ILAS 2017 July 25, 2017

Size: px
Start display at page:

Download "ILAS 2017 July 25, 2017"

Transcription

1 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota ILAS 217 July 25, 217

2 Large eigenvalue problems in applications Challenge in eigenvalue problems: extract large number of eigenvalues & vectors of very large matrices (quantum physics/ chemistry,...) - often in the middle of spectrum. Example: Excited states involve transitions much more complex computations than for DFT (ground states) Large matrices, *many* eigen-pairs to compute Illustration: Hamiltonian of size n 1 6 get 1% of bands 2 ILAS July 25, 217

3 Solving large interior eigenvalue problems Three broad approaches: 1. Shift-invert (real shifts) 2. Polynomial filtering 3. Rational filtering (Cauchy, + others). Issues with shift-and invert (and related approaches) Issue 1: factorization may be too expensive Can use iterative methods? Issue 2: Iterative techniques often fail Reason: Highly indefinite problems. First Alternative: Spectrum slicing with Polynomial filtering 3 ILAS July 25, 217

4 Spectrum Slicing Situation: very large number of eigenvalues to be computed Goal: compute spectrum by slices by applying filtering Apply Lanczos or Subspace iteration to problem: 1.8 φ(λ i ) Pol. of degree 32 approx δ(.5) in [ 1 1] φ(a)u = µu φ(t) a polynomial or rational function that enhances wanted eigenvalues φ ( λ ) λ i.2 λ 4 ILAS July 25, 217

5 Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other : Idea: Get the spectrum by slices or windows [e.g., a few hundreds or thousands of pairs at a time] Can use polynomial or rational filters 5 ILAS July 25, 217

6 Hypothetical scenario: large A, *many* wanted eigenpairs Assume A has size 1M... and you want to compute 5, eigenvalues/vectors (huge for numerical analysits, not for physicists) in the lower part of the spectrum - or the middle. By (any) standard method you will need to orthogonalize at least 5K vectors of size 1M. Then: Space needed: b = 4TB *just for the basis* Orthogonalization cost: = 5 PetaOPS. At step k, each orthogonalization step costs 4kn This is 2, n for k close to 5,. 6 ILAS July 25, 217

7 Illustration: All eigenvalues in [, 1] of a 49 3 Laplacean 35 3 Computing all 1,971 e.v. s. in [, 1] Matvec Orth Total 25 2 Time Number of slices Note: This is a small pb. in a scalar environment. Effect likely much more pronounced in a fully parallel case. 7 ILAS July 25, 217

8 How do I slice my spectrum?.25 Slice spectrum into 8 with the DOS.2.15 Answer: Use the DOS..1 DOS We must have: ti+1 t i φ(t)dt = 1 n slices b a φ(t)dt 8 ILAS July 25, 217

9 Polynomial filtering Apply Lanczos or Subspace iteration to: M = ρ(a) where ρ(t) is a polynomial Each matvec y = Av is replaced by y = ρ(a)v. Eigenvalues in high part of filter will be computed first. Old (forgotten) idea. But new context is *very* favorable 9 ILAS July 25, 217

10 What polynomials? LS approximations to δ-dirac functions Pol. of degree 32 approx δ(.5) in [ 1 1] Obtain the LS approximation to the δ Dirac function Centered at some point (TBD) inside the interval. φ ( λ ) φ(λ i ) λ i λ W ll express everything in the interval [ 1, 1] 1 ILAS July 25, 217

11 Theory The Chebyshev expansion of δ γ is k { 1 j = ρ k (t) = µ j T j (t) with µ j = 2 cos(j cos 1 (γ)) j > j= Recall: The delta Dirac function is not a function we can t properly approximate it in least-squares sense. However: Proposition Let ˆρ k (t) be the polynomial that minimizes r(t) w over all polynomials r of degree k, such that r(γ) = 1, where. w represents the Chebyshev L 2 -norm. Then ˆρ k (t) = ρ k (t)/ρ k (γ). 11 ILAS July 25, 217

12 A few technical details. Issue # one: balance the filter To facilitate the selection of wanted eigenvalues [Select λ s such that ρ(λ) > bar] we need to find γ so that ρ(ξ) == ρ(η) ρ k ( λ ).6.4 ρ k ( λ ) ξ η ξ η λ λ Procedure: Solve the equation ρ γ (ξ) ρ γ (η) = with respect to γ, accurately. Use Newton or eigenvalue formulation. 12 ILAS July 25, 217

13 Issue # two: Determine degree & polynomial (automatically) Start low then increase degree until value (s) at the boundary (ies) become small enough - Exple for [.833,.97..] 1.2 Degree = 3; Sigma damping 1.2 Degree = 4; Sigma damping 1.2 Degree = 7; Sigma damping Degree = 13; Sigma damping 1.2 Degree = 2; Sigma damping 1.2 Degree = 23; Sigma damping ILAS July 25, 217

14 Polynomial filtered Lanczos: No-Restart version Degree = 23; Sigma damping Use Lanczos with full reorthogonalization on ρ(a). Eigenvalues of ρ(a): ρ(λ i ) Accept if ρ(λ i ) bar Ignore if ρ(λ i ) < bar ρ(λ) Unwanted eigenvalues Wanted 14 ILAS July 25, 217

15 Polynomial filtered Lanczos: Thick-Restart version PolFilt Thick-Restart Lanczos in a picture: 1.8 φ(λ i ) Pol. of degree 32 approx δ(.5) in [ 1 1] If accurate then lock else add to Thick Restart set. φ ( λ ).6.4 Reject.2 λ i λ Due to locking, no more candidates will show up in wanted area after some point Stop. 15 ILAS July 25, 217

16 TR Lanczos: The 3 types of basis vectors Basis vectors Matrix representation Locked vectors Thick restart vectors Lanczos vectors 16 ILAS July 25, 217

17 Experiments: Hamiltonian matrices from PARSEC Matrix n nnz [a, b] [ξ, η] ν [ξ,η] Ge 87 H , M [ 1.21, 32.76] [.64,.53] 212 Ge 99 H 1 112, M [ 1.22, 32.7] [.65,.96] 25 Si 41 Ge 41 H , M [ 1.12, 49.82] [.64,.28] 218 Si 87 H 76 24, M [ 1.19, 43.7] [.66,.3] 213 Ga 41 As 41 H , M [ 1.25, 131] [.64,.] ILAS July 25, 217

18 Results: (No-Restart Lanczos) Matrix deg iter matvec CPU time (sec) matvec orth. total max residual Ge 87 H ,2 26, Ge 99 H ,9 28, Si 41 Ge 41 H , Si 87 H ,1 29, Ga 41 As 41 H , Demo with Si1H16 [n = 17, 77, nnz(a) = 446, 5] 18 ILAS July 25, 217

19 RATIONAL FILTERS

20 Why use rational filters? Consider a spectrum like this one: 1 9 Polynomial filtering utterly ineffective for this case Second issue: situation when Matrix-vector products are expensive Generalized eigenvalue problems. 2 ILAS July 25, 217

21 Alternative is to use rational filters: φ(z) = j α j z σ j φ(a) = j α j(a σ j I) 1 We now need to solve linear systems Tool: Cauchy integral representations of spectral projectors P = 1 2iπ Γ (A si) 1 ds Numer. integr. P P Use Krylov or S.I. on P Sakurai-Sugiura approach [Krylov] FEAST [Subs. iter.] (E. Polizzi) 21 ILAS July 25, 217

22 What makes a good filter real(σ) =[.]; imag(σ) =[ 1.1]; pow = 3 Opt. pole 3 Single pole Single pole 3 Gauss 2 poles Gauss 2 poles real(σ) =[.]; imag(σ) =[ 1.1]; pow = 3 Opt. pole 3 Single pole Single pole 3 Gauss 2 poles Gauss 2 poles Assume subspace iteration is used with above filters. Which filter will give better convergence? Simplest and best indicator of performance of a filter is the magnitude of its derivative at -1 (or 1) 22 ILAS July 25, 217

23 The Gauss viewpoint: Least-squares rational filters Given: poles σ 1, σ 2,, σ p Related basis functions φ j (z) = 1 z σ j Find φ(z) = p j=1 α jφ j (z) that minimizes w(t) h(t) φ(t) 2 dt h(t) = step function χ [ 1,1]. w(t)= weight function. For example a = 1, β =.1 w(t) = if t > a β if t 1 1 else 23 ILAS July 25, 217

24 Advantages: Can select poles far away from real axis faster iterative solvers Very flexible can be adapted to many situations Can repeat poles (!) Implemented in EVSL.. [Interfaced to SuiteSparse as a solver] 24 ILAS July 25, 217

25 Spectrum Slicing and the EVSL project Newly released EVSL uses polynomial and rational filters Each can be appealing in different situations. Spectrum slicing: cut the overall interval containing the spectrum into small sub-intervals and compute eigenpairs in each sub-interval independently φ ( λ ) λ 25 ILAS July 25, 217

26 Levels of parallelism Macro task 1 Slice 1 Domain 1 Slice 2 Slice 3 Domain 2 Domain 3 Domain 4 The two main levels of parallelism in EVSL 26 ILAS July 25, 217

27

28 EVSL Main Contributors (version 1.1.) + support Ruipeng Li LLNL Yuanzhe Xi Post-doc (UMN) Luke Erlandson UG Intern (UMN) Work supported by DOE [ending this summer] and by NSF [going forward] 28 ILAS July 25, 217

29 EVSL: current status & plans Version _1. Released in Sept. 216 Matrices in CSR format (only) Standard Hermitian problems (no generalized) Spectrum slicing with KPM (Kernel Polynomial Meth.) Trivial parallelism across slices with OpenMP Methods: Non-restart Lanczos polynomial & rational filters Thick-Restart Lanczos polynomial & rational filters Subspace iteration polynomial & rational filters 29 ILAS July 25, 217

30 Version _1.1.x V_1.1. Due for release end of July general matvec [passed as function pointer] Ax = λbx Fortran (3) interface. Spectrum slicing by Lanczos and KPM Efficient Spectrum slicing for Ax = λbx (no solves with B). Version _1.2.x V_1.2. Early 218 (?) Fully parallel version [MPI + openmp] Challenge application in earth sciences [in progress] 3 ILAS July 25, 217

31 Conclusion Polynomial Filtering appealing when # of eigenpairs to be computed is large and Matvecs are not too expensive Somewhat costly for generalized eigenvalue problems Will not work well for spectra with large outliers. Alternative: Rational filtering Both approaches implemented in EVSL Current focus: provide as many interfaces as possible. EVSL code available here: EVSL Also on github (development) 31 ILAS July 25, 217

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota 15th Copper Mountain Conference Mar. 28, 218 First: Joint work with

More information

PASC17 - Lugano June 27, 2017

PASC17 - Lugano June 27, 2017 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota PASC17 - Lugano June 27, 217 Large eigenvalue

More information

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota Divide and conquer algorithms for large eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota PMAA 14 Lugano, July 4, 2014 Collaborators: Joint work with:

More information

Polynomial filtering for interior eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

Polynomial filtering for interior eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota Polynomial filtering for interior eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with: Haw-ren

More information

LEAST-SQUARES RATIONAL FILTERS FOR THE SOLUTION OF INTERIOR EIGENVALUE PROBLEMS

LEAST-SQUARES RATIONAL FILTERS FOR THE SOLUTION OF INTERIOR EIGENVALUE PROBLEMS LEAST-SQUARES RATIONAL FILTERS FOR THE SOLUTION OF INTERIOR EIGENVALUE PROBLEMS YUANZHE XI AND YOUSEF SAAD Abstract. This paper presents a method for computing partial spectra of Hermitian matrices, based

More information

THE EIGENVALUES SLICING LIBRARY (EVSL): ALGORITHMS, IMPLEMENTATION, AND SOFTWARE

THE EIGENVALUES SLICING LIBRARY (EVSL): ALGORITHMS, IMPLEMENTATION, AND SOFTWARE THE EIGENVALUES SLICING LIBRARY (EVSL): ALGORITHMS, IMPLEMENTATION, AND SOFTWARE RUIPENG LI, YUANZHE XI, LUCAS ERLANDSON, AND YOUSEF SAAD Abstract. This paper describes a software package called EVSL (for

More information

COMPUTING PARTIAL SPECTRA WITH LEAST-SQUARES RATIONAL FILTERS

COMPUTING PARTIAL SPECTRA WITH LEAST-SQUARES RATIONAL FILTERS SIAM J. SCI. COMPUT. Vol. 38, No. 5, pp. A32 A345 c 26 Society for Industrial and Applied Mathematics COMPUTING PARTIAL SPECTRA WITH LEAST-SQUARES RATIONAL FILTERS YUANZHE XI AND YOUSEF SAAD Abstract.

More information

Domain Decomposition-based contour integration eigenvalue solvers

Domain Decomposition-based contour integration eigenvalue solvers Domain Decomposition-based contour integration eigenvalue solvers Vassilis Kalantzis joint work with Yousef Saad Computer Science and Engineering Department University of Minnesota - Twin Cities, USA SIAM

More information

A knowledge-based approach to high-performance computing in ab initio simulations.

A knowledge-based approach to high-performance computing in ab initio simulations. Mitglied der Helmholtz-Gemeinschaft A knowledge-based approach to high-performance computing in ab initio simulations. AICES Advisory Board Meeting. July 14th 2014 Edoardo Di Napoli Academic background

More information

LARGE SPARSE EIGENVALUE PROBLEMS

LARGE SPARSE EIGENVALUE PROBLEMS LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization 14-1 General Tools for Solving Large Eigen-Problems

More information

FEAST eigenvalue algorithm and solver: review and perspectives

FEAST eigenvalue algorithm and solver: review and perspectives FEAST eigenvalue algorithm and solver: review and perspectives Eric Polizzi Department of Electrical and Computer Engineering University of Masachusetts, Amherst, USA Sparse Days, CERFACS, June 25, 2012

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS WITH APPLICATIONS

FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS WITH APPLICATIONS SIAM J. MATRIX ANAL. APPL. Vol. 28, No. 3, pp. 845 87 c 26 Society for Industrial and Applied Mathematics FILTERED CONJUGATE RESIDUAL-TYPE ALGORITHMS WITH APPLICATIONS YOUSEF SAAD Abstract. It is often

More information

Filtered Conjugate Residual-type Algorithms with Applications

Filtered Conjugate Residual-type Algorithms with Applications Filtered Conjugate Residual-type Algorithms with Applications Yousef Saad May 21, 25 Abstract In a number of applications, certain computations to be done with a given matrix are performed by replacing

More information

A FILTERED LANCZOS PROCEDURE FOR EXTREME AND INTERIOR EIGENVALUE PROBLEMS

A FILTERED LANCZOS PROCEDURE FOR EXTREME AND INTERIOR EIGENVALUE PROBLEMS A FILTERED LANCZOS PROCEDURE FOR EXTREME AND INTERIOR EIGENVALUE PROBLEMS HAW-REN FANG AND YOUSEF SAAD Abstract. When combined with Krylov projection methods, polynomial filtering can provide a powerful

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014 Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Modelling 24 June 2,24 Dedicated to Owe Axelsson at the occasion of his 8th birthday

More information

Fast estimation of approximate matrix ranks using spectral densities

Fast estimation of approximate matrix ranks using spectral densities Fast estimation of approximate matrix ranks using spectral densities Shashanka Ubaru Yousef Saad Abd-Krim Seghouane November 29, 216 Abstract Many machine learning and data related applications require

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm

Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses 2018 Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm Brendan E. Gavin University

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Mitglied der Helmholtz-Gemeinschaft Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Birkbeck University, London, June the 29th 2012 Edoardo Di Napoli Motivation and Goals

More information

MATH 583A REVIEW SESSION #1

MATH 583A REVIEW SESSION #1 MATH 583A REVIEW SESSION #1 BOJAN DURICKOVIC 1. Vector Spaces Very quick review of the basic linear algebra concepts (see any linear algebra textbook): (finite dimensional) vector space (or linear space),

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

SPECTRAL SCHUR COMPLEMENT TECHNIQUES FOR SYMMETRIC EIGENVALUE PROBLEMS

SPECTRAL SCHUR COMPLEMENT TECHNIQUES FOR SYMMETRIC EIGENVALUE PROBLEMS Electronic Transactions on Numerical Analysis. Volume 45, pp. 305 329, 2016. Copyright c 2016,. ISSN 1068 9613. ETNA SPECTRAL SCHUR COMPLEMENT TECHNIQUES FOR SYMMETRIC EIGENVALUE PROBLEMS VASSILIS KALANTZIS,

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

arxiv: v2 [math.na] 10 May 2016

arxiv: v2 [math.na] 10 May 2016 High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations arxiv:151.4895v2 [math.na] 1 May 216 Andreas Pieper a, Moritz Kreutzer b, Andreas Alvermann a,,

More information

Polynomial filtered Lanczos iterations with applications in Density Functional Theory

Polynomial filtered Lanczos iterations with applications in Density Functional Theory Polynomial filtered Lanczos iterations with applications in Density Functional Theory C. Bekas, E. Kokiopoulou, Yousef Saad Computer Science & Engineering Dept. University of Minnesota, Twin Cities. {bekas,kokiopou,saad}@cs.umn.edu

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

BEYOND AUTOMATED MULTILEVEL SUBSTRUCTURING: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING

BEYOND AUTOMATED MULTILEVEL SUBSTRUCTURING: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING SIAM J SCI COMPUT Vol 0, No 0, pp 000 000 c XXXX Society for Industrial and Applied Mathematics EYOND AUTOMATED MULTILEVEL SUSTRUCTURING: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING VASSILIS KALANTZIS,

More information

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY RONALD B. MORGAN AND MIN ZENG Abstract. A restarted Arnoldi algorithm is given that computes eigenvalues

More information

Density-Matrix-Based Algorithms for Solving Eingenvalue Problems

Density-Matrix-Based Algorithms for Solving Eingenvalue Problems University of Massachusetts - Amherst From the SelectedWorks of Eric Polizzi 2009 Density-Matrix-Based Algorithms for Solving Eingenvalue Problems Eric Polizzi, University of Massachusetts - Amherst Available

More information

ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers Victor Yu and the ELSI team Department of Mechanical Engineering & Materials Science Duke University Kohn-Sham Density-Functional

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

Large-scale eigenvalue problems

Large-scale eigenvalue problems ELE 538B: Mathematics of High-Dimensional Data Large-scale eigenvalue problems Yuxin Chen Princeton University, Fall 208 Outline Power method Lanczos algorithm Eigenvalue problems 4-2 Eigendecomposition

More information

1. Introduction. We consider the problem of solving the linear system. Ax = b, (1.1)

1. Introduction. We consider the problem of solving the linear system. Ax = b, (1.1) SCHUR COMPLEMENT BASED DOMAIN DECOMPOSITION PRECONDITIONERS WITH LOW-RANK CORRECTIONS RUIPENG LI, YUANZHE XI, AND YOUSEF SAAD Abstract. This paper introduces a robust preconditioner for general sparse

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

State-of-the-art numerical solution of large Hermitian eigenvalue problems. Andreas Stathopoulos

State-of-the-art numerical solution of large Hermitian eigenvalue problems. Andreas Stathopoulos State-of-the-art numerical solution of large Hermitian eigenvalue problems Andreas Stathopoulos Computer Science Department and Computational Sciences Cluster College of William and Mary Acknowledgment:

More information

Spectrum Slicing for Sparse Hermitian Definite Matrices Based on Zolotarev s Functions

Spectrum Slicing for Sparse Hermitian Definite Matrices Based on Zolotarev s Functions Spectrum Slicing for Sparse Hermitian Definite Matrices Based on Zolotarev s Functions Yingzhou Li, Haizhao Yang, ICME, Stanford University Department of Mathematics, Duke University January 30, 017 Abstract

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems Mario Arioli m.arioli@rl.ac.uk CCLRC-Rutherford Appleton Laboratory with Daniel Ruiz (E.N.S.E.E.I.H.T)

More information

A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS

A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS YUNKAI ZHOU AND YOUSEF SAAD Abstract. A polynomial filtered Davidson-type algorithm is proposed for solving symmetric eigenproblems. The

More information

Efficient implementation of the overlap operator on multi-gpus

Efficient implementation of the overlap operator on multi-gpus Efficient implementation of the overlap operator on multi-gpus Andrei Alexandru Mike Lujan, Craig Pelissier, Ben Gamari, Frank Lee SAAHPC 2011 - University of Tennessee Outline Motivation Overlap operator

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. DOI 10.1007/s00211-016-0837-7 Numerische Mathematik Randomized estimation of spectral densities of large matrices made accurate Lin Lin 1,2 Received: 29 April 2015 / Revised: 15 July 2016

More information

Numerical Simulation of Spin Dynamics

Numerical Simulation of Spin Dynamics Numerical Simulation of Spin Dynamics Marie Kubinova MATH 789R: Advanced Numerical Linear Algebra Methods with Applications November 18, 2014 Introduction Discretization in time Computing the subpropagators

More information

PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers

PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers James Kestyn, Vasileios Kalantzis, Eric Polizzi, Yousef Saad Electrical and Computer Engineering Department,

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Introduction to Iterative Solvers of Linear Systems

Introduction to Iterative Solvers of Linear Systems Introduction to Iterative Solvers of Linear Systems SFB Training Event January 2012 Prof. Dr. Andreas Frommer Typeset by Lukas Krämer, Simon-Wolfgang Mages and Rudolf Rödl 1 Classes of Matrices and their

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

ABSTRACT OF DISSERTATION. Ping Zhang

ABSTRACT OF DISSERTATION. Ping Zhang ABSTRACT OF DISSERTATION Ping Zhang The Graduate School University of Kentucky 2009 Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices ABSTRACT OF DISSERTATION A dissertation

More information

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems JAMES H. MONEY and QIANG YE UNIVERSITY OF KENTUCKY eigifp is a MATLAB program for computing a few extreme eigenvalues

More information

Physics 215 Quantum Mechanics 1 Assignment 1

Physics 215 Quantum Mechanics 1 Assignment 1 Physics 5 Quantum Mechanics Assignment Logan A. Morrison January 9, 06 Problem Prove via the dual correspondence definition that the hermitian conjugate of α β is β α. By definition, the hermitian conjugate

More information

BEYOND AMLS: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING

BEYOND AMLS: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING EYOND AMLS: DOMAIN DECOMPOSITION WITH RATIONAL FILTERING VASSILIS KALANTZIS, YUANZHE XI, AND YOUSEF SAAD Abstract. This paper proposes a rational filtering domain decomposition technique for the solution

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Cucheb: A GPU implementation of the filtered Lanczos procedure. Department of Computer Science and Engineering University of Minnesota, Twin Cities

Cucheb: A GPU implementation of the filtered Lanczos procedure. Department of Computer Science and Engineering University of Minnesota, Twin Cities Cucheb: A GPU implementation of the filtered Lanczos procedure Jared L. Aurentz, Vassilis Kalantzis, and Yousef Saad May 2017 EPrint ID: 2017.1 Department of Computer Science and Engineering University

More information

Krylov subspace projection methods

Krylov subspace projection methods I.1.(a) Krylov subspace projection methods Orthogonal projection technique : framework Let A be an n n complex matrix and K be an m-dimensional subspace of C n. An orthogonal projection technique seeks

More information

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012.

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012. Math 5620 - Introduction to Numerical Analysis - Class Notes Fernando Guevara Vasquez Version 1990. Date: January 17, 2012. 3 Contents 1. Disclaimer 4 Chapter 1. Iterative methods for solving linear systems

More information

Applications of trace estimation techniques

Applications of trace estimation techniques Applications of trace estimation techniques Shashanka Ubaru and Yousef Saad University of Minnesota at Twin Cities, MN 55455. {ubaru1, saad}@umn.edu Abstract. We discuss various applications of trace estimation

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota ICME, Stanford April 2th, 25 First: Partly joint work with

More information

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices Jean Christophe Tremblay and Tucker Carrington Chemistry Department Queen s University 23 août 2007 We want to

More information

Bounding the Spectrum of Large Hermitian Matrices

Bounding the Spectrum of Large Hermitian Matrices Bounding the Spectrum of Large Hermitian Matrices Ren-Cang Li Yunkai Zhou Technical Report 2009-07 http://www.uta.edu/math/preprint/ Bounding the Spectrum of Large Hermitian Matrices Ren-Cang Li and Yunkai

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-3, 25 Outline Part 1 Introd., discretization

More information

Jacobi s Ideas on Eigenvalue Computation in a modern context

Jacobi s Ideas on Eigenvalue Computation in a modern context Jacobi s Ideas on Eigenvalue Computation in a modern context Henk van der Vorst vorst@math.uu.nl Mathematical Institute Utrecht University June 3, 2006, Michel Crouzeix p.1/18 General remarks Ax = λx Nonlinear

More information

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM Applied Linear Algebra Valencia, June 18-22, 2012 Introduction Krylov

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Efficient Linear Algebra methods for Data Mining Yousef Saad Department of Computer Science and Engineering University of Minnesota

Efficient Linear Algebra methods for Data Mining Yousef Saad Department of Computer Science and Engineering University of Minnesota Efficient Linear Algebra methods for Data Mining Yousef Saad Department of Computer Science and Engineering University of Minnesota NUMAN-08 Kalamata, 08 Team members involved in this work Support Past:

More information

Numerical Methods for Solving Large Scale Eigenvalue Problems

Numerical Methods for Solving Large Scale Eigenvalue Problems Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch arge scale eigenvalue problems, Lecture 2, February 28, 2018 1/46 Numerical Methods for Solving Large Scale Eigenvalue Problems

More information

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems Part I: Review of basic theory of eigenvalue problems 1. Let A C n n. (a) A scalar λ is an eigenvalue of an n n A

More information

Computation of Smallest Eigenvalues using Spectral Schur Complements

Computation of Smallest Eigenvalues using Spectral Schur Complements Computation of Smallest Eigenvalues using Spectral Schur Complements Constantine Bekas Yousef Saad January 23, 2004 Abstract The Automated Multilevel Substructing method (AMLS ) was recently presented

More information

An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems

An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems M. Baumann, and M.B. van Gijzen Email: M.M.Baumann@tudelft.nl Delft Institute of Applied Mathematics Delft University

More information

An Asynchronous Algorithm on NetSolve Global Computing System

An Asynchronous Algorithm on NetSolve Global Computing System An Asynchronous Algorithm on NetSolve Global Computing System Nahid Emad S. A. Shahzadeh Fazeli Jack Dongarra March 30, 2004 Abstract The Explicitly Restarted Arnoldi Method (ERAM) allows to find a few

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Rational Krylov methods for linear and nonlinear eigenvalue problems

Rational Krylov methods for linear and nonlinear eigenvalue problems Rational Krylov methods for linear and nonlinear eigenvalue problems Mele Giampaolo mele@mail.dm.unipi.it University of Pisa 7 March 2014 Outline Arnoldi (and its variants) for linear eigenproblems Rational

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

FIXED POINT ITERATIONS

FIXED POINT ITERATIONS FIXED POINT ITERATIONS MARKUS GRASMAIR 1. Fixed Point Iteration for Non-linear Equations Our goal is the solution of an equation (1) F (x) = 0, where F : R n R n is a continuous vector valued mapping in

More information

On the Ritz values of normal matrices

On the Ritz values of normal matrices On the Ritz values of normal matrices Zvonimir Bujanović Faculty of Science Department of Mathematics University of Zagreb June 13, 2011 ApplMath11 7th Conference on Applied Mathematics and Scientific

More information

Is there life after the Lanczos method? What is LOBPCG?

Is there life after the Lanczos method? What is LOBPCG? 1 Is there life after the Lanczos method? What is LOBPCG? Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver SIAM ALA Meeting, July 17,

More information

MATH 581D FINAL EXAM Autumn December 12, 2016

MATH 581D FINAL EXAM Autumn December 12, 2016 MATH 58D FINAL EXAM Autumn 206 December 2, 206 NAME: SIGNATURE: Instructions: there are 6 problems on the final. Aim for solving 4 problems, but do as much as you can. Partial credit will be given on all

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

BLOCK ALGORITHMS WITH AUGMENTED RAYLEIGH-RITZ PROJECTIONS FOR LARGE-SCALE EIGENPAIR COMPUTATION

BLOCK ALGORITHMS WITH AUGMENTED RAYLEIGH-RITZ PROJECTIONS FOR LARGE-SCALE EIGENPAIR COMPUTATION BLOCK ALGORITHMS WITH AUGMENTED RAYLEIGH-RITZ PROJECTIONS FOR LARGE-SCALE EIGENPAIR COMPUTATION ZAIWEN WEN AND YIN ZHANG Abstract. Most iterative algorithms for eigenpair computation consist of two main

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Contribution of Wo¹niakowski, Strako²,... The conjugate gradient method in nite precision computa

Contribution of Wo¹niakowski, Strako²,... The conjugate gradient method in nite precision computa Contribution of Wo¹niakowski, Strako²,... The conjugate gradient method in nite precision computations ªaw University of Technology Institute of Mathematics and Computer Science Warsaw, October 7, 2006

More information

A Residual Inverse Power Method

A Residual Inverse Power Method University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR 2007 09 TR 4854 A Residual Inverse Power Method G. W. Stewart February 2007 ABSTRACT The inverse

More information

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations Akira IMAKURA Center for Computational Sciences, University of Tsukuba Joint work with

More information