Méthodes de raffinement espace-temps

Size: px
Start display at page:

Download "Méthodes de raffinement espace-temps"

Transcription

1 Méthodes de raffinement espace-temps Caroline Japhet Université Paris 13 & University of Maryland Laurence Halpern Université Paris 13 Jérémie Szeftel Ecole Normale Supérieure, Paris Pascal Omnes CEA, Saclay Journée GNR MOMAS / GDR Calcul, 5 Mai 2010 Journée MOMAS, 5 Mai / 36

2 Coupling process For a given problem, split the domain : domain decomposition Subdomains with curved interfaces and widely differing lengths Coupling heterogeneous models Different time and space steps in different subdomains Application to nuclear waste disposal (GdR MoMaS) Journée MOMAS, 5 Mai / 36

3 Far field 3D simulations of underground nuclear waste Research Group MoMaS With Jérôme Jaffré, Michel Kern and Jean Roberts (INRIA) Actual dimensions : 40km 40km 500m A blow-up in the vertical direction (30 times) The repository is located in the red part of the bottom layer. Journée MOMAS, 5 Mai / 36

4 Hydrogeological data Hydrogeologic Effective Permeability Dispersivity layers Thickness Porosity diffusion [m/s] Coefficients [m] [%] coefficient [m] [m 2 /s] Regional Local Tithonian Variable , 0.6 Kimmeridgian when it outcrops -9 Variable , 0.6 Kimmeridgian 10 under cover Oxfordian L2a-L2b , 0.6 Oxfordian Hp1-Hp , 30 Oxfordian C3a-C3b , 0.6 Callovo-Oxfordian Cox K v =10-14 K h = , 0.6 Journée MOMAS, 5 Mai / 36

5 Near-field Computation Research Group MoMaS With Pascal Omnes and Paul-Marie Berthe (CEA Saclay, DEN/DM2S/SFME/MTMS) Journée MOMAS, 5 Mai / 36

6 DDM for evolution problems The goals Different time and space steps in different domains, adapted to the physics, Different models in different subdomains, Easy to use, fast and cheap. The tools Work on the PDE level, globally in time, Use time windows for long time simulations, Use physical transmission conditions, transmit with optimized transmission condition, Robin transmission conditions Order 2 transmission conditions Then discretize separately. Journée MOMAS, 5 Mai / 36

7 DDM for evolution problems The goals Different time and space steps in different domains, adapted to the physics, Different models in different subdomains, Easy to use, fast and cheap. The tools Work on the PDE level, globally in time, Use time windows for long time simulations, Use physical transmission conditions, transmit with optimized transmission condition, Robin transmission conditions Order 2 transmission conditions Then discretize separately. Optimized Schwarz Waveform Relaxation Journée MOMAS, 5 Mai / 36

8 Heterogeneous advection-diffusion equation (Radionuclide transport) Lu = tu + (a(x)u ν(x) u) + cu = f in Ω [0, T ] u = 0 on Ω [0, T ], u(., 0) = u 0 in Ω a(x) Ωi = a i (x) and ν(x) Ωi = ν i (x), ν(x) > 0 the interface is placed on the jump of a, ν u 1 = u 2 y T t (ν 1 n1 a 1 n 1 )u 1 = ( ν 2 n2 + a 2 n 2 )u 2 Γ Lu 1 = f 1 Lu 2 = f 2 Ω 1 Ω 2 x 0 Journée MOMAS, 5 Mai / 36

9 Optimized Schwarz Waveform Relaxation Method (M. Gander, L. Halpern, F. Nataf (1998), V. Martin (2003), M. Gander, L. Halpern, M. Kern (2007), E. Blayo, L. Halpern, C. J. (2007), D. Bennequin, M. Gander, L. Halpern (2009), L. Halpern, C. J., J. Szeftel (2010) ) (ν 1 n1 a 1 n 1 + S 1,2 )u k 1 = ( ν 2 n2 + a 2 n 2 + S 1,2 )u k 1 2 y t T l+1 (ν 2 n2 a 2 n 2 + S 2,1 )u k 2 = ( ν 1 n1 + a 1 n 1 + S 2,1 )u k 1 1 T l Lu k 1 = f 1 Lu k 2 = f 2 Ω 1 Ω 2 x Choose S 1,2 and S 2,1 in order to optimize the convergence factor Journée MOMAS, 5 Mai / 36

10 Optimized Schwarz Waveform Relaxation Method S 1,2 = p 1,2 + q 1,2 ( t + τ 2 (r 1,2 s 1,2 τ 2 )) S 2,1 = p 2,1 + q 2,1 ( t + τ 1 (r 2,1 s 2,1 τ 1 )) (ν 1 n1 a 1 n 1 + S 1,2 )u k 1 = ( ν 2 n2 + a 2 n 2 + S 1,2 )u k 1 2 y t T l+1 (ν 2 n2 a 2 n 2 + S 2,1 )u k 2 = ( ν 1 n1 + a 1 n 1 + S 2,1 )u k 1 1 T l Lu k 1 = f 1 Lu k 2 = f 2 Ω 1 Ω 2 x where p 1,2, p 2,1, q 1,2, q 2,1 are taken such that They optimize the convergence factor, The transmission conditions imply the coupling conditions at convergence, The subdomain problems are well-posed. For the simulations : r i,j = a j τ j and s i,j = ν j Journée MOMAS, 5 Mai / 36

11 Optimized Schwarz Waveform Relaxation Method S 1,2 = p 1,2 + q 1,2 ( t + τ 2 (r 1,2 s 1,2 τ 2 )) S 2,1 = p 2,1 + q 2,1 ( t + τ 1 (r 2,1 s 2,1 τ 1 )) where p 1,2, p 2,1, q 1,2, q 2,1 optimize the convergence factor (ν 1 n1 a 1 n 1 + S 1,2 )u k 1 = ( ν 2 n2 + a 2 n 2 + S 1,2 )u k 1 2 y t T l+1 (ν 2 n2 a 2 n 2 + S 2,1 )u k 2 = ( ν 1 n1 + a 1 n 1 + S 2,1 )u k 1 1 T l Lu k 1 = f 1 Lu k 2 = f 2 Ω 1 Ω 2 x Journée MOMAS, 5 Mai / 36

12 Optimized Schwarz Waveform Relaxation Method S 1,2 = p 1,2 + q 1,2 ( t + τ 2 (r 1,2 s 1,2 τ 2 )) S 2,1 = p 2,1 + q 2,1 ( t + τ 1 (r 2,1 s 2,1 τ 1 )) where p 1,2, p 2,1, q 1,2, q 2,1 optimize the convergence factor (ν 1 n1 a 1 n 1 + S 1,2 )u k 1 = ( ν 2 n2 + a 2 n 2 + S 1,2 )u k 1 2 y t T l+1 (ν 2 n2 a 2 n 2 + S 2,1 )u k 2 = ( ν 1 n1 + a 1 n 1 + S 2,1 )u k 1 1 T l Lu k 1 = f 1 Lu k 2 = f 2 Ω 1 Ω 2 x How to discretize these conditions with nonmatching space-time grids? Journée MOMAS, 5 Mai / 36

13 Optimized Schwarz Waveform Relaxation Method S 1,2 = p 1,2 + q 1,2 ( t + τ 2 (r 1,2 s 1,2 τ 2 )) S 2,1 = p 2,1 + q 2,1 ( t + τ 1 (r 2,1 s 2,1 τ 1 )) where p 1,2, p 2,1, q 1,2, q 2,1 optimize the convergence factor (ν 1 n1 a 1 n 1 + S 1,2 )u k 1 = ( ν 2 n2 + a 2 n 2 + S 1,2 )u k 1 2 y t T l+1 (ν 2 n2 a 2 n 2 + S 2,1 )u k 2 = ( ν 1 n1 + a 1 n 1 + S 2,1 )u k 1 1 T l Lu k 1 = f 1 Lu k 2 = f 2 Ω 1 Ω 2 x How to discretize these conditions with nonmatching space-time grids? Time discontinuous Galerkin method Journée MOMAS, 5 Mai / 36

14 Subdomain solver : Time Discontinuous Galerkin (K. Eriksson, C. Johnson, V. Thomée (1985), L. Halpern, C. J. (2008)) Problem in a subdomain Ω i, in one time window I = (T l, T l+1 ) 8 < tu + (au ν u) + cu = f in Ω i I, u(, T l ) = u 0 in Ω i, : (ν n a n + p + q( t + τ (r s τ )) u = g on Γ I Let H σ σ (Ω i ) = {v H σ (Ω i ), v Γ H σ (Γ)}, σ > 1 2, and ((u, v)) = (u, v) L 2 (Ω i ) + q(u, v) L 2 (Γ) Weak formulation : Find u such that with Z a(u, v) = Ω i 1 (( t u, v)) + a(u, v) = l(v), v H 1 1 (Ω i ) Z Z 2 ((a u)v (a v)u) dx + ν u v dx + (c + 1 Ω i Ω i 2 a)uv dx Z a n + `(p Γ 2 + q 2 τ r)uv + q 2 ( τ (ru)v τ (rv)u) + qs τ u τ v dσ, l(v) = (f, v) L 2 (Ω i ) + (g, v) L 2 (Γ) Journée MOMAS, 5 Mai / 36

15 Discontinuous Galerkin time stepping method Let T be a partition of I = N n=0i n, with I n = (t n, t n+1 ], and t n = t n+1 t n. Let ϕ(t ± n ) = lim t tn±0 ϕ(t). We define P q(v ) = {ϕ : ϕ(t) = qx ϕ i t i, ϕ i V } P q(v, T ) = {ϕ : I V, ϕ In P q(v ), 0 n K }. i=0 The discontinous Galerkin method defines recursively on I n, an approximate solution U in P q(h1 1 (Ω i ), T ) such that 8 U(0, ) = u 0, Z >< ϕ P q(h1 1 (Ω i ), T ) : ( (( du, ϕ)) + a(u, ϕ) ) dt I n dt Z >: +(( U(, t n + ), ϕ(, t n + ) )) = (( U(, t n), ϕ(, t n + ) )) + l(ϕ)dt I n Journée MOMAS, 5 Mai / 36

16 Discontinuous Galerkin time stepping method (C. Makridakis, R. Nochetto (2006)) Let 0 < ξ 1,..., ξ q+1 = 1, the Gauss-Radau points such that Z 1 0 q+1 X f (t)dt w j f (ξ j ) is exact in P 2q, and the interpolation operator I n on [t n, t n+1 ] at points (t n, t n + ξ 1 t n,..., t n + ξ q+1 t n) with I nu(t n) = U(t n ). Let I : P q(h 1 1 (Ω i ), T ) P q+1 (H 1 1 (Ω i ), T ) be the operator whose restriction to each subinterval is I n. It satisfies IU(t + n ) = U(t n ). j=1 U IU ξ 1 U IU t 0 t n t n+1 t N+1 t 0 t n t n+1 t N+1 Journée MOMAS, 5 Mai / 36

17 Discontinuous Galerkin time stepping method The discrete equation can be rewritten as Z ( (( diu Z, V )) + a(u, V )) dt = L(V ) dt I n dt I n or in the strong formulation t(iu) + (au ν U) + cu = Pf in Ω i I `ν n a n U + p U + q( t(iu) + τ (ru s τ U)) = Pg on Γ I where P is the L 2 projection in time on P q(v, T ) Journée MOMAS, 5 Mai / 36

18 Time Nonconforming Domain Decomposition Method Let T i be the partition of the time window (T l, T l+1 ) in subdomain Ω i, with N i + 1 intervals I i n. We define interpolation operators I i and projection operators P i. Let m 1 small in order to make very few iterations in each time window. Let Vi m be a discrete approximation of u i in Ω i (T l 1, T l ) at step m of the method. Then, the next time window s solution U i is obtained after m DG-OSWR iterations, starting with a given initial guess (g i,j ) in P d (L 2 (Γ i,j ), T i ) t (I i Ui k ) + (aui k ν i Ui k ) + c i Ui k = P i f in Ω i (0, T ), `νi ni a i n i Uk i + S i,j Ui k = with U k i (, T l ) = V m i (, T l ), P i `(ν j ni a j n i ) U k 1 j + S e i,j U k 1 j on Γi,j (0, T ), S i,j U = p i,j U + q i,j ( t (I i U) + τ (r i,j U s i,j τ U)) es i,j U = p i,j U + q i,j ( t (I j U) + τ (r i,j U s i,j τ U)) Journée MOMAS, 5 Mai / 36

19 Theorem (L. Halpern, C. J., J. Szeftel (DD18,2009)) (Well-posedness and convergence) The coupled discret problem in time has a unique solution and the discret Schwarz algorithm is convergent for q i,j = 0, p j,i p i,j a i n i = 0, p i,j > a i n i 2, ν i ν j, a i a j, and rectangular subdomains p i,j = p j,i = p > 0, q i,j = q j,i = q > 0, ν i = ν j, s i,j = s > 0, a i = 0, r i,j = 0, and strips (Error estimates) If a = 0, p i,j a i n i 2 = p j,i a j n j 2 = p > 0, q i,j = 0, t = max n t n, then IX i=1 u U i 2 L (0,T,L 2 (Ω i )) C t 2(q+1) q+1 t u 2 L 2 (0,T ;H 2 (Ω)). Theorem (L. Halpern, C. J., J. Szeftel (DD19,2010)) (Well-posedness) For a i, ν i, r i,j, s i,j, p i,j and q i,j sufficiently smooth with q i,j 0, s i,j > 0 a.e., the subdomain problem has a unique solution. (Convergence) The continuous Schwarz algorithm converges for q i,j = q j,i = 0, p i,j p j,i, ν i ν j, a i a j and general decomposition if q i,j = q j,i = q > 0, p i,j p j,i, ν i ν j, a i a j and decomposition into bands. The proof relies on energy estimates and Gronwall Lemma. Generalization to general geometries and piecewise smooth coefficients of results in D. Bennequin, M. Gander, L. Halpern (2009) Journée MOMAS, 5 Mai / 36

20 Space discretization with nonconforming space grids (M. Gander, C. J., Y. Maday, F. Nataf (2004)) For stationary elliptic problems and Robin transmission conditions Finite element space : V = Q K i=1 X i h Ω 1 Ω 2 Basis functions of X h i Basis functions of W h i Z Z (ν 1 n1 a 1 n 1 + S 1,2 )u 1 ψ 1 = ( ν 2 n2 + a 2 n 2 + S 1,2 )u 2 ψ 1, ψ 1 Wh 1 ZΓ ZΓ (ν 2 n2 a 2 n 2 + S 2,1 )u 2 ψ 2 = ( ν 1 n1 + a 1 n 1 + S 2,1 )u 1 ψ 2, ψ 2 Wh 2 Γ Γ Extension to time advection-diffusion problems and order 2 transmission conditions Journée MOMAS, 5 Mai / 36

21 An efficient way to perform the projections between space-time grids (Martin J. Gander, C. J. (2009)) Generalization in 2d and 3d of the algorithm in M. Gander, L. Halpern, F. Nataf (2003) y T l+1 t Ω i Ω j x Let Vk i (resp. V j l ) the shape Z functions of Pq(R, T i) (resp. P q(r, T j )) How to compute M k,l = VkV i j l? I T l Algorithm with linear complexity and without an additional grid gander I i r I j k Journée MOMAS, 5 Mai / 36

22 Numerical results. Extension to a transport equation with discontinuous porosity ω Lu = ω u t + (a(x)u ν(x) u) + cu = f Initial condition u 0 (x) = 1 2 e( 100((x 0.7)2 +(y 1.5) 2 )) a 1 = ( sin( π 2 (y 1))cos(π(x 1 2 )), 3cos( π 2 (y 1))sin(π(x 1 2 ))), ν 1 = 0.003, ω 1 = 0.1, a 2 = a 1, ν 2 = 0.01, ω 2 = 1, final time T = 1.5 Boundary conditions : homogeneous Dirichlet (S,W), Neumann (N,E) Velocity field DG OSWR Solution, At time t=t= y 1 y x x 0 Journée MOMAS, 5 Mai / 36

23 Time nonconforming DG-OSWR solution (after 5 iterations) Domain 1 (left), 180 time steps, Domain 2 (right), 100 time steps On the right : error with the one domain solution Error at time t=t=1.5 DG OSWR solution at time t=t=1.5 5 x y y x x 1 0 Journée MOMAS, 5 Mai / 36

24 Space-time nonconforming DG-OSWR solution (after 5 iterations) Domain 1 (left), mesh size h 1 = 1/66, 180 time steps Domain 2 (right), mesh size h 2 = 1/44, 100 time steps Journée MOMAS, 5 Mai / 36

25 Relative error versus the time step One domain : t = domain 1 : t 1 = 1 120, domain 2 : t 2 = 1 26 then divide by 2 the time steps t 1 and t 2 The converged solution is such that the residual is smaller than Slope 2 L (0,T,L 2 (Ω 1 )) Error L (0,T,L 2 (Ω 2 )) Error Slope 3 L 2 (Ω 1 ) Error at time t=t L 2 (Ω 2 ) Error at time t=t 10 5 Error Time step Journée MOMAS, 5 Mai / 36

26 Relative error versus the mesh size and time step One domain : t = 1, h = domain 1 : t 1 = 1 60, h 1 = 0.056, domain 2 : t 2 = 1 20, h 2 = 0.11 then divide by 2 the time steps and mesh sizes 10 0 Slope 2 Relative L 2 error, Domain 1 Relative L 2 error, Domain Slope 2 L 2 (Ω 1 ) error at t=t L 2 (Ω 2 ) error at t=t Slope 1 H 1 (Ω 1 ) error at t=t H 1 (Ω 2 ) error at t=t Error 10 2 Error Time step Mesh size Journée MOMAS, 5 Mai / 36

27 Application to Porous Media With Pascal Omnes (CEA) Time domain : (0, T ), T = s 10 4 years time steps : 10 9 s in the clay (host rock) s in the repository mesh size : h = 0.15 m in the repository h = 2 m in the clay Isotropic case with ν = m 2 /s, ω = 0.06 in the clay ν = m 2 /s, ω = 1 in the repository computational domain (in meters) : (0, 10) (0, 100) for the clay (4.5, 5.5) (49.5, 50.5) for the repository Initial condition : u 0 = 0 in the clay u 0 = 1 in the repository Boundary conditions : homogeneous Neumann at x = 0 and x = 10, homogeneous Dirichlet at y = 0 and y = 100. Journée MOMAS, 5 Mai / 36

28 Computational domain y x Journée MOMAS, 5 Mai / 36

29 Computational domain (zoom) y 50 y x x Journée MOMAS, 5 Mai / 36

30 Darcy flow a = 0 a = K h with K = k Id, and k = 10 8 in the repository and k = in the clay Boundary conditions : homogeneous Neumann at x = 0 and x = 10 and Dirichlet conditions with h = 100 at y = 0 and h = 0 at y = y x Journée MOMAS, 5 Mai / 36

31 Time nonconforming DG-OSWR solution With 10 time windows and 4 iterations per window (Left : DG-OSWR solution. Right : error with the one domain solution) x y 50 y x x 0 Journée MOMAS, 5 Mai / 36

32 Time nonconforming DG-OSWR solution (repository) With 10 time windows and 4 iterations per window (Left : DG-OSWR solution. Right : error with the one domain solution) DG OSWR solution, At time t=t= Error between monodomain and DG SWR solutions, At time t=t=1 x y y x x Journée MOMAS, 5 Mai / 36

33 Relative error versus the time step One domain : t = domain 1 : t 1 = 1 128, domain 2 : t 2 = 1 28 then divide by 2 the time steps t 1 and t 2 The converged solution is such that the residual is smaller than k 2 Monodomain, Fine Grid Monodomain, Coarse grid DG OSWR, Repository DG OSWR, Host Rock Slope 3 DG OSWR, Repository DG OSWR, Host Rock Monodomain Error 10 3 Error Number of time refinement Time step Journée MOMAS, 5 Mai / 36

34 Choice of the parameters : an example in 1d (The Order 2 conditions reduce to S i,j = p i,j + q i,j t) L. Halpern, C. J., P. Omnes (ECCOMAS CFD, 2010) Optimization of the convergence factor : Fourier analysis + domains with highly variable length (classical analysis : two half-spaces case). Ω 1 = (0, ), Ω 2 = (0.4965, ) (repository), Ω 3 = (0.5035, 1), final time T = We take u 0 = 1 in the repository, u 0 = 0 in the clay, f = 0, c = 0, a = 1, ν 2 = 1, ω 2 = 1, ν 1 = ν 3 = 0.06, ω 1 = ω 3 = 0.06, t 2 = T 500, t 1 = t 3 = T 100, h 2 = and h 20 1 = h 3 = Error Robin, 2 domains Robin 2 sided, 2 domains Order 1, 2 domains Robin, 3 domains Robin 2 sided, 3 domains Order 1, 3 domains Number of iterations Journée MOMAS, 5 Mai / 36

35 Convergence in the 2d conforming case Constant parameters p 1,2 = p 2,1 = p, q 1,2 = q 2,1 = q (mean value of the (p, q) obtained by optimization of the convergence factor) (p,q), 3 domains optimization (p,q): numerical value (2 domains minimization) (p,q): numerical value (3 domains minimization) p Error q Number of iterations Journée MOMAS, 5 Mai / 36

36 Work in progress Extension to the MoMaS approach (Mixte Finite Elements), 3d benchmark (with Jérôme Jaffré, Michel Kern and Jean Roberts) Extension to finite volume methods and general decomposition (with corners) for Order 2 transmission conditions, 3d simulations (with P-M. Berthe and P. Omnes) Analysis of the fully discrete method Analysis of the influence of the decomposition in time windows Numerical and mathematical analysis of the convergence factor (with M.J. Gander) Journée MOMAS, 5 Mai / 36

37 Nonoverlapping algorithms t u ν u + f (u) = 0. f C 2, f (0) = 0. F. Caetano, M. Gander, L.H, J. Szeftel, DD19. Well-posedness and convergence for linear Robin TC (common existence time for all iterates by energy estimates) to appear in NTMC 09. New : nonlinear TC (DD19) Robin : B i (u) = u n i + p(u)u. Order 2 : B i (u) = u n i + p(u)u + q(u)( t u ν y u). p(u) = p ( 0, ν, f (u)), p and q asymptotic formulas. q(u) = q ( 0, ν, f (u)) Journée MOMAS, 5 Mai / 36

38 A simple example f (u) = 10(exp(u) 1), two subdomains, T = Nonlinear O2 Nonlinear Robin O2 p heat Robin p heat 10 5 Error Number of iterations Convergence history. Journée MOMAS, 5 Mai / 36

39 Overlapping algorithms TRAN Minh Binh. New study of well-posedness and convergence, Classical Schwarz algorithm for the semilinear heat equation, with explosion permitted : f is in C 1 (R) and f (x) C f x p 1, p 1 Extension to systems of stochastic differential equations. Journée MOMAS, 5 Mai / 36

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Laurence Halpern, Caroline Japhet, and Jérémie Szeftel 3 LAGA, Université Paris XIII, Villetaneuse

More information

NONCONFORMING IN TIME DOMAIN DECOMPOSITION METHOD FOR POROUS MEDIA APPLICATIONS

NONCONFORMING IN TIME DOMAIN DECOMPOSITION METHOD FOR POROUS MEDIA APPLICATIONS V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira Eds Lisbon, Portugal,14-17 June 2010 NONCONFORMING IN TIME DOMAIN DECOMPOSITION METHOD FOR POROUS

More information

Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure

Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure Elyes Ahmed, Caroline Japhet, Michel Kern INRIA Paris Maison de la Simulation ENPC University Paris

More information

A posteriori error estimates for space-time domain decomposition method for two-phase flow problem

A posteriori error estimates for space-time domain decomposition method for two-phase flow problem A posteriori error estimates for space-time domain decomposition method for two-phase flow problem Sarah Ali Hassan, Elyes Ahmed, Caroline Japhet, Michel Kern, Martin Vohralík INRIA Paris & ENPC (project-team

More information

Space-Time Domain Decomposition Methods for Transport Problems in Porous Media

Space-Time Domain Decomposition Methods for Transport Problems in Porous Media 1 / 49 Space-Time Domain Decomposition Methods for Transport Problems in Porous Media Thi-Thao-Phuong Hoang, Elyes Ahmed, Jérôme Jaffré, Caroline Japhet, Michel Kern, Jean Roberts INRIA Paris-Rocquencourt

More information

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Martin J. Gander and Felix Kwok Section de mathématiques, Université de Genève, Geneva CH-1211, Switzerland, Martin.Gander@unige.ch;

More information

Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits

Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits Optimized Schwarz Waveform Relaxation: Roots, Blossoms and Fruits Laurence Halpern 1 LAGA, Université Paris XIII, 99 Avenue J-B Clément, 93430 Villetaneuse, France, halpern@math.univ-paris13.fr 1 Introduction:

More information

Advection Diffusion Problems with Pure Advection Approximation in Subregions

Advection Diffusion Problems with Pure Advection Approximation in Subregions Advection Diffusion Problems with Pure Advection Approximation in Subregions M. J. Gander, L. Halpern 2, C. Japhet 2, and V. Martin 3 Université de Genève, 2-4 rue du Lièvre, CP 64, CH-2 Genève. Switzerland.

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

TIME SPACE DOMAIN DECOMPOSITION AND REACTIVE TRANSPORT IN POROUS MEDIA

TIME SPACE DOMAIN DECOMPOSITION AND REACTIVE TRANSPORT IN POROUS MEDIA XVIII International Conference on Water Resources CMWR 2 J. Carrera (Ed) c CIMNE, Barcelona, 2 TIME SPACE DOMAIN DECOMPOSITION AND REACTIVE TRANSPORT IN POROUS MEDIA Florian Haeberlein and Anthony Michel

More information

Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients

Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients Victorita Dolean, Martin Gander, Erwin Veneros To cite this version: Victorita Dolean, Martin Gander, Erwin Veneros. Optimized

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Ivan otov Department of Mathematics, University of Pittsburgh

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Igor Mozolevski, Endre Süli Federal University of Santa Catarina, Brazil Oxford University Computing Laboratory,

More information

Generating Equidistributed Meshes in 2D via Domain Decomposition

Generating Equidistributed Meshes in 2D via Domain Decomposition Generating Equidistributed Meshes in 2D via Domain Decomposition Ronald D. Haynes and Alexander J. M. Howse 2 Introduction There are many occasions when the use of a uniform spatial grid would be prohibitively

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE

DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE MARTIN J. GANDER AND RONALD D. HAYNES Abstract. Moving mesh methods based on the equidistribution principle are powerful

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY, USA. Dan_Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Dirichlet-Neumann and Neumann-Neumann Methods

Dirichlet-Neumann and Neumann-Neumann Methods Dirichlet-Neumann and Neumann-Neumann Methods Felix Kwok Hong Kong Baptist University Introductory Domain Decomposition Short Course DD25, Memorial University of Newfoundland July 22, 2018 Outline Methods

More information

arxiv: v1 [math.na] 14 May 2016

arxiv: v1 [math.na] 14 May 2016 NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON S METHOD V. DOLEAN, M.J. GANDER, W. KHERIJI, F. KWOK, AND R. MASSON arxiv:65.449v [math.na] 4 May 6 Abstract. For

More information

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow Michel Kern Inria Paris Rocquencourt Maison de la Simulation C2S@Exa Days, Inria Paris Centre, Novembre 2016 M. Kern

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

Finite volume method for nonlinear transmission problems

Finite volume method for nonlinear transmission problems Finite volume method for nonlinear transmission problems Franck Boyer, Florence Hubert To cite this version: Franck Boyer, Florence Hubert. Finite volume method for nonlinear transmission problems. Proceedings

More information

DG discretization of optimized Schwarz methods for Maxwell s equations

DG discretization of optimized Schwarz methods for Maxwell s equations DG discretization of optimized Schwarz methods for Maxwell s equations Mohamed El Bouajaji, Victorita Dolean,3, Martin J. Gander 3, Stéphane Lanteri, and Ronan Perrussel 4 Introduction In the last decades,

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

The mortar element method for quasilinear elliptic boundary value problems

The mortar element method for quasilinear elliptic boundary value problems The mortar element method for quasilinear elliptic boundary value problems Leszek Marcinkowski 1 Abstract We consider a discretization of quasilinear elliptic boundary value problems by the mortar version

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Optimized Schwarz methods in spherical geometry with an overset grid system

Optimized Schwarz methods in spherical geometry with an overset grid system Optimized Schwarz methods in spherical geometry with an overset grid system J. Côté 1, M. J. Gander 2, L. Laayouni 3, and A. Qaddouri 4 1 Recherche en prévision numérique, Meteorological Service of Canada,

More information

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf**

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** Controlled CO 2 Diversified fuels Fuel-efficient vehicles Clean refining Extended reserves Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** *: Laboratoire J.L.Lions **:Université

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

c 2012 Society for Industrial and Applied Mathematics

c 2012 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 5, No. 4, pp. 2 235 c 22 Society for Industrial and Applied Mathematics DOMAIN DECOMPOSITION APPROACHES FOR MESH GENERATION VIA THE EQUIDISTRIBUTION PRINCIPLE MARTIN J. GANDER

More information

A Two-grid Method for Coupled Free Flow with Porous Media Flow

A Two-grid Method for Coupled Free Flow with Porous Media Flow A Two-grid Method for Coupled Free Flow with Porous Media Flow Prince Chidyagwai a and Béatrice Rivière a, a Department of Computational and Applied Mathematics, Rice University, 600 Main Street, Houston,

More information

Some examples in domain decomposition

Some examples in domain decomposition Some examples in domain decomposition Frédéric Nataf nataf@ann.jussieu.fr, www.ann.jussieu.fr/ nataf Laboratoire J.L. Lions, CNRS UMR7598. Université Pierre et Marie Curie, France Joint work with V. Dolean

More information

New constructions of domain decomposition methods for systems of PDEs

New constructions of domain decomposition methods for systems of PDEs New constructions of domain decomposition methods for systems of PDEs Nouvelles constructions de méthodes de décomposition de domaine pour des systèmes d équations aux dérivées partielles V. Dolean?? F.

More information

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

THE OPTIMISED SCHWARZ METHOD AND THE TWO-LAGRANGE MULTIPLIER METHOD FOR HETEROGENEOUS PROBLEMS. by Neil Greer

THE OPTIMISED SCHWARZ METHOD AND THE TWO-LAGRANGE MULTIPLIER METHOD FOR HETEROGENEOUS PROBLEMS. by Neil Greer THE OPTIMISED SCHWARZ METHOD AND THE TWO-LAGRANGE MULTIPLIER METHOD FOR HETEROGENEOUS PROBLEMS by Neil Greer Submitted for the degree of Doctor of Philosophy Department of Mathematics School of Mathematical

More information

Nonparametric density estimation for elliptic problems with random perturbations

Nonparametric density estimation for elliptic problems with random perturbations Nonparametric density estimation for elliptic problems with random perturbations, DqF Workshop, Stockholm, Sweden, 28--2 p. /2 Nonparametric density estimation for elliptic problems with random perturbations

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg Advanced numerical methods for nonlinear advectiondiffusion-reaction equations Peter Frolkovič, University of Heidelberg Content Motivation and background R 3 T Numerical modelling advection advection

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

Schur Complement Technique for Advection-Diffusion Equation using Matching Structured Finite Volumes

Schur Complement Technique for Advection-Diffusion Equation using Matching Structured Finite Volumes Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 1, pp. 51 62 (213) http://campus.mst.edu/adsa Schur Complement Technique for Advection-Diffusion Equation using Matching Structured

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Marcella Bonazzoli 2, Victorita Dolean 1,4, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping M. El Bouajaji 1, V. Dolean 2, M. J. Gander 3 and S. Lanteri 1 1 Introduction Transmission conditions

More information

Local Mesh Refinement with the PCD Method

Local Mesh Refinement with the PCD Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 125 136 (2013) http://campus.mst.edu/adsa Local Mesh Refinement with the PCD Method Ahmed Tahiri Université Med Premier

More information

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM C. Canuto 1, L. F. Pavarino 2, and A. B. Pieri 3 1 Introduction Discontinuous Galerkin (DG) methods for partial differential

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation

On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation X. Antoine a,b, E. Lorin d,c a Institut Elie Cartan de Lorraine, Université de Lorraine, F-54506

More information

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part IV Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem Larisa Beilina Michael V. Klibanov December 18, 29 Abstract

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Emerson Roxar,

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a chapter published in Domain Decomposition Methods in Science and Engineering XXI. Citation for the original published chapter: Gander,

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

OPTIMIZED SCHWARZ METHODS

OPTIMIZED SCHWARZ METHODS SIAM J. NUMER. ANAL. Vol. 44, No., pp. 699 31 c 006 Society for Industrial and Applied Mathematics OPTIMIZED SCHWARZ METHODS MARTIN J. GANDER Abstract. Optimized Schwarz methods are a new class of Schwarz

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Optimized Schwarz methods with overlap for the Helmholtz equation

Optimized Schwarz methods with overlap for the Helmholtz equation Optimized Schwarz methods with overlap for the Helmholtz equation Martin J. Gander and Hui Zhang Introduction For the Helmholtz equation, simple absorbing conditions of the form n iω were proposed as transmission

More information

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations by Wilhelm Heinrichs Universität Duisburg Essen, Ingenieurmathematik Universitätsstr.

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

Toward black-box adaptive domain decomposition methods

Toward black-box adaptive domain decomposition methods Toward black-box adaptive domain decomposition methods Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI joint work with Victorita Dolean (Univ. Nice Sophia-Antipolis)

More information

Two-scale Dirichlet-Neumann preconditioners for boundary refinements

Two-scale Dirichlet-Neumann preconditioners for boundary refinements Two-scale Dirichlet-Neumann preconditioners for boundary refinements Patrice Hauret 1 and Patrick Le Tallec 2 1 Graduate Aeronautical Laboratories, MS 25-45, California Institute of Technology Pasadena,

More information

arxiv: v1 [math.na] 16 Dec 2015

arxiv: v1 [math.na] 16 Dec 2015 ANALYSIS OF A NEW HARMONICALLY ENRICHED MULTISCALE COARSE SPACE FOR DOMAIN DECOMPOSITION METHODS MARTIN J. GANDER, ATLE LONELAND, AND TALAL RAHMAN arxiv:52.05285v [math.na] 6 Dec 205 Abstract. We propose

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON S METHOD

NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON S METHOD NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON S METHOD V Dolean, Martin J. Gander, Walid Kheriji, F Kwok, R Masson To cite this version: V Dolean, Martin J. Gander,

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons Anna-Margarete Sändig, Miloslav Feistauer University Stuttgart, IANS Journées

More information

Open-source finite element solver for domain decomposition problems

Open-source finite element solver for domain decomposition problems 1/29 Open-source finite element solver for domain decomposition problems C. Geuzaine 1, X. Antoine 2,3, D. Colignon 1, M. El Bouajaji 3,2 and B. Thierry 4 1 - University of Liège, Belgium 2 - University

More information

Colloids transport in porous media: analysis and applications.

Colloids transport in porous media: analysis and applications. Colloids transport in porous media: analysis and applications. Oleh Krehel joint work with Adrian Muntean and Peter Knabner CASA, Department of Mathematics and Computer Science. Eindhoven University of

More information

Parallel Simulation of Subsurface Fluid Flow

Parallel Simulation of Subsurface Fluid Flow Parallel Simulation of Subsurface Fluid Flow Scientific Achievement A new mortar domain decomposition method was devised to compute accurate velocities of underground fluids efficiently using massively

More information

Analysis of Two-Grid Methods for Nonlinear Parabolic Equations by Expanded Mixed Finite Element Methods

Analysis of Two-Grid Methods for Nonlinear Parabolic Equations by Expanded Mixed Finite Element Methods Advances in Applied athematics and echanics Adv. Appl. ath. ech., Vol. 1, No. 6, pp. 830-844 DOI: 10.408/aamm.09-m09S09 December 009 Analysis of Two-Grid ethods for Nonlinear Parabolic Equations by Expanded

More information

Basics and some applications of the mortar element method

Basics and some applications of the mortar element method GAMM-Mitt. 28, No. 2, 97 123 (2005) Basics and some applications of the mortar element method Christine Bernardi 1, Yvon Maday 1, and Francesca Rapetti 2 1 Laboratoire Jacques-Louis Lions, C.N.R.S. & université

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Superconvergence and H(div) Projection for Discontinuous Galerkin Methods

Superconvergence and H(div) Projection for Discontinuous Galerkin Methods INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2000; 00:1 6 [Version: 2000/07/27 v1.0] Superconvergence and H(div) Projection for Discontinuous Galerkin Methods Peter Bastian

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway The optimised Schwarz method and the two-lagrange multiplier method for heterogeneous problems in general domains with two general subdomains

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

Overlapping Schwarz Waveform Relaxation for Parabolic Problems

Overlapping Schwarz Waveform Relaxation for Parabolic Problems Contemporary Mathematics Volume 218, 1998 B 0-8218-0988-1-03038-7 Overlapping Schwarz Waveform Relaxation for Parabolic Problems Martin J. Gander 1. Introduction We analyze a new domain decomposition algorithm

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GEORGIOS AKRIVIS AND CHARALAMBOS MAKRIDAKIS Abstract. We consider discontinuous as well as continuous Galerkin methods for the time discretization

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation. GANDER, Martin Jakob, HALPERN, Laurence, NATAF, F.

Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation. GANDER, Martin Jakob, HALPERN, Laurence, NATAF, F. Article Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation GANDER, Martin Jakob, HALPERN, Laurence, NATAF, F. Reference GANDER, Martin Jakob, HALPERN, Laurence, NATAF, F. Optimal

More information

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems Etereldes Gonçalves 1, Tarek P. Mathew 1, Markus Sarkis 1,2, and Christian E. Schaerer 1 1 Instituto de Matemática Pura

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information