Wu Partial Left-Looking Structured Multifrontal Factorization & Algorithms for Compressed Sensing by Cinna Julie Wu A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor

More information

On the Preconditioning of the Block Tridiagonal Linear System of Equations

On the Preconditioning of the Block Tridiagonal Linear System of Equations On the Preconditioning of the Block Tridiagonal Linear System of Equations Davod Khojasteh Salkuyeh Department of Mathematics, University of Mohaghegh Ardabili, PO Box 179, Ardabil, Iran E-mail: khojaste@umaacir

More information

Preconditioning Techniques Analysis for CG Method

Preconditioning Techniques Analysis for CG Method Preconditioning Techniques Analysis for CG Method Huaguang Song Department of Computer Science University of California, Davis hso@ucdavis.edu Abstract Matrix computation issue for solve linear system

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

PASC17 - Lugano June 27, 2017

PASC17 - Lugano June 27, 2017 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota PASC17 - Lugano June 27, 217 Large eigenvalue

More information

Splitting Iteration Methods for Positive Definite Linear Systems

Splitting Iteration Methods for Positive Definite Linear Systems Splitting Iteration Methods for Positive Definite Linear Systems Zhong-Zhi Bai a State Key Lab. of Sci./Engrg. Computing Inst. of Comput. Math. & Sci./Engrg. Computing Academy of Mathematics and System

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Fast algorithms for hierarchically semiseparable matrices

Fast algorithms for hierarchically semiseparable matrices NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2010; 17:953 976 Published online 22 December 2009 in Wiley Online Library (wileyonlinelibrary.com)..691 Fast algorithms for hierarchically

More information

Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel preconditioning techniques with applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Maillages et EDP, Nancy, June 9, 2010 Introduction: Linear System

More information

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota 15th Copper Mountain Conference Mar. 28, 218 First: Joint work with

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Enhancing Scalability of Sparse Direct Methods

Enhancing Scalability of Sparse Direct Methods Journal of Physics: Conference Series 78 (007) 0 doi:0.088/7-6596/78//0 Enhancing Scalability of Sparse Direct Methods X.S. Li, J. Demmel, L. Grigori, M. Gu, J. Xia 5, S. Jardin 6, C. Sovinec 7, L.-Q.

More information

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver Malaysian Journal of Mathematical Sciences 10(3): 369 382 (2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal An Adaptive Hierarchical Matrix on Point

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-30, 2005 Outline Part 1 Introd., discretization

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations Sparse Linear Systems Iterative Methods for Sparse Linear Systems Matrix Computations and Applications, Lecture C11 Fredrik Bengzon, Robert Söderlund We consider the problem of solving the linear system

More information

Parallel Iterative Methods for Sparse Linear Systems. H. Martin Bücker Lehrstuhl für Hochleistungsrechnen

Parallel Iterative Methods for Sparse Linear Systems. H. Martin Bücker Lehrstuhl für Hochleistungsrechnen Parallel Iterative Methods for Sparse Linear Systems Lehrstuhl für Hochleistungsrechnen www.sc.rwth-aachen.de RWTH Aachen Large and Sparse Small and Dense Outline Problem with Direct Methods Iterative

More information

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners José I. Aliaga Leveraging task-parallelism in energy-efficient ILU preconditioners Universidad Jaime I (Castellón, Spain) José I. Aliaga

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

A robust inner-outer HSS preconditioner

A robust inner-outer HSS preconditioner NUMERICAL LINEAR ALGEBRA WIH APPLICAIONS Numer. Linear Algebra Appl. 2011; 00:1 0 [Version: 2002/09/18 v1.02] A robust inner-outer HSS preconditioner Jianlin Xia 1 1 Department of Mathematics, Purdue University,

More information

ERLANGEN REGIONAL COMPUTING CENTER

ERLANGEN REGIONAL COMPUTING CENTER ERLANGEN REGIONAL COMPUTING CENTER Making Sense of Performance Numbers Georg Hager Erlangen Regional Computing Center (RRZE) Friedrich-Alexander-Universität Erlangen-Nürnberg OpenMPCon 2018 Barcelona,

More information

Inexact inverse iteration with preconditioning

Inexact inverse iteration with preconditioning Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest)) 1 Introduction 2 Preconditioned

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

ILAS 2017 July 25, 2017

ILAS 2017 July 25, 2017 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota ILAS 217 July 25, 217 Large eigenvalue

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

Preconditioning techniques to accelerate the convergence of the iterative solution methods

Preconditioning techniques to accelerate the convergence of the iterative solution methods Note Preconditioning techniques to accelerate the convergence of the iterative solution methods Many issues related to iterative solution of linear systems of equations are contradictory: numerical efficiency

More information

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems TR-0-07 A Comparison of the Performance of ::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems Ang Li, Omkar Deshmukh, Radu Serban, Dan Negrut May, 0 Abstract ::GPU is a

More information

Department of Computer Science, University of Illinois at Urbana-Champaign

Department of Computer Science, University of Illinois at Urbana-Champaign Department of Computer Science, University of Illinois at Urbana-Champaign Probing for Schur Complements and Preconditioning Generalized Saddle-Point Problems Eric de Sturler, sturler@cs.uiuc.edu, http://www-faculty.cs.uiuc.edu/~sturler

More information

On the design of parallel linear solvers for large scale problems

On the design of parallel linear solvers for large scale problems On the design of parallel linear solvers for large scale problems ICIAM - August 2015 - Mini-Symposium on Recent advances in matrix computations for extreme-scale computers M. Faverge, X. Lacoste, G. Pichon,

More information

AN INTRODUCTION TO DOMAIN DECOMPOSITION METHODS. Gérard MEURANT CEA

AN INTRODUCTION TO DOMAIN DECOMPOSITION METHODS. Gérard MEURANT CEA Marrakech Jan 2003 AN INTRODUCTION TO DOMAIN DECOMPOSITION METHODS Gérard MEURANT CEA Introduction Domain decomposition is a divide and conquer technique Natural framework to introduce parallelism in the

More information

Architecture Solutions for DDM Numerical Environment

Architecture Solutions for DDM Numerical Environment Architecture Solutions for DDM Numerical Environment Yana Gurieva 1 and Valery Ilin 1,2 1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia 2 Novosibirsk State

More information