Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure

Size: px
Start display at page:

Download "Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure"

Transcription

1 Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure Elyes Ahmed, Caroline Japhet, Michel Kern INRIA Paris Maison de la Simulation ENPC University Paris 13 Work supported by Andra & ANR Dedales SIAM Conference on Mathematical and Computational Issues in the Geosciences September 11 14, 2017 Erlangen, Germany M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

2 Outline 1 Motivation and model problem 2 Global in time domain decomposition 3 Discretization 4 Numerical examples M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

3 Geological disposal of nuclear waste Deep repository ( Long lived & High-level radioactive waste) Different materials strong heterogeneity, different time scales. Large differences in spatial scales. Long-term computations. M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

4 Geological disposal of nuclear waste Deep repository ( Long lived & High-level radioactive waste) Different materials strong heterogeneity, different time scales. Large differences in spatial scales. Long-term computations. Use space-time (global in time) domain decomposition methods M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

5 Geological disposal of nuclear waste Deep repository ( Long lived & High-level radioactive waste) Different materials strong heterogeneity, different time scales. Large differences in spatial scales. Long-term computations. Use space-time (global in time) domain decomposition methods Take into account different capillary pressure curves M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

6 Geological disposal of nuclear waste Deep repository ( Long lived & High-level radioactive waste) Different materials strong heterogeneity, different time scales. Large differences in spatial scales. Long-term computations. Use space-time (global in time) domain decomposition methods Take into account different capillary pressure curves Extend optimized Schwarz method to nonlinear diffusion M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

7 Space time domain decomposition Domain decomposition in space y x M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

8 Space time domain decomposition Domain decomposition in space t y x M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

9 Space time domain decomposition Domain decomposition in space t y x M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

10 Space time domain decomposition Domain decomposition in space t y x Discretize in time and apply DD algorithm at each time step: Solve stationary problems in the subdomains Exchange information through the interface Use the same time step on the whole domain. M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

11 Space time domain decomposition Domain decomposition in space t Space-time domain decomposition t y y x x Discretize in time and apply DD algorithm at each time step: Solve stationary problems in the subdomains Exchange information through the interface Use the same time step on the whole domain. M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

12 Space time domain decomposition Domain decomposition in space t Space-time domain decomposition t y y Discretize in time and apply DD algorithm at each time step: Solve stationary problems in the subdomains Exchange information through the interface Use the same time step on the whole domain. x Solve time-dependent problems in the subdomains Exchange information through the space-time interface Enable local discretizations both in space and in time local time stepping x M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

13 Model problem: nonlinear (degenerate) diffusion equation Two phase immiscible flow, global pressure + Kirchhoff transformation, neglect advection (Enchery et al. (06), Cances (08)) S: water saturation. π(s) capillary pressure, increasing function on [0, 1] (extend continuously to R). λ(s) mobility, ω porosity φ(s) = S 0 K λ(u)π (u)du. M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

14 Model problem: nonlinear (degenerate) diffusion equation Two phase immiscible flow, global pressure + Kirchhoff transformation, neglect advection (Enchery et al. (06), Cances (08)) S: water saturation. π(s) capillary pressure, increasing function on [0, 1] (extend continuously to R). λ(s) mobility, ω porosity Simplified equation Two subdomains (rock types) φ(s) = S 0 K λ(u)π (u)du. ω t S φ(s) = 0 in Ω [0,T ] P_c2(1) P_c1(1) Capillary pressure P_c P_c2(0) P_{c1}(0) 0 s_2 s_1 1 Saturation M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

15 Multi-domain formulation 2 subdomains Ω 1, Ω 2, interface Γ = Ω 1 Ω 2. Solve (for i = 1,2): ω t S i φ i (S ) = 0 in Ω i [0,T ], φ i (S i ) n i = 0 on ( Ω i \Γ) (0,T ) S i (.,0) = S 0 (.) Ωi in Ω i M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

16 Multi-domain formulation 2 subdomains Ω 1, Ω 2, interface Γ = Ω 1 Ω 2. Solve (for i = 1,2): ω t S i φ i (S ) = 0 in Ω i [0,T ], φ i (S i ) n i = 0 on ( Ω i \Γ) (0,T ) S i (.,0) = S 0 (.) Ωi in Ω i together with natural transmission conditions on the space-time interface Continuity of capillary pressure π 1 (S 1 ) = π 2 (S 2 ) on Γ (0,T ) Continuity of the flux φ 1 (S 1 ).n 1 + φ 2 (S 2 ).n 2 = 0 on Γ (0,T ) M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

17 Multi-domain formulation 2 subdomains Ω 1, Ω 2, interface Γ = Ω 1 Ω 2. Solve (for i = 1,2): ω t S i φ i (S ) = 0 in Ω i [0,T ], φ i (S i ) n i = 0 on ( Ω i \Γ) (0,T ) S i (.,0) = S 0 (.) Ωi in Ω i together with natural transmission conditions on the space-time interface Continuity of capillary pressure π 1 (S 1 ) = π 2 (S 2 ) on Γ (0,T ) Continuity of the flux φ 1 (S 1 ).n 1 + φ 2 (S 2 ).n 2 = 0 on Γ (0,T ) Replace by equivalent Robin transmission conditions φ 1 (S 1 ).n 1 + β 1 π 1 (S 1 ) = φ 2 (S 2 ).n 2 + β 1 π 2 (S 2 ) on Γ (0,T ) φ 2 (S 2 ).n 2 + β 2 π 2 (S 2 ) = φ 1 (S 1 ).n 1 + β 2 π 1 (S 1 ) on Γ (0,T ) β 1,β 2 > 0 given parameters M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

18 Global in time domain decomposition algorithm Non-linear Optimized Schwarz waveform relaxation algorithm Given S 0 i, iterate for k = 0,... Solve for S k+1 i, i = 1,2,j = 3 i ω t S k+1 i φ i (S k+1 i ) = 0 in Ω i [0,T ] φ i (S k+1 i ) = 0 n i on ( Ω i \Γ) (0,T ) S k+1 i (.,0) = S 0 (.) Ωi in Ω i φ i (S k+1 i ).n i + β i π i (S k+1 i ) = φ j (S k j ).n j + β i π j (S k j ) on Γ [0,T ], β 1,β 2 can be chosen to optimize convergence rate (Bennequin-Gander-Halpern (09),Hoang-Jaffré,Japhet,Kern,Roberts (13)) Basic ingredient: subdomain solver with Robin bc. Existence: adapt proof from Enchery et al. (06), Cances (08), via convergence of finite volume scheme. M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

19 Cell centered finite volume scheme (Enchery et al, 06) Triangulation T, cells K T, boundary faces σ Γ. Unknowns : cell values (S K ) K T, boundary face values (S σ ) σ EΓ Notations: K L = edge between K and L, τ K L : transmissivity Interior equation m(k ) Sn+1 K S n ( ) K + δ τ K L φ(s n+1 K ) φ(s n+1 L ) t L N (K ) + σ E Γ E K τ K,σ ( ) φ(s n+1 K ) φ(s n+1 σ ) = 0, K T. Robin BC for boundary faces ( ) τ K,σ φ(s n+1 K ) φ(s n+1 σ ) + β m(σ)π(s n+1 σ ) = g σ, σ E Γ Implemented with Matlab Reservoir Simulation Toolbox (K. A. Lie et al. (14)) Solver with automatic differentiation : no explicit programming of Jacobian M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

20 5. Nonconforming time discretizations and projections in time. We con sider semi-discrete problems in time with nonconforming time grids. Let T 1 and T 2 be two different partitions of the time interval (0, T ) into sub-intervals (see Figure 5.1). We denote by Jm i the time interval (t i m 1, t i m] and by t i m := (t i m t i m 1) fo m = 1,..., M i and i = 1, 2. We use the lowest order discontinuous Galerkin method [3, 18, 35], which is a modified backward Euler method. The same idea can be gener Use different alized to time the steps higher in order the subdomains in time case. We denote by P 0 (T i, W ) the space of piecewise Nonconforming discretization in time t T t 1 m t 2 m 0 Ω 1 Ω 2 x Figure 5.1: Nonconforming time grids in the subdomains. Information on one time grid at the interface is passed to the other time grid at the interface using L2-projections useconstant optimal functions projection in time algorithm, on grid Gander-Japhet-Maday-Nataf T i with values in W, where W (2005) = H 1 2 (Γ) for Method 1 and W = L 2 (Γ) for Method 2: P 0 (T i, W ) = { φ : (0, T ) W, φ J i m W, for m = 1,..., M i }. In order to exchange data on the space-time interface between different time grids, we define the following L 2 projection Π from P (T, W ) onto P (T, W ) (see [13, 18]) M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

21 Validation example, 2 rock types Homogenenous medium Ω = (0,1) 3. Mobility λ 0 (S) = S, S [0,1], Capillary pressure π 1 (S) = 5S 2, π 2 (S) = 5S S [0,1] Evolution of the saturation (t = 0.019,t = 0.6,t = 3) evolution of the saturation, capillary pressure, and error at final time along a line orthogonal to the interface. M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

22 DNAPL infiltration: medium with a low capillarity lens Mobilities λ o,i (S) = S 2, and λ g,i (S) = 3(1 S) 2, i {1,2}, Capilary pressure π 1 (S) = ln(1 S), and π 2 (S) = 0.5 ln(1 S). Convergence curve Evolution of saturation (t = 100,200,350,480) Influence of parameters β 1,β 2 on convergence M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

23 Example wth 3 rock types Capillary pressure curves : π 1 (u) = 3u 2, π 2 (u) = 5u 2, and π 3 (u) = 3u Use of time windows reduces number of DD iterations (after the first one) Mesh and velocity streamlines Evolution of the saturation (t = 500, 2000, 4000) M. Kern (INRIA Paris 13) Space time DD for diffusion SIAM GS / 12

A posteriori error estimates for space-time domain decomposition method for two-phase flow problem

A posteriori error estimates for space-time domain decomposition method for two-phase flow problem A posteriori error estimates for space-time domain decomposition method for two-phase flow problem Sarah Ali Hassan, Elyes Ahmed, Caroline Japhet, Michel Kern, Martin Vohralík INRIA Paris & ENPC (project-team

More information

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow Michel Kern Inria Paris Rocquencourt Maison de la Simulation C2S@Exa Days, Inria Paris Centre, Novembre 2016 M. Kern

More information

Space-Time Domain Decomposition Methods for Transport Problems in Porous Media

Space-Time Domain Decomposition Methods for Transport Problems in Porous Media 1 / 49 Space-Time Domain Decomposition Methods for Transport Problems in Porous Media Thi-Thao-Phuong Hoang, Elyes Ahmed, Jérôme Jaffré, Caroline Japhet, Michel Kern, Jean Roberts INRIA Paris-Rocquencourt

More information

Méthodes de raffinement espace-temps

Méthodes de raffinement espace-temps Méthodes de raffinement espace-temps Caroline Japhet Université Paris 13 & University of Maryland Laurence Halpern Université Paris 13 Jérémie Szeftel Ecole Normale Supérieure, Paris Pascal Omnes CEA,

More information

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Laurence Halpern, Caroline Japhet, and Jérémie Szeftel 3 LAGA, Université Paris XIII, Villetaneuse

More information

NONCONFORMING IN TIME DOMAIN DECOMPOSITION METHOD FOR POROUS MEDIA APPLICATIONS

NONCONFORMING IN TIME DOMAIN DECOMPOSITION METHOD FOR POROUS MEDIA APPLICATIONS V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira Eds Lisbon, Portugal,14-17 June 2010 NONCONFORMING IN TIME DOMAIN DECOMPOSITION METHOD FOR POROUS

More information

Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits

Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits Laurence Halpern 1 LAGA, Université Paris XIII, 99 Avenue J-B Clément, 93430 Villetaneuse, France, halpern@math.univ-paris13.fr 1 Introduction:

More information

TIME SPACE DOMAIN DECOMPOSITION AND REACTIVE TRANSPORT IN POROUS MEDIA

TIME SPACE DOMAIN DECOMPOSITION AND REACTIVE TRANSPORT IN POROUS MEDIA XVIII International Conference on Water Resources CMWR 2 J. Carrera (Ed) c CIMNE, Barcelona, 2 TIME SPACE DOMAIN DECOMPOSITION AND REACTIVE TRANSPORT IN POROUS MEDIA Florian Haeberlein and Anthony Michel

More information

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf**

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** Controlled CO 2 Diversified fuels Fuel-efficient vehicles Clean refining Extended reserves Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** *: Laboratoire J.L.Lions **:Université

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Modeling of two-phase flow in fractured porous media on unstructured non-uniform coarse grids

Modeling of two-phase flow in fractured porous media on unstructured non-uniform coarse grids Modeling of two-phase flow in fractured porous media on unstructured non-uniform coarse grids Jørg Espen Aarnes and Vera Louise Hauge SINTEF ICT, Deptartment of Applied Mathematics Applied Mathematics

More information

Advection Diffusion Problems with Pure Advection Approximation in Subregions

Advection Diffusion Problems with Pure Advection Approximation in Subregions Advection Diffusion Problems with Pure Advection Approximation in Subregions M. J. Gander, L. Halpern 2, C. Japhet 2, and V. Martin 3 Université de Genève, 2-4 rue du Lièvre, CP 64, CH-2 Genève. Switzerland.

More information

Coupling transport with geochemistry Applications to CO2 sequestration

Coupling transport with geochemistry Applications to CO2 sequestration Coupling transport with geochemistry Applications to CO2 sequestration Michel Kern with L. Amir, B. Gueslin, A. Taakili INRIA Paris Rocquencourt 3ème Conférence Internationale de la Société Marocaine de

More information

Generating Equidistributed Meshes in 2D via Domain Decomposition

Generating Equidistributed Meshes in 2D via Domain Decomposition Generating Equidistributed Meshes in 2D via Domain Decomposition Ronald D. Haynes and Alexander J. M. Howse 2 Introduction There are many occasions when the use of a uniform spatial grid would be prohibitively

More information

Reactive transport in porous media: formulations, non-linear solvers and preconditioners

Reactive transport in porous media: formulations, non-linear solvers and preconditioners Reactive transport in porous media: formulations, non-linear solvers and preconditioners Michel Kern with L. Amir, B. Gueslin, A. Taakili Institut National de Recherche en Informatique et Automatique High

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

A reduced fracture model for two-phase flow with different rock types

A reduced fracture model for two-phase flow with different rock types A reduced fracture model for two-phase flow with different rock types Elyes Ahmed, Jérôme Jaffré, Jean E. Roberts To cite this version: Elyes Ahmed, Jérôme Jaffré, Jean E. Roberts. different rock types.

More information

Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients

Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients Victorita Dolean, Martin Gander, Erwin Veneros To cite this version: Victorita Dolean, Martin Gander, Erwin Veneros. Optimized

More information

Overlapping Schwarz Waveform Relaxation for Parabolic Problems

Overlapping Schwarz Waveform Relaxation for Parabolic Problems Contemporary Mathematics Volume 218, 1998 B 0-8218-0988-1-03038-7 Overlapping Schwarz Waveform Relaxation for Parabolic Problems Martin J. Gander 1. Introduction We analyze a new domain decomposition algorithm

More information

Comparison of numerical schemes for multiphase reactive transport

Comparison of numerical schemes for multiphase reactive transport Énergies renouvelables Production éco-responsable Transports innovants Procédés éco-efficients Ressources durables Comparison of numerical schemes for multiphase reactive transport T. Faney, A. Michel,

More information

Preconditioning the Newton-Krylov method for reactive transport

Preconditioning the Newton-Krylov method for reactive transport Preconditioning the Newton-Krylov method for reactive transport Michel Kern, L. Amir, A. Taakili INRIA Paris-Rocquencourt Maison de la Simulation MoMaS workshop Reactive Transport Modeling in the Geological

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

Electronic Transactions on Numerical Analysis Volume 49, 2018

Electronic Transactions on Numerical Analysis Volume 49, 2018 Electronic Transactions on Numerical Analysis Volume 49, 2018 Contents 1 Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems. Axel Klawonn, Martin Kühn,

More information

A MULTISCALE METHOD FOR MODELING TRANSPORT IN POROUS MEDIA ON UNSTRUCTURED CORNER-POINT GRIDS

A MULTISCALE METHOD FOR MODELING TRANSPORT IN POROUS MEDIA ON UNSTRUCTURED CORNER-POINT GRIDS A MULTISCALE METHOD FOR MODELING TRANSPORT IN POROUS MEDIA ON UNSTRUCTURED CORNER-POINT GRIDS JØRG E. AARNES AND YALCHIN EFENDIEV Abstract. methods are currently under active investigation for the simulation

More information

A High Order Method for Three Phase Flow in Homogeneous Porous Media

A High Order Method for Three Phase Flow in Homogeneous Porous Media A High Order Method for Three Phase Flow in Homogeneous Porous Media Justin Dong Advisor: B eatrice Rivi`ere February 5, 2014 Abstract The modeling of three-phase fluid flow has many important applications

More information

OPTIMIZED SCHWARZ METHODS

OPTIMIZED SCHWARZ METHODS SIAM J. NUMER. ANAL. Vol. 44, No., pp. 699 31 c 006 Society for Industrial and Applied Mathematics OPTIMIZED SCHWARZ METHODS MARTIN J. GANDER Abstract. Optimized Schwarz methods are a new class of Schwarz

More information

Nonlinear Iterative Solution of the Neutron Transport Equation

Nonlinear Iterative Solution of the Neutron Transport Equation Nonlinear Iterative Solution of the Neutron Transport Equation Emiliano Masiello Commissariat à l Energie Atomique de Saclay /DANS//SERMA/LTSD emiliano.masiello@cea.fr 1/37 Outline - motivations and framework

More information

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions Leszek Marcinkowski Department of Mathematics, Warsaw University, Banacha

More information

Open-source finite element solver for domain decomposition problems

Open-source finite element solver for domain decomposition problems 1/29 Open-source finite element solver for domain decomposition problems C. Geuzaine 1, X. Antoine 2,3, D. Colignon 1, M. El Bouajaji 3,2 and B. Thierry 4 1 - University of Liège, Belgium 2 - University

More information

Numerical investigations of hillslopes with variably saturated subsurface and overland flows

Numerical investigations of hillslopes with variably saturated subsurface and overland flows Numerical investigations of hillslopes with variably saturated subsurface and overland flows ARC DYNAS H. Beaugendre, T. Esclaffer, A. Ern and E. Gaume DYNAS Workshop 06-08/12/04 DYNAS Workshop 06-08/12/04

More information

The Certified Reduced-Basis Method for Darcy Flows in Porous Media

The Certified Reduced-Basis Method for Darcy Flows in Porous Media The Certified Reduced-Basis Method for Darcy Flows in Porous Media S. Boyaval (1), G. Enchéry (2), R. Sanchez (2), Q. H. Tran (2) (1) Laboratoire Saint-Venant (ENPC - EDF R&D - CEREMA) & Matherials (INRIA),

More information

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Emerson Roxar,

More information

A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media

A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media D. A. Di Pietro, M. Vohraĺık, and S. Yousef Université Montpellier 2 Marseille,

More information

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping M. El Bouajaji 1, V. Dolean 2, M. J. Gander 3 and S. Lanteri 1 1 Introduction Transmission conditions

More information

DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE

DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE MARTIN J. GANDER AND RONALD D. HAYNES Abstract. Moving mesh methods based on the equidistribution principle are powerful

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

MMsFEM and Streamlines

MMsFEM and Streamlines MMsFEM and Streamlines Combining a mixed multiscale FEM with streamline simulation for enhanced reservoir performance prediction on large grid models. Jørg E. Aarnes, Vegard Kippe and Knut-Andreas Lie

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg Advanced numerical methods for nonlinear advectiondiffusion-reaction equations Peter Frolkovič, University of Heidelberg Content Motivation and background R 3 T Numerical modelling advection advection

More information

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Martin J. Gander and Felix Kwok Section de mathématiques, Université de Genève, Geneva CH-1211, Switzerland, Martin.Gander@unige.ch;

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Harald Klimach, Michael Gaida, Sabine Roller harald.klimach@uni-siegen.de 26th WSSP 2017 Motivation Fluid-Dynamic

More information

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 10 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Pseudo-Time Integration 1 / 10 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 10 Outline 1

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a chapter published in Domain Decomposition Methods in Science and Engineering XXI. Citation for the original published chapter: Gander,

More information

DG discretization of optimized Schwarz methods for Maxwell s equations

DG discretization of optimized Schwarz methods for Maxwell s equations DG discretization of optimized Schwarz methods for Maxwell s equations Mohamed El Bouajaji, Victorita Dolean,3, Martin J. Gander 3, Stéphane Lanteri, and Ronan Perrussel 4 Introduction In the last decades,

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

A study of the modelling error in two operator splitting algorithms for porous media flow

A study of the modelling error in two operator splitting algorithms for porous media flow Computational Geosciences 2 (1998) 23 36 23 A study of the modelling error in two operator splitting algorithms for porous media flow K. Brusdal a,h.k.dahle a, K. Hvistendahl Karlsen a and T. Mannseth

More information

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Dirichlet-Neumann and Neumann-Neumann Methods

Dirichlet-Neumann and Neumann-Neumann Methods Dirichlet-Neumann and Neumann-Neumann Methods Felix Kwok Hong Kong Baptist University Introductory Domain Decomposition Short Course DD25, Memorial University of Newfoundland July 22, 2018 Outline Methods

More information

Nonparametric density estimation for elliptic problems with random perturbations

Nonparametric density estimation for elliptic problems with random perturbations Nonparametric density estimation for elliptic problems with random perturbations, DqF Workshop, Stockholm, Sweden, 28--2 p. /2 Nonparametric density estimation for elliptic problems with random perturbations

More information

Numerical Modeling of Methane Hydrate Evolution

Numerical Modeling of Methane Hydrate Evolution Numerical Modeling of Methane Hydrate Evolution Nathan L. Gibson Joint work with F. P. Medina, M. Peszynska, R. E. Showalter Department of Mathematics SIAM Annual Meeting 2013 Friday, July 12 This work

More information

A Two-grid Method for Coupled Free Flow with Porous Media Flow

A Two-grid Method for Coupled Free Flow with Porous Media Flow A Two-grid Method for Coupled Free Flow with Porous Media Flow Prince Chidyagwai a and Béatrice Rivière a, a Department of Computational and Applied Mathematics, Rice University, 600 Main Street, Houston,

More information

Optimized Schwarz methods in spherical geometry with an overset grid system

Optimized Schwarz methods in spherical geometry with an overset grid system Optimized Schwarz methods in spherical geometry with an overset grid system J. Côté 1, M. J. Gander 2, L. Laayouni 3, and A. Qaddouri 4 1 Recherche en prévision numérique, Meteorological Service of Canada,

More information

Multi-point flux approximation L-method in 3D: Numerical convergence and application to two-phase flow through porous media

Multi-point flux approximation L-method in 3D: Numerical convergence and application to two-phase flow through porous media XXXX, 1 41 De Gruyter YYYY Multi-point flux approximation L-method in 3D: Numerical convergence and application to two-phase flow through porous media Markus Wolff, Yufei Cao, Bernd Flemisch, Rainer Helmig

More information

High performance computing for neutron diffusion and transport equations

High performance computing for neutron diffusion and transport equations High performance computing for neutron diffusion and transport equations Horizon Maths 2012 Fondation Science Mathématiques de Paris A.-M. Baudron, C. Calvin, J. Dubois, E. Jamelot, J.-J. Lautard, O. Mula-Hernandez

More information

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media

Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media Uncertainty Quantification of Two-Phase Flow in Heterogeneous Porous Media M.Köppel, C.Rohde Institute for Applied Analysis and Numerical Simulation Inria, Nov 15th, 2016 Porous Media Examples: sponge,

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

Simulation of Naturally Fractured Reservoirs with Dual Porosity Models

Simulation of Naturally Fractured Reservoirs with Dual Porosity Models Simulation of Naturally Fractured Reservoirs ith Dual Porosity Models Pallav Sarma Prof. Khalid Aziz Stanford University SUPRI-HW Motivations! NFRs represent at least 0%of orld reserves, but difficult

More information

A Nonoverlapping Subdomain Algorithm with Lagrange Multipliers and its Object Oriented Implementation for Interface Problems

A Nonoverlapping Subdomain Algorithm with Lagrange Multipliers and its Object Oriented Implementation for Interface Problems Contemporary Mathematics Volume 8, 998 B 0-88-0988--03030- A Nonoverlapping Subdomain Algorithm with Lagrange Multipliers and its Object Oriented Implementation for Interface Problems Daoqi Yang. Introduction

More information

arxiv: v1 [math.na] 14 May 2016

arxiv: v1 [math.na] 14 May 2016 NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON S METHOD V. DOLEAN, M.J. GANDER, W. KHERIJI, F. KWOK, AND R. MASSON arxiv:65.449v [math.na] 4 May 6 Abstract. For

More information

EVALUATION OF CRITICAL FRACTURE SKIN POROSITY FOR CONTAMINANT MIGRATION IN FRACTURED FORMATIONS

EVALUATION OF CRITICAL FRACTURE SKIN POROSITY FOR CONTAMINANT MIGRATION IN FRACTURED FORMATIONS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Ivan otov Department of Mathematics, University of Pittsburgh

More information

Schur Complement Technique for Advection-Diffusion Equation using Matching Structured Finite Volumes

Schur Complement Technique for Advection-Diffusion Equation using Matching Structured Finite Volumes Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 1, pp. 51 62 (213) http://campus.mst.edu/adsa Schur Complement Technique for Advection-Diffusion Equation using Matching Structured

More information

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

The Evaluation of the Thermal Behaviour of an Underground Repository of the Spent Nuclear Fuel

The Evaluation of the Thermal Behaviour of an Underground Repository of the Spent Nuclear Fuel The Evaluation of the Thermal Behaviour of an Underground Repository of the Spent Nuclear Fuel Roman Kohut, Jiří Starý, and Alexej Kolcun Institute of Geonics, Academy of Sciences of the Czech Republic,

More information

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Igor Mozolevski, Endre Süli Federal University of Santa Catarina, Brazil Oxford University Computing Laboratory,

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

Mixed-hybrid finite element method for modelling two-phase flow in porous media

Mixed-hybrid finite element method for modelling two-phase flow in porous media Journal of Math-for-Industry, Vol. 3 (211C-2), pp. 9 19 Mixed-hybrid finite element method for modelling two-phase flow in porous media Radek Fučík and Jiří Mikyška Revised on September 23, 211 Abstract.

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

c 2012 Society for Industrial and Applied Mathematics

c 2012 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 5, No. 4, pp. 2 235 c 22 Society for Industrial and Applied Mathematics DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE MARTIN J. GANDER

More information

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA GEOPHYSICS RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA C. BUCUR 1, M. OLTEANU 1, M. PAVELESCU 2 1 Institute for Nuclear Research, Pitesti, Romania, crina.bucur@scn.ro 2 Academy of Scientists Bucharest,

More information

A new formulation of immiscible compressible two-phase flow in porous media

A new formulation of immiscible compressible two-phase flow in porous media A new formulation of immiscible compressible two-phase flow in porous media Brahim Amaziane a Mladen Jurak b a Laboratoire de Mathématiques Appliquées, CNRS UMR 51, Université de Pau, av. de l Université,

More information

On efficient implicit upwind schemes

On efficient implicit upwind schemes On efficient implicit upwind schemes Jostein R. Natvig Knut Andreas Lie June 30, 2008 Abstract Although many advanced methods have been devised for the hyperbolic transport problems that arise in reservoir

More information

Distinct Element Modeling of Coupled Chemo-Mechanical Compaction of Rock Salt

Distinct Element Modeling of Coupled Chemo-Mechanical Compaction of Rock Salt Distinct Element Modeling of Coupled Chemo-Mechanical Compaction of Rock Salt Ki-Bok Min 1, André Niemeijer 1, Derek Elsworth 1, Chris Marone 1 Department of Energy and Mineral Engineering Department of

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

Fully implicit higher-order schemes applied to polymer flooding. K.-A. Lie(SINTEF), T.S. Mykkeltvedt(IRIS), X. Raynaud (SINTEF)

Fully implicit higher-order schemes applied to polymer flooding. K.-A. Lie(SINTEF), T.S. Mykkeltvedt(IRIS), X. Raynaud (SINTEF) Fully implicit higher-order schemes applied to polymer flooding K.-A. Lie(SINTEF), T.S. Mykkeltvedt(IRIS), X. Raynaud (SINTEF) Motivation Challenging and complex to simulate water-based EOR methods, unresolved

More information

Streamline calculations. Lecture note 2

Streamline calculations. Lecture note 2 Streamline calculations. Lecture note 2 February 26, 2007 1 Recapitulation from previous lecture Definition of a streamline x(τ) = s(τ), dx(τ) dτ = v(x,t), x(0) = x 0 (1) Divergence free, irrotational

More information

R.M. Manasipov and J.E. Mindel. Montanuniversitaet Leoben. October 3, 2014

R.M. Manasipov and J.E. Mindel. Montanuniversitaet Leoben. October 3, 2014 Comparative Analysis of Compositional Two-Phase Flow Modeling in Heterogeneous Media Between the Discrete Event Simulation Method Coupled to a Split Node Formulation and Classical Timestep-Driven Approaches

More information

Advanced numerical methods for transport and reaction in porous media. Peter Frolkovič University of Heidelberg

Advanced numerical methods for transport and reaction in porous media. Peter Frolkovič University of Heidelberg Advanced numerical methods for transport and reaction in porous media Peter Frolkovič University of Heidelberg Content R 3 T a software package for numerical simulation of radioactive contaminant transport

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

On the solution of incompressible two-phase ow by a p-version discontinuous Galerkin method

On the solution of incompressible two-phase ow by a p-version discontinuous Galerkin method COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2006; 22:741 751 Published online 13 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.846

More information

Finite volume method for nonlinear transmission problems

Finite volume method for nonlinear transmission problems Finite volume method for nonlinear transmission problems Franck Boyer, Florence Hubert To cite this version: Franck Boyer, Florence Hubert. Finite volume method for nonlinear transmission problems. Proceedings

More information

THE INVESTIGATION OF NUMERICAL SIMULATION SOFTWARE FOR FRACTURED RESERVOIRS

THE INVESTIGATION OF NUMERICAL SIMULATION SOFTWARE FOR FRACTURED RESERVOIRS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 2, Supp, Pages 161 168 c 2005 Institute for Scientific Computing and Information THE INVESTIGATION OF NUMERICAL SIMULATION SOFTWARE FOR FRACTURED

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

1. Introduction. 2. Model Description and Assumptions

1. Introduction. 2. Model Description and Assumptions Excerpt from the Proceedings of the COMSOL Conference 2010 Boston The Dissolution and Transport of Radionuclides from Used Nuclear Fuel in an Underground Repository Y. Beauregard *1, M. Gobien 2, F. Garisto

More information

New constructions of domain decomposition methods for systems of PDEs

New constructions of domain decomposition methods for systems of PDEs New constructions of domain decomposition methods for systems of PDEs Nouvelles constructions de méthodes de décomposition de domaine pour des systèmes d équations aux dérivées partielles V. Dolean?? F.

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway The optimised Schwarz method and the two-lagrange multiplier method for heterogeneous problems in general domains with two general subdomains

More information

DECOUPLED AND MULTIPHYSICS MODELS FOR NON-ISOTHERMAL COMPOSITIONAL TWO-PHASE FLOW IN POROUS MEDIA

DECOUPLED AND MULTIPHYSICS MODELS FOR NON-ISOTHERMAL COMPOSITIONAL TWO-PHASE FLOW IN POROUS MEDIA INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 9, Number 1, Pages 17 28 c 2012 Institute for Scientific Computing and Information DECOUPLED AND MULTIPHYSICS MODELS FOR NON-ISOTHERMAL COMPOSITIONAL

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

Coupling of Multi fidelity Models Applications to PNP cdft and local nonlocal Poisson equations

Coupling of Multi fidelity Models Applications to PNP cdft and local nonlocal Poisson equations Coupling of Multi fidelity Models Applications to PNP cdft and local nonlocal Poisson equations P. Bochev, J. Cheung, M. D Elia, A. Frishknecht, K. Kim, M. Parks, M. Perego CM4 summer school, Stanford,

More information

FINITE VOLUME METHODS FOR ONE-DIMENSIONAL SCALAR CONSERVATION LAWS

FINITE VOLUME METHODS FOR ONE-DIMENSIONAL SCALAR CONSERVATION LAWS 1.73 - COMPUTATIONAL METHODS FOR FLOW IN POROUS MEDIA Spring 009 FINITE VOLUME METHODS FOR ONE-DIMENSIONAL SCALAR CONSERVATION LAWS Luis Cueto-Felgueroso 1.1. Problem statement Consider the 1D scalar conservation

More information

Numerical explorations of a forward-backward diffusion equation

Numerical explorations of a forward-backward diffusion equation Numerical explorations of a forward-backward diffusion equation Newton Institute KIT Programme Pauline Lafitte 1 C. Mascia 2 1 SIMPAF - INRIA & U. Lille 1, France 2 Univ. La Sapienza, Roma, Italy September

More information

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Do Y. Kwak, 1 JunS.Lee 1 Department of Mathematics, KAIST, Taejon 305-701, Korea Department of Mathematics,

More information