Inexact inverse iteration with preconditioning

Size: px
Start display at page:

Download "Inexact inverse iteration with preconditioning"

Transcription

1 Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest))

2 1 Introduction 2 Preconditioned GMRES 3 Inexact Subspace iteration 4 Preconditioned RQI and Jacobi-Davidson 5 Conclusions

3 Outline 1 Introduction 2 Preconditioned GMRES 3 Inexact Subspace iteration 4 Preconditioned RQI and Jacobi-Davidson 5 Conclusions

4 Introduction Ax = λx, λ C, x C n seek λ near a given shift σ. A is large, sparse, nonsymmetric (discretised PDE: Ax = λmx)

5 Introduction Ax = λx, λ C, x C n seek λ near a given shift σ. A is large, sparse, nonsymmetric (discretised PDE: Ax = λmx) Inverse Iteration: (A σi)y = x Preconditioned iterative solves

6 Introduction Ax = λx, λ C, x C n seek λ near a given shift σ. A is large, sparse, nonsymmetric (discretised PDE: Ax = λmx) Inverse Iteration: (A σi)y = x Preconditioned iterative solves Extensions Inverse Subspace Iteration Jacobi-Davidson method Shift-invert Arnoldi method (Melina Freitag)

7 Inexact inverse iteration Assume x (i) is an approximate normalised eigenvector Iterative solves (e.g. GMRES) of (A σi)y = x (i)

8 Inexact inverse iteration Assume x (i) is an approximate normalised eigenvector Iterative solves (e.g. GMRES) of (A σi)y = x (i) inner-outer x (i) (A σi)y k τ (i) Rescale y k to get x (i+1), (τ (i) : solve tolerance)

9 Inexact inverse iteration Assume x (i) is an approximate normalised eigenvector Iterative solves (e.g. GMRES) of inner-outer x (i) (A σi)y k τ (i) Rescale y k to get x (i+1) (Right-) preconditioned solves P 1 known (A σi)y = x (i) (A σi)p 1 ỹ = x (i), P 1 ỹ = y., (τ (i) : solve tolerance)

10 Convergence of inexact inverse iteration Given x (i) and λ (i) r (i) = Ax (i) λ (i) x (i) Eigenvalue residual Theorem (Convergence) If the solve tolerance, τ (i), is chosen to reduce proportional to the norm of the eigenvalue residual r (i) then we recover the rate of convergence achieved when using direct solves. other options/strategies possible.

11 Literature Ruhe/Wiberg (1972) Lai/Lin/Lin (1997) Smit/Paardekooper (1999) Golub/Ye (2000) Simoncini/Eldén (2002) Notay (2003), Notay/Hochstenbach (2007) Berns-Müller/Graham/Sp. (2006), Freitag/Sp. (2006),...

12 TODAY Assume σ = 0: Inverse Power method: Ay = x (i)

13 TODAY Assume σ = 0: Inverse Power method: Ay = x (i) AP 1 ỹ = x (i), P 1 ỹ = y. inverse iteration inverse subspace iteration link with Jacobi-Davidson Shift-Invert Arnoldi (Melina Freitag - this afternoon)

14 TODAY Assume σ = 0: Inverse Power method: Ay = x (i) AP 1 ỹ = x (i), P 1 ỹ = y. inverse iteration inverse subspace iteration link with Jacobi-Davidson Shift-Invert Arnoldi (Melina Freitag - this afternoon) Always assume decreasing tolerance: τ (i) = C Ax (i) λ (i) x (i) Example

15 Convection-Diffusion problem Finite difference discretisation on a grid of the convection-diffusion operator u + 5u x + 5u y = λu on (0, 1) 2, with homogeneous Dirichlet boundary conditions ( matrix). smallest eigenvalue: λ , Preconditioned GMRES with tolerance τ (i) = 0.01 r (i), ILU based preconditioners.

16 Convection-Diffusion problem: No Preconditioning - Ay k x (i) τ (i) 60 unpreconditioned solves, unpreconditioned solves, inner iterations eigenvalue residual outer iterations sum of inner iterations Figure: Inner iterations vs outer iterations Figure: Eigenvalue residual norms vs total number of inner iterations Question Why is there no increase in inner iterations as i increases?

17 Convection-Diffusion problem: Preconditioning - AP 1 ỹ k x (i) τ (i) inner iterations P 1 P i outer iterations Figure: Inner iterations vs outer iterations Question Why is P 1 i better than P 1?

18 Convection-Diffusion problem: Preconditioning - AP 1 ỹ k x (i) τ (i) inner iterations P 1 P i outer iterations Figure: Inner iterations vs outer iterations Question Why is P 1 i better than P 1? Also P i is a rank-one change to P, tuned to the eigenproblem!

19 Outline 1 Introduction 2 Preconditioned GMRES 3 Inexact Subspace iteration 4 Preconditioned RQI and Jacobi-Davidson 5 Conclusions

20 Theory: Unpreconditioned solves to find λ 1, x 1 x (i) is approximation to x 1 x 1 θ (i) x (i) (i) Q x = O (sin ) measure for the error θ (i) x (i) = cos θ (i) x 1 + sin θ (i) x

21 Theory: Unpreconditioned solves to find λ 1, x 1 x (i) is approximation to x 1 x 1 θ (i) x (i) (i) Q x = O (sin ) measure for the error θ (i) x (i) = cos θ (i) x 1 + sin θ (i) x r (i) = Ax (i) λ (i) x (i), r (i) C sin θ (i) Parlett (1998) - ideas extend to nonsymmetric problems.

22 GMRES applied to Ay = x (i) y k after k steps x (i) Ay k τ (i) = C r (i)

23 GMRES applied to Ay = x (i) y k after k steps x (i) Ay k τ (i) = C r (i) x (i) Ay k = min p k (A)x (i) min q k 1 (A)(I 1 λ 1 A)(cos θ (i) x 1 + sin θ (i) x ) Cρ k sin θ (i), 0 < ρ < 1. «sin θ(i) k 1 + C 1 log C 2 + log τ (i) bound on k does not increase with i.

24 GMRES applied to Ay = x (i) y k after k steps x (i) Ay k τ (i) = C r (i) x (i) Ay k = min p k (A)x (i) min q k 1 (A)(I 1 λ 1 A)(cos θ (i) x 1 + sin θ (i) x ) Cρ k sin θ (i), 0 < ρ < 1. «sin θ(i) k 1 + C 1 log C 2 + log τ (i) bound on k does not increase with i. Reason: x (i) = cos θ (i) x 1 + sin θ (i) x x (i) = eigenvector of A + term 0

25 GMRES applied to AP 1 ỹ = x (i) AP 1 u 1 = µ 1u 1: (µ 1, u 1) eigenpair nearest zero of AP 1 x (i) = cos θ (i) u 1 + sin θ (i) u

26 GMRES applied to AP 1 ỹ = x (i) AP 1 u 1 = µ 1u 1: (µ 1, u 1) eigenpair nearest zero of AP 1 x (i) = cos θ (i) u 1 + sin θ (i) u «k 1 + C 1 log C (i) sin θ 2 + log τ (i) BUT sin θ (i) 0 only if u 1 span{x 1} generally won t hold

27 GMRES applied to AP 1 ỹ = x (i) AP 1 u 1 = µ 1u 1: (µ 1, u 1) eigenpair nearest zero of AP 1 x (i) = cos θ (i) u 1 + sin θ (i) u «k 1 + C 1 log C (i) sin θ 2 + log τ (i) BUT sin θ (i) 0 only if u 1 span{x 1} generally won t hold sin θ (i) 0 inner iteration costs increase with i. Reason: x (i) = cos θ (i) u 1 + sin θ (i) u x (i) = eigenvector of AP 1 + term 0

28 New tuned preconditioner P i Idea: recreate the good relationship between the right hand side and the iteration matrix x (i) = eigenvector of iteration matrix + term 0

29 New tuned preconditioner P i Idea: recreate the good relationship between the right hand side and the iteration matrix x (i) = eigenvector of iteration matrix + term 0 Define P i = P + (A P)x (i) x (i)h P i is a rank one change to P (Sherman-Morrison)

30 New tuned preconditioner P i Idea: recreate the good relationship between the right hand side and the iteration matrix x (i) = eigenvector of iteration matrix + term 0 Define P i = P + (A P)x (i) x (i)h P i is a rank one change to P (Sherman-Morrison) P ix (i) = Px (i) + (A P)x (i) x (i)h x (i) Ax (i) = P ix (i)

31 New tuned preconditioner P i Idea: recreate the good relationship between the right hand side and the iteration matrix Define x (i) = eigenvector of iteration matrix + term 0 P i = P + (A P)x (i) x (i)h P i is a rank one change to P (Sherman-Morrison) P ix (i) = Px (i) + (A P)x (i) x (i)h x (i) Ax (i) = P ix (i) Hence Ax (i) is an eigenvector of AP 1 i AP 1 i (Ax (i) ) = Ax (i)

32 GMRES with the tuned preconditioner Recall AP 1 i ỹ = x (i) AP 1 i Ax (i) = Ax (i) Is x (i) a nice RHS for AP 1?

33 GMRES with the tuned preconditioner Recall AP 1 i ỹ = x (i) AP 1 i Ax (i) = Ax (i) Is x (i) a nice RHS for AP 1? r (i) = Ax (i) λ (i) x (i) x (i) = 1 λ (i) Ax(i) 1 λ Idea of tuning: change iteration matrix so that (i) r(i) x (i) = eigenvector of AP 1 i + term 0

34 GMRES with the tuned preconditioner Recall AP 1 i ỹ = x (i) AP 1 i Ax (i) = Ax (i) Is x (i) a nice RHS for AP 1? r (i) = Ax (i) λ (i) x (i) x (i) = 1 λ (i) Ax(i) 1 λ Idea of tuning: change iteration matrix so that (i) r(i) x (i) = eigenvector of AP 1 i + term 0 GMRES analysis is essentially the same as for unpreconditioned case No increase in inner iterations as i increases

35 GMRES with the tuned preconditioner Recall AP 1 i ỹ = x (i) AP 1 i Ax (i) = Ax (i) Is x (i) a nice RHS for AP 1? r (i) = Ax (i) λ (i) x (i) x (i) = 1 λ (i) Ax(i) 1 λ Idea of tuning: change iteration matrix so that (i) r(i) x (i) = eigenvector of AP 1 i + term 0 GMRES analysis is essentially the same as for unpreconditioned case No increase in inner iterations as i increases Explains the numerical results earlier

36 Theory for tuned preconditioner As before Now introduce P i = P + (A P)x (i) x (i)h P ideal = P + (A P)x 1x 1 H

37 Theory for tuned preconditioner As before Now introduce P i = P + (A P)x (i) x (i)h P ideal = P + (A P)x 1x 1 H x 1 is eigenvector of AP 1 ideal

38 Theory for tuned preconditioner As before Now introduce P i = P + (A P)x (i) x (i)h P ideal = P + (A P)x 1x 1 H x 1 is eigenvector of AP 1 ideal AP 1 idealỹ = x 1 GMRES converges in 1 step

39 Theory for tuned preconditioner As before Now introduce P i = P + (A P)x (i) x (i)h P ideal = P + (A P)x 1x 1 H x 1 is eigenvector of AP 1 ideal AP 1 idealỹ = x 1 GMRES converges in 1 step AP 1 i ỹ = x (i) close to ideal system proof of independence of i

40 Theory for tuned preconditioner As before Now introduce P i = P + (A P)x (i) x (i)h P ideal = P + (A P)x 1x 1 H x 1 is eigenvector of AP 1 ideal AP 1 idealỹ = x 1 GMRES converges in 1 step AP 1 i ỹ = x (i) close to ideal system proof of independence of i Subspace (block) version (Robbé/Sadkane/Sp.).

41 Outline 1 Introduction 2 Preconditioned GMRES 3 Inexact Subspace iteration 4 Preconditioned RQI and Jacobi-Davidson 5 Conclusions

42 Numerical Example same PDE example as before (5 10) n = 2025, nz = 9945 ILU preconditioner, drop tolerance 0.1 subspace dimension 6 seek first 4 eigenvalues (stop when residual 10 8 )

43 Unpreconditioned Block-GMRES 500 No preconditioner inner itertaions k i outer iterations i Figure: Inner iterations vs outer iterations

44 Preconditioned Block-GMRES Tuned preconditioner ILU preconditioner inner itertaions k i outer iterations i Figure: Inner iterations vs outer iterations

45 Preconditioned Block-GMRES 10 4 Tuned preconditioner ILU preconditioner Γ i outer iterations i Figure: Residual norms vs outer iterations

46 Preconditioned Block-GMRES 10 4 Tuned preconditioner ILU preconditioner Γ i i sum of inner iterations, Σ j=0 k j Figure: Residual norms vs total number of iterations

47 Numerical Example matrix market library qc2534 complex symmetric (non-hermitian) n = 2534, nz = ILU preconditioner subspace dimension 16 seek first 10 eigenvalues

48 Preconditioned GMRES Tuned preconditioner inner itertaions k i ILU preconditioner outer iterations i Figure: Inner iterations vs outer iterations

49 Preconditioned GMRES Tuned preconditioner ILU preconditioner Γ i i sum of inner iterations, Σ j=0 k j Figure: Residual norms vs total number of iterations

50 Outline 1 Introduction 2 Preconditioned GMRES 3 Inexact Subspace iteration 4 Preconditioned RQI and Jacobi-Davidson 5 Conclusions

51 RQI and J-D: Exact solves Rayleigh quotient iteration At each iteration a system of the form (A ρ(x)i)y = x has to be solved.

52 RQI and J-D: Exact solves Rayleigh quotient iteration At each iteration a system of the form (A ρ(x)i)y = x has to be solved. Jacobi-Davidson method At each iteration a system of the form (I xx H )(A ρ(x)i)(i xx H )s = r has to be solved, where r = (A ρ(x)i)x is the eigenvalue residual and s x.

53 RQI and J-D: Exact solves Rayleigh quotient iteration At each iteration a system of the form (A ρ(x)i)y = x has to be solved. Jacobi-Davidson method At each iteration a system of the form (I xx H )(A ρ(x)i)(i xx H )s = r has to be solved, where r = (A ρ(x)i)x is the eigenvalue residual and s x. Exact solves Sleijpen and van der Vorst (1996): y = α(x + s) for some constant α

54 RQI and J-D: Inexact solves Rayleigh quotient iteration At each iteration a system of the form (A ρ(x)i)y = x has to be solved. Jacobi-Davidson method At each iteration a system of the form (I xx H )(A ρ(x)i)(i xx H )s = r has to be solved, where r = (A ρ(x)i)x is the eigenvalue residual and s x. Galerkin-Krylov Solver Simoncini and Eldén (2002), (Hochstenbach and Sleijpen (2003) for two-sided RQ iteration): y k+1 = β(x + s k ) for some constant β if both systems are solved using a Galerkin-Krylov subspace method

55 RQI and J-D: Preconditioned Solves Preconditioning for RQ iteration At each iteration a system of the form (A ρ(x)i)p 1 ỹ = x, (with y = P 1 ỹ) has to be solved.

56 RQI and J-D: Preconditioned Solves Preconditioning for RQ iteration At each iteration a system of the form (A ρ(x)i)p 1 ỹ = x, (with y = P 1 ỹ) has to be solved. Preconditioning for JD method At each iteration a system of the form (I xx H )(A ρ(x)i)(i xx H ) P s = r (with s = P s) has to be solved. Note the restricted preconditioner P := (I xx H )P(I xx H ). Equivalence does not hold!

57 Example: sherman5.mtx fixed shift; (preconditioned) FOM as inner solver 10 2 simplified Jacobi Davidson without preconditoner Inverse iteration without preconditioner simplified Jacobi Davidson with standard preconditoner Inverse iteration with standard preconditioner 10 1 eigenvalue residual eigenvalue residual outer iteration outer iteration Figure: Convergence history of the eigenvalue residuals; no preconditioner Figure: Convergence history of the eigenvalue residuals; standard preconditioner

58 Preconditioned Solves Tuned RQI preconditioned JD Px = x Preconditioning for RQ iteration Inner solves in RQ iteration builds Krylov space span{x,(a ρ(x)i)p 1 x,((a ρ(x)i)p 1 ) 2 x,...}

59 Preconditioned Solves Tuned RQI preconditioned JD Px = x Preconditioning for RQ iteration Inner solves in RQ iteration builds Krylov space span{x,(a ρ(x)i)p 1 x,((a ρ(x)i)p 1 ) 2 x,...} Preconditioning for JD method Inner solves in JD method builds Krylov space span{r,π 1(A ρ(x)i)π P 2 P 1 r,(π 1(A ρ(x)i)π P 2 P 1 ) 2 r,...} where (I xx H ) and Π P 2 = I P 1 xx H x H P 1 x.

60 Consider subspaces A A ρ(x)i Lemma The subspaces K k = span{x, AP 1 x,(ap 1 ) 2 x,..., (AP 1 ) k x} and L k = span{x, r,π 1AΠ P 2 P 1 r,(π 1AΠ P 2 P 1 ) 2 r,..., (Π 1AΠ P 2 P 1 ) k 1 r} are equivalent. Proof. Based on Stathopoulos and Saad (1998).

61 Equivalence for inexact solves Theorem Let both (A ρ(x)i)p 1 ỹ = x, y = P 1 ỹ and (I xx H )(A ρ(x)i)(i xx H ) P s = r, s = be solved with the same Galerkin-Krylov method. Then P s y RQ k+1 = γ(x + sjd k ). Proof. Based on Simoncini and Eldén (2002).

62 Heuristic Explanation of RQI + P JD + P Px = x P = P + (I P)xx H P = xx H + P(I xx H )

63 Example: sherman5.mtx fixed shift; (preconditioned) FOM as inner solver simplified Jacobi Davidson without preconditoner Inverse iteration without preconditioner simplified Jacobi Davidson with standard preconditoner Inverse iteration with standard preconditioner Inverse iteration with tuned preconditioner eigenvalue residual eigenvalue residual outer iteration Figure: Convergence history of the eigenvalue residuals; no preconditioner outer iteration Figure: standard preconditioner for JD, tuned preconditioner for II

64 Outline 1 Introduction 2 Preconditioned GMRES 3 Inexact Subspace iteration 4 Preconditioned RQI and Jacobi-Davidson 5 Conclusions

65 Conclusions When using Krylov solvers for shifted systems (A σi)y = x (i) in eigenvalue computations then it is best if the iteration matrix has a good relationship with the right hand side, For any preconditioner the good relationship is achieved by a small rank change called tuning, essentially no extra costs, Numerical results on eigenvalue problems obtained from Mixed FEM Navier-Stokes with DD preconditioner show the same gains.

66 M. A. Freitag and A. Spence, A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems, Submitted to IMAJNA., Convergence rates for inexact inverse iteration with application to preconditioned iterative solves, BIT, 47 (2007), pp , Rayleigh quotient iteration and simplified Jacobi-Davidson method with preconditioned iterative solves, Submitted to LAA. M. Robbé, M. Sadkane, and A. Spence, Inexact inverse subspace iteration with preconditioning applied to non-hermitian eigenvalue problems, Submitted to SIMAX.

Lecture 3: Inexact inverse iteration with preconditioning

Lecture 3: Inexact inverse iteration with preconditioning Lecture 3: Department of Mathematical Sciences CLAPDE, Durham, July 2008 Joint work with M. Freitag (Bath), and M. Robbé & M. Sadkane (Brest) 1 Introduction 2 Preconditioned GMRES for Inverse Power Method

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems A Tuned Preconditioner for for Generalised Eigenvalue Problems Department of Mathematical Sciences University of Bath, United Kingdom IWASEP VI May 22-25, 2006 Pennsylvania State University, University

More information

A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems

A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems A Tuned Preconditioner for Applied to Eigenvalue Problems Department of Mathematical Sciences University of Bath, United Kingdom IWASEP VI May 22-25, 2006 Pennsylvania State University, University Park

More information

RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS

RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS MELINA A. FREITAG, ALASTAIR SPENCE, AND EERO VAINIKKO Abstract. The computation

More information

Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning

Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning submitted by Melina Annerose Freitag for the degree of Doctor of Philosophy of the University of Bath Department

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 28, No. 4, pp. 1069 1082 c 2006 Society for Industrial and Applied Mathematics INEXACT INVERSE ITERATION WITH VARIABLE SHIFT FOR NONSYMMETRIC GENERALIZED EIGENVALUE PROBLEMS

More information

Inexact Inverse Iteration for Symmetric Matrices

Inexact Inverse Iteration for Symmetric Matrices Inexact Inverse Iteration for Symmetric Matrices Jörg Berns-Müller Ivan G. Graham Alastair Spence Abstract In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av

More information

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. The Jacobi Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate)

More information

Inexact Inverse Iteration for Symmetric Matrices

Inexact Inverse Iteration for Symmetric Matrices Inexact Inverse Iteration for Symmetric Matrices Jörg Berns-Müller Ivan G. Graham Alastair Spence Abstract In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av

More information

Controlling inner iterations in the Jacobi Davidson method

Controlling inner iterations in the Jacobi Davidson method Controlling inner iterations in the Jacobi Davidson method Michiel E. Hochstenbach and Yvan Notay Service de Métrologie Nucléaire, Université Libre de Bruxelles (C.P. 165/84), 50, Av. F.D. Roosevelt, B-1050

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

Inexact inverse iteration for symmetric matrices

Inexact inverse iteration for symmetric matrices Linear Algebra and its Applications 46 (2006) 389 43 www.elsevier.com/locate/laa Inexact inverse iteration for symmetric matrices Jörg Berns-Müller a, Ivan G. Graham b, Alastair Spence b, a Fachbereich

More information

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. The Jacobi Davidson method is an eigenvalue solver which uses an inner-outer scheme. In the outer

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2)

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2) A NEW JUSTIFICATION OF THE JACOBI DAVIDSON METHOD FOR LARGE EIGENPROBLEMS HEINRICH VOSS Abstract. The Jacobi Davidson method is known to converge at least quadratically if the correction equation is solved

More information

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology The Davidson method is a popular technique to compute a few of the smallest (or largest)

More information

MICHIEL E. HOCHSTENBACH

MICHIEL E. HOCHSTENBACH VARIATIONS ON HARMONIC RAYLEIGH RITZ FOR STANDARD AND GENERALIZED EIGENPROBLEMS MICHIEL E. HOCHSTENBACH Abstract. We present several variations on the harmonic Rayleigh Ritz method. First, we introduce

More information

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 31, No. 2, pp. 460 477 c 2009 Society for Industrial and Applied Mathematics CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD MICHIEL E. HOCHSTENBACH AND YVAN

More information

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC 663-664 Final Report Minghao Wu AMSC Program mwu@math.umd.edu Dr. Howard Elman Department of Computer

More information

Universiteit-Utrecht. Department. of Mathematics. The convergence of Jacobi-Davidson for. Hermitian eigenproblems. Jasper van den Eshof.

Universiteit-Utrecht. Department. of Mathematics. The convergence of Jacobi-Davidson for. Hermitian eigenproblems. Jasper van den Eshof. Universiteit-Utrecht * Department of Mathematics The convergence of Jacobi-Davidson for Hermitian eigenproblems by Jasper van den Eshof Preprint nr. 1165 November, 2000 THE CONVERGENCE OF JACOBI-DAVIDSON

More information

AN INEXACT INVERSE ITERATION FOR COMPUTING THE SMALLEST EIGENVALUE OF AN IRREDUCIBLE M-MATRIX. 1. Introduction. We consider the eigenvalue problem

AN INEXACT INVERSE ITERATION FOR COMPUTING THE SMALLEST EIGENVALUE OF AN IRREDUCIBLE M-MATRIX. 1. Introduction. We consider the eigenvalue problem AN INEXACT INVERSE ITERATION FOR COMPUTING THE SMALLEST EIGENVALUE OF AN IRREDUCIBLE M-MATRIX MICHIEL E. HOCHSTENBACH, WEN-WEI LIN, AND CHING-SUNG LIU Abstract. In this paper, we present an inexact inverse

More information

ABSTRACT OF DISSERTATION. Ping Zhang

ABSTRACT OF DISSERTATION. Ping Zhang ABSTRACT OF DISSERTATION Ping Zhang The Graduate School University of Kentucky 2009 Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices ABSTRACT OF DISSERTATION A dissertation

More information

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems JAMES H. MONEY and QIANG YE UNIVERSITY OF KENTUCKY eigifp is a MATLAB program for computing a few extreme eigenvalues

More information

Alternative correction equations in the Jacobi-Davidson method

Alternative correction equations in the Jacobi-Davidson method Chapter 2 Alternative correction equations in the Jacobi-Davidson method Menno Genseberger and Gerard Sleijpen Abstract The correction equation in the Jacobi-Davidson method is effective in a subspace

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem HOMOGENEOUS JACOBI DAVIDSON MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. We study a homogeneous variant of the Jacobi Davidson method for the generalized and polynomial eigenvalue problem. Special

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

of dimension n 1 n 2, one defines the matrix determinants

of dimension n 1 n 2, one defines the matrix determinants HARMONIC RAYLEIGH RITZ FOR THE MULTIPARAMETER EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK Abstract. We study harmonic and refined extraction methods for the multiparameter eigenvalue

More information

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS Department of Mathematics University of Maryland, College Park Advisor: Dr. Howard Elman Department of Computer

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 435 (20) 60 622 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Fast inexact subspace iteration

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 3: Preconditioning 2 Eric de Sturler Preconditioning The general idea behind preconditioning is that convergence of some method for the linear system Ax = b can be

More information

HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM

HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK Abstract. We study harmonic and refined extraction methods for the multiparameter

More information

A Jacobi Davidson type method for the product eigenvalue problem

A Jacobi Davidson type method for the product eigenvalue problem A Jacobi Davidson type method for the product eigenvalue problem Michiel E Hochstenbach Abstract We propose a Jacobi Davidson type method to compute selected eigenpairs of the product eigenvalue problem

More information

Polynomial optimization and a Jacobi Davidson type method for commuting matrices

Polynomial optimization and a Jacobi Davidson type method for commuting matrices Polynomial optimization and a Jacobi Davidson type method for commuting matrices Ivo W. M. Bleylevens a, Michiel E. Hochstenbach b, Ralf L. M. Peeters a a Department of Knowledge Engineering Maastricht

More information

Jacobi s Ideas on Eigenvalue Computation in a modern context

Jacobi s Ideas on Eigenvalue Computation in a modern context Jacobi s Ideas on Eigenvalue Computation in a modern context Henk van der Vorst vorst@math.uu.nl Mathematical Institute Utrecht University June 3, 2006, Michel Crouzeix p.1/18 General remarks Ax = λx Nonlinear

More information

ABSTRACT NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS

ABSTRACT NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS ABSTRACT Title of dissertation: NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS Fei Xue, Doctor of Philosophy, 2009 Dissertation directed by: Professor Howard C. Elman Department

More information

Alternative correction equations in the Jacobi-Davidson method. Mathematical Institute. Menno Genseberger and Gerard L. G.

Alternative correction equations in the Jacobi-Davidson method. Mathematical Institute. Menno Genseberger and Gerard L. G. Universiteit-Utrecht * Mathematical Institute Alternative correction equations in the Jacobi-Davidson method by Menno Genseberger and Gerard L. G. Sleijpen Preprint No. 173 June 1998, revised: March 1999

More information

Preconditioning for Nonsymmetry and Time-dependence

Preconditioning for Nonsymmetry and Time-dependence Preconditioning for Nonsymmetry and Time-dependence Andy Wathen Oxford University, UK joint work with Jen Pestana and Elle McDonald Jeju, Korea, 2015 p.1/24 Iterative methods For self-adjoint problems/symmetric

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations Heinrich Voss voss@tuhh.de Joint work with Karl Meerbergen (KU Leuven) and Christian

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan April 28, 2011 T.M. Huang (Taiwan Normal Univ.)

More information

IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations

IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations Harrachov 2007 Peter Sonneveld en Martin van Gijzen August 24, 2007 1 Delft University of Technology

More information

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY RONALD B. MORGAN AND MIN ZENG Abstract. A restarted Arnoldi algorithm is given that computes eigenvalues

More information

Splitting Iteration Methods for Positive Definite Linear Systems

Splitting Iteration Methods for Positive Definite Linear Systems Splitting Iteration Methods for Positive Definite Linear Systems Zhong-Zhi Bai a State Key Lab. of Sci./Engrg. Computing Inst. of Comput. Math. & Sci./Engrg. Computing Academy of Mathematics and System

More information

U AUc = θc. n u = γ i x i,

U AUc = θc. n u = γ i x i, HARMONIC AND REFINED RAYLEIGH RITZ FOR THE POLYNOMIAL EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND GERARD L. G. SLEIJPEN Abstract. After reviewing the harmonic Rayleigh Ritz approach for the standard

More information

A Jacobi Davidson Method for Nonlinear Eigenproblems

A Jacobi Davidson Method for Nonlinear Eigenproblems A Jacobi Davidson Method for Nonlinear Eigenproblems Heinrich Voss Section of Mathematics, Hamburg University of Technology, D 21071 Hamburg voss @ tu-harburg.de http://www.tu-harburg.de/mat/hp/voss Abstract.

More information

Reduction of nonlinear eigenproblems with JD

Reduction of nonlinear eigenproblems with JD Reduction of nonlinear eigenproblems with JD Henk van der Vorst H.A.vanderVorst@math.uu.nl Mathematical Institute Utrecht University July 13, 2005, SIAM Annual New Orleans p.1/16 Outline Polynomial Eigenproblems

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report November 2013

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report November 2013 EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science CASA-Report 13-26 November 213 Polynomial optimization and a Jacobi-Davidson type method for commuting matrices by I.W.M.

More information

Is there life after the Lanczos method? What is LOBPCG?

Is there life after the Lanczos method? What is LOBPCG? 1 Is there life after the Lanczos method? What is LOBPCG? Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver SIAM ALA Meeting, July 17,

More information

Studies on Jacobi-Davidson, Rayleigh Quotient Iteration, Inverse Iteration Generalized Davidson and Newton Updates

Studies on Jacobi-Davidson, Rayleigh Quotient Iteration, Inverse Iteration Generalized Davidson and Newton Updates NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2005; 00:1 6 [Version: 2002/09/18 v1.02] Studies on Jacobi-Davidson, Rayleigh Quotient Iteration, Inverse Iteration Generalized Davidson

More information

Efficient iterative algorithms for linear stability analysis of incompressible flows

Efficient iterative algorithms for linear stability analysis of incompressible flows IMA Journal of Numerical Analysis Advance Access published February 27, 215 IMA Journal of Numerical Analysis (215) Page 1 of 21 doi:1.193/imanum/drv3 Efficient iterative algorithms for linear stability

More information

A comparison of solvers for quadratic eigenvalue problems from combustion

A comparison of solvers for quadratic eigenvalue problems from combustion INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS [Version: 2002/09/18 v1.01] A comparison of solvers for quadratic eigenvalue problems from combustion C. Sensiau 1, F. Nicoud 2,, M. van Gijzen 3,

More information

Inexactness and flexibility in linear Krylov solvers

Inexactness and flexibility in linear Krylov solvers Inexactness and flexibility in linear Krylov solvers Luc Giraud ENSEEIHT (N7) - IRIT, Toulouse Matrix Analysis and Applications CIRM Luminy - October 15-19, 2007 in honor of Gérard Meurant for his 60 th

More information

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator Artur Strebel Bergische Universität Wuppertal August 3, 2016 Joint Work This project is joint work with: Gunnar

More information

Solving Regularized Total Least Squares Problems

Solving Regularized Total Least Squares Problems Solving Regularized Total Least Squares Problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation Joint work with Jörg Lampe TUHH Heinrich Voss Total

More information

A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation

A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation Zih-Hao Wei 1, Feng-Nan Hwang 1, Tsung-Ming Huang 2, and Weichung Wang 3 1 Department of

More information

Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers

Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers Merico Argentati University of Colorado Denver Joint work with Andrew V. Knyazev, Klaus Neymeyr

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

A Jacobi Davidson type method for the generalized singular value problem

A Jacobi Davidson type method for the generalized singular value problem A Jacobi Davidson type method for the generalized singular value problem M. E. Hochstenbach a, a Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Marcella Bonazzoli 2, Victorita Dolean 1,4, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 431 (2009) 471 487 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa A Jacobi Davidson type

More information

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems Part I: Review of basic theory of eigenvalue problems 1. Let A C n n. (a) A scalar λ is an eigenvalue of an n n A

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations Peter Benner Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

More information

On the interplay between discretization and preconditioning of Krylov subspace methods

On the interplay between discretization and preconditioning of Krylov subspace methods On the interplay between discretization and preconditioning of Krylov subspace methods Josef Málek and Zdeněk Strakoš Nečas Center for Mathematical Modeling Charles University in Prague and Czech Academy

More information

A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS

A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS A CHEBYSHEV-DAVIDSON ALGORITHM FOR LARGE SYMMETRIC EIGENPROBLEMS YUNKAI ZHOU AND YOUSEF SAAD Abstract. A polynomial filtered Davidson-type algorithm is proposed for solving symmetric eigenproblems. The

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems H. Voss 1 Introduction In this paper we consider the nonlinear eigenvalue problem T (λ)x = 0 (1) where T (λ) R n n is a family of symmetric

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012 University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR-202-07 April 202 LYAPUNOV INVERSE ITERATION FOR COMPUTING A FEW RIGHTMOST

More information

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations Akira IMAKURA Center for Computational Sciences, University of Tsukuba Joint work with

More information

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY KLAUS NEYMEYR ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow

More information

Harmonic Projection Methods for Large Non-symmetric Eigenvalue Problems

Harmonic Projection Methods for Large Non-symmetric Eigenvalue Problems NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl., 5, 33 55 (1998) Harmonic Projection Methods for Large Non-symmetric Eigenvalue Problems Ronald B. Morgan 1 and Min Zeng 2 1 Department

More information

On the Modification of an Eigenvalue Problem that Preserves an Eigenspace

On the Modification of an Eigenvalue Problem that Preserves an Eigenspace Purdue University Purdue e-pubs Department of Computer Science Technical Reports Department of Computer Science 2009 On the Modification of an Eigenvalue Problem that Preserves an Eigenspace Maxim Maumov

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

COMPUTING DOMINANT POLES OF TRANSFER FUNCTIONS

COMPUTING DOMINANT POLES OF TRANSFER FUNCTIONS COMPUTING DOMINANT POLES OF TRANSFER FUNCTIONS GERARD L.G. SLEIJPEN AND JOOST ROMMES Abstract. The transfer function describes the response of a dynamical system to periodic inputs. Dominant poles are

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems

A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems C. G. Baker P.-A. Absil K. A. Gallivan Technical Report FSU-SCS-2005-096 Submitted June 7, 2005 Abstract A general inner-outer

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

A JACOBI DAVIDSON METHOD FOR SOLVING COMPLEX-SYMMETRIC EIGENVALUE PROBLEMS

A JACOBI DAVIDSON METHOD FOR SOLVING COMPLEX-SYMMETRIC EIGENVALUE PROBLEMS A JACOBI DAVIDSON METHOD FOR SOLVING COMPLEX-SYMMETRIC EIGENVALUE PROBLEMS PETER ARBENZ AND MICHIEL E. HOCHSTENBACH Abstract. We discuss variants of the Jacobi Davidson method for solving the generalized

More information

[2] W. E. ARNOLDI, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp

[2] W. E. ARNOLDI, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp Bibliography [1] A. ALAVI, J. KOHANOFF, M. PARRINELLO, AND D. FRENKEL, Ab initio molecular dynamics with excited electrons, Phys. Rev. Lett., 73 (1994), pp. 2599 2602. [2] W. E. ARNOLDI, The principle

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Eigenvalue Problems Computation and Applications

Eigenvalue Problems Computation and Applications Eigenvalue ProblemsComputation and Applications p. 1/36 Eigenvalue Problems Computation and Applications Che-Rung Lee cherung@gmail.com National Tsing Hua University Eigenvalue ProblemsComputation and

More information

Solving Sparse Linear Systems: Iterative methods

Solving Sparse Linear Systems: Iterative methods Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccs Lecture Notes for Unit VII Sparse Matrix Computations Part 2: Iterative Methods Dianne P. O Leary c 2008,2010

More information

Solving Sparse Linear Systems: Iterative methods

Solving Sparse Linear Systems: Iterative methods Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 2: Iterative Methods Dianne P. O Leary

More information

Multiparameter eigenvalue problem as a structured eigenproblem

Multiparameter eigenvalue problem as a structured eigenproblem Multiparameter eigenvalue problem as a structured eigenproblem Bor Plestenjak Department of Mathematics University of Ljubljana This is joint work with M Hochstenbach Będlewo, 2932007 1/28 Overview Introduction

More information