FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING

Size: px
Start display at page:

Download "FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING"

Transcription

1 FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING Daniel Thuerck 1,2 (advisors Michael Goesele 1,2 and Marc Pfetsch 1 ) Maxim Naumov 3 1 Graduate School of Computational Engineering, TU Darmstadt 2 Graphics, Capture and Massively Parallel Computing, TU Darmstadt 3 NVIDIA Research TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 1

2 INTRODUCTION TO LINEAR PROGRAMMING TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 2

3 Linear Programs min c x s.t. Ax b x 0 Linear objective function Linear constraints c where A = a 1 T a m T and b = b 1 b m TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 3

4 Linear Programs: Applications [3P Logistics] TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 4

5 Lower-Level Parallelism in LP INTERNALS OF AN LP SOLVER TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 5

6 Solving LPs min c x s.t. Ax = b. x 0 A is m n matrix, with m n A is sparse and has full row-rank Variables may be bounded: l x u Standard LP format TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 6

7 Solving LPs Simplex Interior Point c c TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 7

8 Solving LPs Simplex Interior Point (IPM) Basis (active set) Augmented (Newton) System D A A A B = Normal Equations AD 1 A TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 8

9 Solving LPs IPM / Aug. System IPM / Normal Equations D A A AD 1 A (m + n) (m + n), sparse Symmetric, indefinite Solution: Indefinite LDL T or MINRES method m m, SPD, might be dense Squared condition number Solution: Cholesky-factorization or CG method TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 9

10 Solving LPs IPM / Aug. System IPM / Normal Equations D A A AD 1 A (m + n) (m + n), sparse Symmetric, indefinite Solution: Indefinite LDL T or MINRES method m m, SPD, might be dense Squared condition number Solution: Cholesky-factorization or CG method TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 10

11 Introducing culip-lp An ongoing implementation of Mehrotra s Primal-Dual interior point algorithm [1], featuring... (Iterative) Linear Algebra based on the Augmented Matrix approach, Full-rank guarantees, Comprehensive preprocessing & prescaling. Towards solving large-scale LPs on the GPU as open source for everybody TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 11

12 Progress report IMPLEMENTING CULIP-LP TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 12

13 Solver architecture Preprocess Scale Standardize IPM loop TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 13

14 Solver architecture Preprocess Scale Standardize IPM loop Input data: Constraints Constraints Objective vector Bounds (on some variables) A eq x = b eq A le x b le c l, u TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 14

15 Solver architecture Preprocess Scale Standardize IPM loop A eq x = b eq A le x b le c l, u Storage format: CSR Compressed sparse row format Provides efficient row-based access by 3 arrays: row_ptr a e b c d col_ind a b c d e val TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 15

16 Solver architecture Preprocess Scale Standardize IPM loop A eq x = b eq A le x b le c l, u Example: LP pb-simp-nonunif (see [2]) Input matrix: 1,4 Mio x 23k with 4,36 Mio nonzeros Removed 1 singleton inequality Removed 3629 low-forcing constraints Removed 1 fixed variable Removed 1,1 Mio (!) singleton inequalities Result: approx. 3,6 Mio nonzeros removed Execute in rounds TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 16

17 Solver architecture Preprocess Scale Standardize IPM loop A eq x = b eq A le x b le c l, u Goal: Reduce element variance in matrices Scaling [3] makes a difference 1. Geometric scaling (1x 4x) A i, = 2. Equilibration (1x) A i, max A i, min( A i, ) A i, = A i, A i, TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 17

18 Solver architecture Preprocess Scale Standardize IPM loop Goal: Format LP in standard form Shift variables: l x u 0 x u + l Split (free) variables x x = x + x x +, x 0 Build std matrix: A le I = b Le A eq b eq A eq x = b eq A le x b le c l, u TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 18

19 Solver architecture Preprocess Scale Standardize IPM loop Ensure A has full rank (symbolically) PAQ = m u Ax = b c u m c TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 19

20 Solver architecture Preprocess Scale Standardize IPM loop Goal: Solve KKT conditions by Newton steps Steps: Augmented matrix assembly Solving the (indefinite) augmented matrix Solve twice: predictor and corrector Stepsize along v = v p + v c v p v c Ax = b c u TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 20

21 Solving the augmented system Iterative strategy: Symmetric, indefinite: use MINRES [4] (in parts) D A A Equilibrate system implicitly Preconditioner: Experiments ongoing Direct strategy: Symmetric, indefinite: use SPRAL SSIDS [5] Reordering by METIS [6] Scaling for large pivots TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 21

22 Intermediate findings PERFORMANCE EVALUATION TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 22

23 Benchmark problems Problem name [7] M N NNZ ex9 40,962 10, ,112 ex10 696,608 17,680 1,162,000 neos , , ,166 bley_xl1 175, ,391 map06 328, , ,920 map10 328, , ,920 nb10tb 150, ,172,289 neos , ,040 1,855,220 in 1,526,202 1,449,074 6,811, TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 23

24 Performance Problem name [7] NNZ CLP barr [sec] culip-lp [sec] ex9 517,112 X (NC) 81 ex10 1,162,000 X (NS) 141 neos , bley_xl1 869,391 X (NS) 1,492 map06 549,920 X (NC) 466 map10 549,920 X (NC) 615 nb10tb 1,172,289 X (NC) 2,461 neos ,855, in 6,811,639 X (NS) NC X failed, NS did not start 1 st iteration, NC did not converged within 1 hour TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 24

25 time [sec] Runtime breakdown MINRES Predictor Corrector SPRAL IPM step Example: map10 [7] Problem: map10 [7] TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 25

26 Iterations Relative Residual Iterative vs. direct methods 6000 MINRES Iterations 1.E+00 MINRES relative residual E E Predictor Corrector 1.E-03 1.E-04 1.E-05 1.E IPM step 1.E-07 Example: map10 [7] IPM step TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 26

27 Numerical difficulty Condition of matrix D A A depends mainly on D = diag(x) diag(s) Remedies with strong duality towards the end often yielding 2x2 pivoting in factorizations (e.g. LDL in SPRAL) Preconditioning for MINRES or GMRES max(x i s i ) min x i s i where x T =[x 1,,x n ] are solution and s T =[s 1,,s n ] are slack variables TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 27

28 Findings on the solver s performance We know that individual components attain speedup on the GPU Linear algebra components, such as preconditioned MINRES, GMRES, etc. Graph reorderings and matchings LP problems: Medium-sized problems: faster than open-source IPM code CLP We can solve many large problems where CLP fails However, more time is needed to integrate all components together on the GPU TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 28

29 What s keeping you from optimizing your runtime? LP Solver (a.k.a the black box ) = Rank estimation Preconditioner MPS I/O Preprocessing Graph partitioning Bipartite matching Krylov-Solver Component BFS Matrix factorization Max-flow SpMV Equilibration Matrix reordering LP scaling TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 29

30 Future Work Numerics Preconditioning techniques Investigate influence of 2x2 pivots in LDL T factorization Tuning Benchmark & optimize warp-based kernels in preprocessing Never explicitly form the standardized matrix TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 30

31 Higher-Level Parallelism in LP FEASIBILITY STUDY: LP DECOMPOSITIONS TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 31

32 Solving an LP: The usual setup Large LP Solution Preprocess LP Solver Standardize (a.k.a the black box ) Solve TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 32

33 Higher-level parallelism by LP decomposition Slave LP 1 Large LP Apply LP decomposition Master LP Slave LP k Solution Assemble master/slave solutions TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 33

34 LP-decompositions: feasibility Decomposition works on structure of the constraint matrix A: Benders [9] Dantzig-Wolfe [10] TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 34

35 LP-decompositions: prototype Implemented a Benders decomposition using hypergraph partitioning: TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 35

36 Acknowledgements The work of Daniel Thuerck is supported by the 'Excellence Initiative' of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 36

37 References [1] Mehrotra, Sanjay. "On the implementation of a primal-dual interior point method." SIAM Journal on optimization 2.4 (1992): [2] Gondzio, Jacek. "Presolve analysis of linear programs prior to applying an interior point method."informs Journal on Computing 9.1 (1997): [3] Gondzio, Jacek. "Presolve analysis of linear programs prior to applying an interior point method."informs Journal on Computing 9.1 (1997): [4] Paige, Christopher C., and Michael A. Saunders. "Solution of sparse indefinite systems of linear equations." SIAM journal on numerical analysis 12.4 (1975): [5] Paige, Christopher C., and Michael A. Saunders. "Solution of sparse indefinite systems of linear equations." SIAM journal on numerical analysis 12.4 (1975): TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 37

38 References [6] Karypis, George, and Vipin Kumar. "A fast and high quality multilevel scheme for partitioning irregular graphs." SIAM Journal on scientific Computing 20.1 (1998): [7] Koch, Thorsten, et al. "MIPLIB 2010." Mathematical Programming Computation 3.2 (2011): [8] Forrest, John, David de la Nuez, and Robin Lougee-Heimer. "CLP user guide." IBM Research (2004). [9] Benders, Jacques F. "Partitioning procedures for solving mixed-variables programming problems."numerische mathematik 4.1 (1962): [10] Dantzig, George B., and Philip Wolfe. "Decomposition principle for linear programs." Operations research 8.1 (1960): TU Darmstadt GCC / GSC CE Daniel Thuerck, Maxim Naumov 38

Experiments with iterative computation of search directions within interior methods for constrained optimization

Experiments with iterative computation of search directions within interior methods for constrained optimization Experiments with iterative computation of search directions within interior methods for constrained optimization Santiago Akle and Michael Saunders Institute for Computational Mathematics and Engineering

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods

Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods Julian Hall, Ghussoun Al-Jeiroudi and Jacek Gondzio School of Mathematics University of Edinburgh

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Linear Algebra in IPMs

Linear Algebra in IPMs School of Mathematics H E U N I V E R S I Y O H F E D I N B U R G Linear Algebra in IPMs Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio Paris, January 2018 1 Outline Linear

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P)

Lecture 10: Linear programming. duality. and. The dual of the LP in standard form. maximize w = b T y (D) subject to A T y c, minimize z = c T x (P) Lecture 10: Linear programming duality Michael Patriksson 19 February 2004 0-0 The dual of the LP in standard form minimize z = c T x (P) subject to Ax = b, x 0 n, and maximize w = b T y (D) subject to

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming January 26, 2018 1 / 38 Liability/asset cash-flow matching problem Recall the formulation of the problem: max w c 1 + p 1 e 1 = 150

More information

FPGA Implementation of a Predictive Controller

FPGA Implementation of a Predictive Controller FPGA Implementation of a Predictive Controller SIAM Conference on Optimization 2011, Darmstadt, Germany Minisymposium on embedded optimization Juan L. Jerez, George A. Constantinides and Eric C. Kerrigan

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 2: Intro to LP, Linear algebra review. Yiling Chen SEAS Lecture 2: Lesson Plan What is an LP? Graphical and algebraic correspondence Problems

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME MS&E 38 (CME 338 Large-Scale Numerical Optimization Course description Instructor: Michael Saunders Spring 28 Notes : Review The course teaches

More information

Linear Programming: Simplex

Linear Programming: Simplex Linear Programming: Simplex Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016

More information

MARCH 24-27, 2014 SAN JOSE, CA

MARCH 24-27, 2014 SAN JOSE, CA MARCH 24-27, 2014 SAN JOSE, CA Sparse HPC on modern architectures Important scientific applications rely on sparse linear algebra HPCG a new benchmark proposal to complement Top500 (HPL) To solve A x =

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

Solving the normal equations system arising from interior po. linear programming by iterative methods

Solving the normal equations system arising from interior po. linear programming by iterative methods Solving the normal equations system arising from interior point methods for linear programming by iterative methods Aurelio Oliveira - aurelio@ime.unicamp.br IMECC - UNICAMP April - 2015 Partners Interior

More information

Worked Examples for Chapter 5

Worked Examples for Chapter 5 Worked Examples for Chapter 5 Example for Section 5.2 Construct the primal-dual table and the dual problem for the following linear programming model fitting our standard form. Maximize Z = 5 x 1 + 4 x

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009 Parallel Preconditioning of Linear Systems based on ILUPACK for Multithreaded Architectures J.I. Aliaga M. Bollhöfer 2 A.F. Martín E.S. Quintana-Ortí Deparment of Computer Science and Engineering, Univ.

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA

More information

Accelerating interior point methods with GPUs for smart grid systems

Accelerating interior point methods with GPUs for smart grid systems Downloaded from orbit.dtu.dk on: Dec 18, 2017 Accelerating interior point methods with GPUs for smart grid systems Gade-Nielsen, Nicolai Fog Publication date: 2011 Document Version Publisher's PDF, also

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

CME342 Parallel Methods in Numerical Analysis. Matrix Computation: Iterative Methods II. Sparse Matrix-vector Multiplication.

CME342 Parallel Methods in Numerical Analysis. Matrix Computation: Iterative Methods II. Sparse Matrix-vector Multiplication. CME342 Parallel Methods in Numerical Analysis Matrix Computation: Iterative Methods II Outline: CG & its parallelization. Sparse Matrix-vector Multiplication. 1 Basic iterative methods: Ax = b r = b Ax

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Enhancing Scalability of Sparse Direct Methods

Enhancing Scalability of Sparse Direct Methods Journal of Physics: Conference Series 78 (007) 0 doi:0.088/7-6596/78//0 Enhancing Scalability of Sparse Direct Methods X.S. Li, J. Demmel, L. Grigori, M. Gu, J. Xia 5, S. Jardin 6, C. Sovinec 7, L.-Q.

More information

Linear algebra issues in Interior Point methods for bound-constrained least-squares problems

Linear algebra issues in Interior Point methods for bound-constrained least-squares problems Linear algebra issues in Interior Point methods for bound-constrained least-squares problems Stefania Bellavia Dipartimento di Energetica S. Stecco Università degli Studi di Firenze Joint work with Jacek

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Sparse Matrices and Iterative Methods

Sparse Matrices and Iterative Methods Sparse Matrices and Iterative Methods K. 1 1 Department of Mathematics 2018 Iterative Methods Consider the problem of solving Ax = b, where A is n n. Why would we use an iterative method? Avoid direct

More information

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Introduction to Large-Scale Linear Programming and Applications Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Daniel J. Epstein Department of Industrial and Systems Engineering, University of

More information

A SPECIALIZED INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY NETWORK FLOWS

A SPECIALIZED INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY NETWORK FLOWS SIAM J OPTIM Vol 10, No 3, pp 852 877 c 2000 Society for Industrial and Applied Mathematics A SPECIALIZED INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY NETWORK FLOWS JORDI CASTRO Abstract Despite the efficiency

More information

arxiv:cs/ v1 [cs.ms] 13 Aug 2004

arxiv:cs/ v1 [cs.ms] 13 Aug 2004 tsnnls: A solver for large sparse least squares problems with non-negative variables Jason Cantarella Department of Mathematics, University of Georgia, Athens, GA 30602 Michael Piatek arxiv:cs/0408029v

More information

Constraint Reduction for Linear Programs with Many Constraints

Constraint Reduction for Linear Programs with Many Constraints Constraint Reduction for Linear Programs with Many Constraints André L. Tits Institute for Systems Research and Department of Electrical and Computer Engineering University of Maryland, College Park Pierre-Antoine

More information

Implementation of Warm-Start Strategies in Interior-Point Methods for Linear Programming in Fixed Dimension

Implementation of Warm-Start Strategies in Interior-Point Methods for Linear Programming in Fixed Dimension Implementation of Warm-Start Strategies in Interior-Point Methods for Linear Programming in Fixed Dimension Elizabeth John E. Alper Yıldırım May 11, 2006 Abstract We implement several warm-start strategies

More information

Sparsity Matters. Robert J. Vanderbei September 20. IDA: Center for Communications Research Princeton NJ.

Sparsity Matters. Robert J. Vanderbei September 20. IDA: Center for Communications Research Princeton NJ. Sparsity Matters Robert J. Vanderbei 2017 September 20 http://www.princeton.edu/ rvdb IDA: Center for Communications Research Princeton NJ The simplex method is 200 times faster... The simplex method is

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Chapter 8 Cholesky-based Methods for Sparse Least Squares: The Benefits of Regularization

Chapter 8 Cholesky-based Methods for Sparse Least Squares: The Benefits of Regularization In L. Adams and J. L. Nazareth eds., Linear and Nonlinear Conjugate Gradient-Related Methods, SIAM, Philadelphia, 92 100 1996. Chapter 8 Cholesky-based Methods for Sparse Least Squares: The Benefits of

More information

Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices

Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices Jaehyun Park June 1 2016 Abstract We consider the problem of writing an arbitrary symmetric matrix as

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices DICEA DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING PhD SCHOOL CIVIL AND ENVIRONMENTAL ENGINEERING SCIENCES XXX CYCLE A robust multilevel approximate inverse preconditioner for symmetric

More information

Convergence Analysis of Inexact Infeasible Interior Point Method. for Linear Optimization

Convergence Analysis of Inexact Infeasible Interior Point Method. for Linear Optimization Convergence Analysis of Inexact Infeasible Interior Point Method for Linear Optimization Ghussoun Al-Jeiroudi Jacek Gondzio School of Mathematics The University of Edinburgh Mayfield Road, Edinburgh EH9

More information

Lecture 10: Linear programming duality and sensitivity 0-0

Lecture 10: Linear programming duality and sensitivity 0-0 Lecture 10: Linear programming duality and sensitivity 0-0 The canonical primal dual pair 1 A R m n, b R m, and c R n maximize z = c T x (1) subject to Ax b, x 0 n and minimize w = b T y (2) subject to

More information

SMO vs PDCO for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines

SMO vs PDCO for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines vs for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines Ding Ma Michael Saunders Working paper, January 5 Introduction In machine learning,

More information

Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming

Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

More information

Numerical Methods I: Numerical linear algebra

Numerical Methods I: Numerical linear algebra 1/3 Numerical Methods I: Numerical linear algebra Georg Stadler Courant Institute, NYU stadler@cimsnyuedu September 1, 017 /3 We study the solution of linear systems of the form Ax = b with A R n n, x,

More information

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1 1 Deparment of Computer

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics)

Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics) Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics) Eftychios Sifakis CS758 Guest Lecture - 19 Sept 2012 Introduction Linear systems

More information

Lecture slides by Kevin Wayne

Lecture slides by Kevin Wayne LINEAR PROGRAMMING I a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM Linear programming

More information

Truncated Newton Method

Truncated Newton Method Truncated Newton Method approximate Newton methods truncated Newton methods truncated Newton interior-point methods EE364b, Stanford University minimize convex f : R n R Newton s method Newton step x nt

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

1 Number Systems and Errors 1

1 Number Systems and Errors 1 Contents 1 Number Systems and Errors 1 1.1 Introduction................................ 1 1.2 Number Representation and Base of Numbers............. 1 1.2.1 Normalized Floating-point Representation...........

More information

Math 5593 Linear Programming Week 1

Math 5593 Linear Programming Week 1 University of Colorado Denver, Fall 2013, Prof. Engau 1 Problem-Solving in Operations Research 2 Brief History of Linear Programming 3 Review of Basic Linear Algebra Linear Programming - The Story About

More information

Primal-Dual Interior-Point Methods

Primal-Dual Interior-Point Methods Primal-Dual Interior-Point Methods Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 Outline Today: Primal-dual interior-point method Special case: linear programming

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu Minisymposia 9 and 34: Avoiding Communication in Linear Algebra Jim Demmel UC Berkeley bebop.cs.berkeley.edu Motivation (1) Increasing parallelism to exploit From Top500 to multicores in your laptop Exponentially

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

On implementing a primal-dual interior-point method for conic quadratic optimization

On implementing a primal-dual interior-point method for conic quadratic optimization On implementing a primal-dual interior-point method for conic quadratic optimization E. D. Andersen, C. Roos, and T. Terlaky December 18, 2000 Abstract Conic quadratic optimization is the problem of minimizing

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

More information

Linear Programming. Linear Programming I. Lecture 1. Linear Programming. Linear Programming

Linear Programming. Linear Programming I. Lecture 1. Linear Programming. Linear Programming Linear Programming Linear Programming Lecture Linear programming. Optimize a linear function subject to linear inequalities. (P) max " c j x j n j= n s. t. " a ij x j = b i # i # m j= x j 0 # j # n (P)

More information

Preconditioning Techniques Analysis for CG Method

Preconditioning Techniques Analysis for CG Method Preconditioning Techniques Analysis for CG Method Huaguang Song Department of Computer Science University of California, Davis hso@ucdavis.edu Abstract Matrix computation issue for solve linear system

More information

Novel update techniques for the revised simplex method (and their application)

Novel update techniques for the revised simplex method (and their application) Novel update techniques for the revised simplex method (and their application) Qi Huangfu 1 Julian Hall 2 Others 1 FICO 2 School of Mathematics, University of Edinburgh ERGO 30 November 2016 Overview Background

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Fine-grained Parallel Incomplete LU Factorization

Fine-grained Parallel Incomplete LU Factorization Fine-grained Parallel Incomplete LU Factorization Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Sparse Days Meeting at CERFACS June 5-6, 2014 Contribution

More information

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Eun-Joo Lee Department of Computer Science, East Stroudsburg University of Pennsylvania, 327 Science and Technology Center,

More information

Linear Programming and the Simplex method

Linear Programming and the Simplex method Linear Programming and the Simplex method Harald Enzinger, Michael Rath Signal Processing and Speech Communication Laboratory Jan 9, 2012 Harald Enzinger, Michael Rath Jan 9, 2012 page 1/37 Outline Introduction

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 5 Linear Programming and Convex Analysis Initial solution and particular cases Marco Cuturi Princeton ORF-5 Reminder: Tableaux At each iteration, a tableau for an LP in standard form keeps track of....................

More information

Matrix-Free Interior Point Method

Matrix-Free Interior Point Method Matrix-Free Interior Point Method Jacek Gondzio School of Mathematics and Maxwell Institute for Mathematical Sciences The University of Edinburgh Mayfield Road, Edinburgh EH9 3JZ United Kingdom. Technical

More information

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Linear programming Linear programming. Optimize a linear function subject to linear inequalities. (P) max c j x j n j= n s. t. a ij x j = b i i m j= x j 0 j n (P) max c T x s. t. Ax = b Lecture slides

More information

Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer and GPU-Clusters --

Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer and GPU-Clusters -- Parallel Processing for Energy Efficiency October 3, 2013 NTNU, Trondheim, Norway Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO350 Linear Programming Chapter 6: The Simplex Method 8th June 2005 Chapter 6: The Simplex Method 1 Minimization Problem ( 6.5) We can solve minimization problems by transforming it into a maximization

More information

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM Applied Linear Algebra Valencia, June 18-22, 2012 Introduction Krylov

More information

Scalable Non-blocking Preconditioned Conjugate Gradient Methods

Scalable Non-blocking Preconditioned Conjugate Gradient Methods Scalable Non-blocking Preconditioned Conjugate Gradient Methods Paul Eller and William Gropp University of Illinois at Urbana-Champaign Department of Computer Science Supercomputing 16 Paul Eller and William

More information

Solving quadratic multicommodity problems through an interior-point algorithm

Solving quadratic multicommodity problems through an interior-point algorithm Solving quadratic multicommodity problems through an interior-point algorithm Jordi Castro Department of Statistics and Operations Research Universitat Politècnica de Catalunya Pau Gargallo 5, 08028 Barcelona

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 68 (2014) 1151 1160 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A GPU

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming

Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming Joo-Siong Chai and Kim-Chuan Toh Abstract We propose to compute

More information

A PRECONDITIONER FOR LINEAR SYSTEMS ARISING FROM INTERIOR POINT OPTIMIZATION METHODS

A PRECONDITIONER FOR LINEAR SYSTEMS ARISING FROM INTERIOR POINT OPTIMIZATION METHODS A PRECONDITIONER FOR LINEAR SYSTEMS ARISING FROM INTERIOR POINT OPTIMIZATION METHODS TIM REES AND CHEN GREIF Abstract. We explore a preconditioning technique applied to the problem of solving linear systems

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Review Questions REVIEW QUESTIONS 71

Review Questions REVIEW QUESTIONS 71 REVIEW QUESTIONS 71 MATLAB, is [42]. For a comprehensive treatment of error analysis and perturbation theory for linear systems and many other problems in linear algebra, see [126, 241]. An overview of

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods

Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods Renato D. C. Monteiro Jerome W. O Neal Takashi Tsuchiya March 31, 2003 (Revised: December 3, 2003) Abstract Solving

More information

A priori bounds on the condition numbers in interior-point methods

A priori bounds on the condition numbers in interior-point methods A priori bounds on the condition numbers in interior-point methods Florian Jarre, Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Germany. Abstract Interior-point methods are known to be

More information

Introduction to optimization

Introduction to optimization Introduction to optimization Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 24 The plan 1. The basic concepts 2. Some useful tools (linear programming = linear optimization)

More information

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

An advanced ILU preconditioner for the incompressible Navier-Stokes equations An advanced ILU preconditioner for the incompressible Navier-Stokes equations M. ur Rehman C. Vuik A. Segal Delft Institute of Applied Mathematics, TU delft The Netherlands Computational Methods with Applications,

More information

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2)

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2) Algorithms and Theory of Computation Lecture 13: Linear Programming (2) Xiaohui Bei MAS 714 September 25, 2018 Nanyang Technological University MAS 714 September 25, 2018 1 / 15 LP Duality Primal problem

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

The Ongoing Development of CSDP

The Ongoing Development of CSDP The Ongoing Development of CSDP Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Joseph Young Department of Mathematics New Mexico Tech (Now at Rice University)

More information

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014 Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Modelling 24 June 2,24 Dedicated to Owe Axelsson at the occasion of his 8th birthday

More information

Interior Point Methods in Mathematical Programming

Interior Point Methods in Mathematical Programming Interior Point Methods in Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Brazil Journées en l honneur de Pierre Huard Paris, novembre 2008 01 00 11 00 000 000 000 000

More information