LHC-CMS Tier2 facility at TIFR

Size: px
Start display at page:

Download "LHC-CMS Tier2 facility at TIFR"

Transcription

1 LHC-CMS Tier2 facility at TIFR T2-IN-TIFR Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai, India. NKN Workshop, IIT, Bombay November 1, 2012

2 e-science and e-research Large collaborative research is made possible by sharing resources across the globe via internet (data, computation, people s expertise...). Crosses organisational, national and international boundaries. High Energy Physics(HEP) is often compute as well as data intensive. Experiments performed by several thousand scientists over several years. CERN-LHC project is an excellent example of large scale colalboration dealing with huge amount of data. WWW was born in CERN to satisfy the needs of previous generation HEP experiments. LHC has been a driving force for GRID computing technology which evolved naturally from internet.

3 The GRID Computing Goal Science without borders. Provide Resources and Services to store/serve O(10) PB data/year Provide access to all interesting physics events to O(4000) collaborators Minimize constraints due to user localisation and resource variety Decentralize control and costs of computing infrastructure Solution through LHC Computing GRID Much faster delivery of physics

4 To begin at the end: Internal speed of computers have become comparable to the speed of large distance network. The operations of the LHC machine and the experiments have been a great success. Fantastic output, often only days after the data is taken about 200 scientific publications per experiment in 3 years. Today >140 sites ~250k CPU cores ~100 PB disk Amount of data written by LHC experiments during last 6 months: 19 Petabyte. Expected volume of data by end of 1 st phase of LHC operation: 30 PB. Total transfer rate across globe: ~ 10 Gbps LHC Computing Grid is the backbone of the success story

5 Large Hadron Collider (LHC) Largest ever scientific project 20 years to plan, build 20 years to work with 27 km circumference at 1.9 K at Torr at m below surface > 10K magnets 4 big experiments: >10K scientists, students, engineers. Operational since 2009, Q4.

6 LHC: ~ seconds (p-p) ~ 10-6 seconds (Pb-Pb) Big Bang WMAP (2001) COBE(1989) Today Experiments in Astrophysics & Cosmology ~ years

7 What happens in LHC experiment Proton-Proton bunch/beam Protons/bunch Beam energy 4 TeV / proton Luminosity 7.6*10 33 /cm 2 /s Crossing rate Total event rate 20 MHz 10 8 Hz 2 major multipurpose experiments at LHC A Toroidal LHC Apparatus (ATLAS) Compact Muon Solenoid (CMS) 10 Million electronic channels per experiment. Proton bunches collide every 50 nano sec. Higgs production <1 per sec.

8 Example of a modern detector 3170 scientists and engineers including ~800 students 169 institutes in 39 countries India

9 Data CMS as foreseen for design parameters Today s data collection rate ~ 850 Hz

10

11 Layered Structure of CMS GRID connecting computers across globe Experimental site Tier 1 National centres Several Petabytes/sec. CERN ASIA (Taiwan) Online data recording USA 10 Gbps Tier 0 Germany CERN computer centre, Geneva Italy France Tier 2 Regional groups in a continent/nation Gbps India China Korea Taiwan Pakistan Indiacms T2_IN_TIFR Different Universities, Institutes in a country TIFR BARC Delhi Univ. Panjab Univ. Individual scientist s PC,laptop,..

12 Today : 7 collaborating institutes in CMS: ~ 30 scientists + 40 students 2.1% of signing authors in publication, Contributing to computing resource of CMS ~ 3% CMS in Total: 1 Tier-0 at CERN 7 Tier-1s on 3 continents 50 Tier-2s on 4 continents CMS T2 in India : one of the 5 in Asia-Pacific region

13 Quick description of LHC grid tiers Distributed Analysis is not a wish, it is a necessity tools have to be reliable! First job of the offline system is to process and monitor data at T0. T0: 1 M jobs/day + test-jobs. traffic : 4Gbps input, > 13 Gbps served CERN Tier 0 moves ~ 1 PB data per day, automated subscription T1 processes data further several times a year, coordinates with T2s T2s are the real workhorses of the system with growing roles Hosts specific data streams for analysis Gets main data from T1s, recently more communications among T2s Typically 100k analysis jobs/day/experiment Site readiness is at high level 24X7 availability lot of invisible effort! Storage in T2 partitioned into central and local space.

14 T2-IN-TIFR, Mumbai Resources - CPU : 3000 (7000) - Disk : 700 TB (950 TB) - Nework (WAN) : Gbit/s Contributing to the computing efforts of CMS experiment credits earned against mandatory service jobs. End-user does not have to bother about the resources Middleware: - Storage Elements - Computing Elements - Workload Management - Local File Catalog - Information System A large amount of invisible human effort is essential - Virtual Organisation management - Inter-operability among different GRIDs

15 Network connections 1.5/2 Gbps to CERN peered to GEANT 2.5 Gbps NKN +TEIN3 TIFR-INDIACMS T2 VECC/SINP: INDIA 1 Gbps to VECC RRCAT, IPR

16 Monitoring the performance of a CMS T2 site Availability and reliability : fraction of time all functional tests in a site are successful Data transfers number of active links with sustained rates Job Robot (simulates small analysis jobs/user jobs) for failures, the logfile describes the nature. the investigations carried out locally + central experts.

17 ~ events produced in 2011

18 Global status

19 Data Transfers from/to TIFR upload Total data volume at present ~ 250 TB Total transfers during last 6 months ~ 70 TB download TIFR hosting i) centrally managed data (simulated, custodial) ii) collision data skims Current CMS total CPU pledge at T2s : 18k jobs slots Nominal Analysis pledge : 50% Slot utilization during Summer/Fall 09 was reasonable but need to go into sustained analysis mode

20 August 15-18, 2011 Maximum: 1.5 Gbps Avg. : 1Gbps

21 Low latency transfers

22 Physics datasets for analysis Distribution of data to participating centres all over the world Huge datasets (~ few TB) cannot be transferred to each user the analysis jobs go to where the data is Results come to user!

23 The KEY of GRID Computing: NETWORK Need a service for monitoring networks.

24 Conclusion CMS Tier2 center at TIFR is in working condition and satisfies all CMS guidelines and requirements. Making what we have today more sustainable is a challenge Need to invest MORE in networks across the country and make full use of the distributed system for a remote participation to be satisfactory! Sincere thanks to ERNET, EU-India grid and NKN for the support towards our effort in puttng India in CMS-Grid map.

25 Backup

26 Motivation of LHC experiments LHC is meant to resolve some of the most puzzling issues in physics: Nature of elementary particles and interactions shortly after Big Bang how many interactions when the universe was much hotter which elementary particles existed with what properties? we recreate conditions of very early universe at LHC. Origin of the mass mass patterns among different particles in today s universe why photon is massless, while carriers of weak interaction are massive? if the symmetry is broken spontaneously, what is the signature? existence of the God Particle? The Higgs boson yet to be discovered, but coming soon, stay tuned! LHC is at the threshold of discovery likely to change the way we are used to think of Nature!

27 Site Description 6 collaborating institutes at present, more in near future. BARC, Delhi Uni., Panjab Uni., TIFR (EHEP & HECR), VisvaBharati Uni. About 50 physicists 3.5 FTE to manage the site till now, reducing gradually. User Access to T2-IN-TIFR High end server as User Interface with the latest glite, root, CMS software versions (concurrent versions) GRID computing analysis facility using CMS-specific package CRAB Directly connected to T2 LAN Fast access to storage using RFIO 50 TB local disk space to users with individual directories AFS client, dedicated job slots (PBS) facilities Latest OS security patches

28 Grand menu from LHC Nature of dark matter: we know only 4% of the constituent of the universe A good 25% of the rest is massive enough to dictate the motion of galaxies non-luminous, and hence dark LHC can tell us the nature of this dark matter! observed LHC will also shed light on: why there is only matter and no antimatter today. properties of the 4 th state of matter: Quark-Gluon-Plasma which existed 1 pico sec. after the big bang, before formation of neutrons and protons.. Expected from visible Distribution of matter All this is possible because LHC is essentially a microscope AND a telescope as well!

29 Challenges Versatile experiments, equipped with very specialized detectors. ~10 7 electronic channels per experiment, ready every 25 ns to collect information of debris from violent collisions. Reconstruct 20K charged tracks in a single event (lead-lead collisions at LHC) 10 vertices in a single proton-proton collision, to be discriminated from the interesting process Charged tracks from heavy ion collision vertex Event size related to flux/intensity 1.5 Billion events recorded in 2010 > 2B events, much more complicated, to be recorded during 2011 resource utilization to be prioritized by carefully throwing not-so-interesting collisions.

30 Enter a New Era in Fundamental Science LHCb CMS ATLAS Exploration of a new energy frontier in p-p and Pb-Pb collisions ALICE LHC ring: 27 km circumference Discovered Higgs boson. Stay tuned!

31 Update & Upgrade on Storage Existing Storage is of ~570 TB 18 Servers : Intel Xeon E5430@2.66GHz, 4 * 1GB NIC, 16GB RAM, 24 * 1TB HDD (RAID 6), SATA 3Gb/s, 7200 RPM 4 Servers : Intel Xeon E5620@2.40GHz, 4 * 1GB NIC, 24GB RAM, 34 * 2TB HDD (RAID 6), SATA 3Gb/s, 7200 RPM 1 Server : Intel Xeon E5620@2.40GHz, 4 * 1GB NIC, 24GB RAM, 16 * 2TB HDD (RAID 6), SATA 3Gb/s, 7200 RPM Addition of 400TB storage in next 2-3 months.

32 Update & Upgrade on Managing and WN Existing Computing Resources: Computing: 360 Cores in 45 Blade Servers, Quad Core Dual processor, Intel 2.66 GHz (Clovertown), 16 GB RAM (2GB/ Core), 72GB HDD New Resources: Worker Nodes: 320 Cores in 40 Servers, Quad Core Dual processor, Intel 2.53 GHz, 24 GB ECC Registered RAM, GB HDD Managing Servers: 64 Cores in 8 Servers, Quad Core Dual processor, Intel 2.53 GHz, 24 GB ECC Registered RAM, 300 GB HDD Total CPU: 3000

33

Essentials of LHC. Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai

Essentials of LHC. Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai Essentials of LHC Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai http://www.tifr.res.in/~mazumdar Kajari.Mazumdar@gmail.com KSTA Physics Lecture Series,

More information

CMS: Priming the Network for LHC Startup and Beyond

CMS: Priming the Network for LHC Startup and Beyond CMS: Priming the Network for LHC Startup and Beyond 58 Events / 2 GeV arbitrary units Chapter 3. Physics Studies with Muons f sb ps pcore ptail pb 12 117.6 + 15.1 Nb bw mean 249.7 + 0.9 bw gamma 4.81 +

More information

The Start of the LHC Era. Peter Wittich Laboratory of Elementary Particle Physics Cornell University

The Start of the LHC Era. Peter Wittich Laboratory of Elementary Particle Physics Cornell University The Start of the LHC Era Peter Wittich Laboratory of Elementary Particle Physics Cornell University Big Bang - where it all began 3 4 13 billion years ago 4 13 billion years ago hot, highly energetic

More information

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014 I. Antoniadis CERN IAS CERN Novice Workshop, NTU, 7 Feb 2014 1 2 3 the Large Hadron Collider (LHC) Largest scientific instrument ever built, 27km of circumference >10 000 people involved in its design

More information

Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN

Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN Welcome Hoşgeldiniz Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN Accelerating Science and Innovation The Mission of CERN Push back the frontiers of knowledge E.g. the secrets of

More information

High-Energy Physics, ATLAS and Trans- Pacific Collaboration Opportunities

High-Energy Physics, ATLAS and Trans- Pacific Collaboration Opportunities High-Energy Physics, ATLAS and Trans- Pacific Collaboration Opportunities Shawn McKee - University of Michigan Driving eresearch Collaboration Across the Pacific Workshop Perth, Australia, October 11 th,

More information

STFC Meet the buyer: CERN experiments and future projects

STFC Meet the buyer: CERN experiments and future projects STFC Meet the buyer: CERN experiments and future projects Julie Bellingham Head of Business Opportunities for International Facilities Science and Technology Facilities Council Science and Technology Facilities

More information

A fantastic experiment

A fantastic experiment The Large Hadron Collider A fantastic experiment Duncan Carlsmith, Professor of Physics, University of Wisconsin-Madison What is the LHC? The Large Hadron Collider (LHC) is a new proton-proton colliding

More information

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1 LHC & ATLAS The largest particle physics experiment in the world 1 CERN A laboratory for the world Torsten Gustavson CERN was founded in 1954 There were 12 member states in the beginning. 2 OBSERVERS:

More information

WHAT IS A T1? Federico Carminati The Grid of the Americas February 8-11, 2011

WHAT IS A T1? Federico Carminati The Grid of the Americas February 8-11, 2011 WHAT IS A T1? Federico Carminati The Grid of the Americas February 8-11, 2011 THE CERN LARGE HADRON COLLIDER LHC LHC is a proton-proton and heavy ion collider Proton-proton center-of-mass energy s pp =

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Experiments at the Large Hadron Collider Challenges and Opportunities

Experiments at the Large Hadron Collider Challenges and Opportunities Experiments at the Large Hadron Collider Challenges and Opportunities Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK 11 December 2014 What

More information

the quest for certainty

the quest for certainty the quest for certainty LHC project Why an entity like CERN exists? To produce certainty, to provide solid and «undoubtable», i.e. «scientific», answers to some fundamental questions Particle physics looks

More information

The Compact Muon Solenoid (CMS) experiment. at the Large Hadron Collider (LHC)

The Compact Muon Solenoid (CMS) experiment. at the Large Hadron Collider (LHC) The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) Thursday, 12 February 2015 $ whoami S Lukasz (Luke) Kreczko Particle Physicist S Computing Research Assistant at the University

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/comptonlectures.html Lecture Outline April 1st: Newton s dream & 20th Century

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/comptonlectures.html Lecture Outline April 1st: Newton s dream & 20th Century

More information

Last Friday: pp(bar) Physics Intro, the TeVatron

Last Friday: pp(bar) Physics Intro, the TeVatron Last Friday: pp(bar) Physics Intro, the TeVatron Today: The Large Hadron Collider (LHC) The Large Hadron Collider (LHC) 7 TeV + 7 TeV Protons Protons 10 11 Protons per bunch Bunch Crossings 4x10 7 Hz Proton

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

John Ellis King s College London (& CERN) Welcome! Introduction to CERN. CERN: Accelerating Science and Innovation

John Ellis King s College London (& CERN) Welcome! Introduction to CERN. CERN: Accelerating Science and Innovation Welcome! John Ellis King s College London (& CERN) Introduction to CERN CERN: Accelerating Science and Innovation The Mission of CERN Push back the frontiers of knowledge E.g. the secrets of the Big Bang

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Big Computing in High Energy Physics. David Toback Department of Physics and Astronomy Mitchell Institute for Fundamental Physics and Astronomy

Big Computing in High Energy Physics. David Toback Department of Physics and Astronomy Mitchell Institute for Fundamental Physics and Astronomy Big Computing in High Energy Physics Big Data Workshop Department of Physics and Astronomy Mitchell Institute for Fundamental Physics and Astronomy October 2011 Outline Particle Physics and Big Computing

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

Start-up of the Large Hadron Collider at CERN

Start-up of the Large Hadron Collider at CERN Start-up of the Large Hadron Collider at CERN Possibilities for a Belgian Nobel Prize in physics Belgian Media File Abstract: Scientists and engineers from around the world are finalizing the last construction

More information

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad Introduction of CMS Detector Ijaz Ahmed National Centre for Physics, Islamabad Layout of my Lectures: 1) Introduction of CMS Detector 2) CMS sub-detectors 3) CMS Trigger System Contents Introduction of

More information

Dr. Andrea Bocci. Using GPUs to Accelerate Online Event Reconstruction. at the Large Hadron Collider. Applied Physicist

Dr. Andrea Bocci. Using GPUs to Accelerate Online Event Reconstruction. at the Large Hadron Collider. Applied Physicist Using GPUs to Accelerate Online Event Reconstruction at the Large Hadron Collider Dr. Andrea Bocci Applied Physicist On behalf of the CMS Collaboration Discover CERN Inside the Large Hadron Collider at

More information

The ATLAS Detector at the LHC

The ATLAS Detector at the LHC The ATLAS Detector at the LHC Results from the New Energy Frontier Cristina Oropeza Barrera Experimental Particle Physics University of Glasgow Somewhere near the Swiss Alps... A Toroidal LHC ApparatuS

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

LHC, CMS and DHEP. Kajari Mazumdar. Departmental Introduction, 2011

LHC, CMS and DHEP. Kajari Mazumdar.   Departmental Introduction, 2011 LHC, CMS and DHEP Kajari Mazumdar http://www.tifr.res.in/~mazumdar Departmental Introduction, 2011 August 11, 2011 Eternal questions of mankind What principles govern energy, matter, space and time at

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Laboratory for Nuclear Science

Laboratory for Nuclear Science The Laboratory for Nuclear Science (LNS) provides support for research by faculty and research staff members in the fields of particle, nuclear, and theoretical plasma physics. This includes activities

More information

Mark Neubauer. Enabling Discoveries at the LHC through Advanced Computation and Machine Learning. University of Illinois at Urbana-Champaign

Mark Neubauer. Enabling Discoveries at the LHC through Advanced Computation and Machine Learning. University of Illinois at Urbana-Champaign Enabling Discoveries at the LHC through Advanced Computation and Machine Learning Mark Neubauer University of Illinois at Urbana-Champaign Blue Waters Symposium Sunriver, OR May 16-19, 2017 The Pursuit

More information

Modern experiments - ATLAS

Modern experiments - ATLAS Modern experiments - ATLAS, paula.eerola [at] hep.lu.se,, 046-222 7695 Outline Introduction why new experiments? The next generation of experiments: ATLAS at the Large Hadron Collider Physics basics luminosity,

More information

ETH Beowulf day January 31, Adrian Biland, Zhiling Chen, Derek Feichtinger, Christoph Grab, André Holzner, Urs Langenegger

ETH Beowulf day January 31, Adrian Biland, Zhiling Chen, Derek Feichtinger, Christoph Grab, André Holzner, Urs Langenegger CMS SM Meeting Nov 28 2005 Analysis and simulation of proton-proton collision data at LHC ETH Beowulf day January 31, 2006 Adrian Biland, Zhiling Chen, Derek Feichtinger, Christoph Grab, André Holzner,

More information

In Pursuit of Discovery at The Large Hadron Collider

In Pursuit of Discovery at The Large Hadron Collider In Pursuit of Discovery at The Large Hadron Collider Prof. Christopher Neu Department of Physics University of Virginia My name is Chris Neu An Introduction Experimental high energy physics Office: 119

More information

Elementary Particle Detectors and Data Handling Systems: A historical perspective

Elementary Particle Detectors and Data Handling Systems: A historical perspective Elementary Particle Detectors and Data Handling Systems: A historical perspective Prof. Manuel Delfino, UAB and IFAE, Director of PIC Dialogues on the boundaries of knowledge: Big Data 2 Why Experimental

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

Introduction to me, High-Energy Physics and research at Belle

Introduction to me, High-Energy Physics and research at Belle Introduction to me, High-Energy Physics and research at Belle Jan Schümann Belle Collaboration Tsukuba, Japan Where I come from: Europe Germany Henstedt-Ulzburg... small village of 25.000 citizens My village...

More information

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013 Big Bang to Little Bang ---- Study of Quark-Gluon Plasma Tapan Nayak July 5, 2013 Universe was born through a massive explosion At that moment, all the matter was compressed into a space billions of times

More information

The Search for the Higgs Boson, and the CMS Project

The Search for the Higgs Boson, and the CMS Project The Search for the Higgs Boson, and the CMS Project John Palsmeier Benedictine College Advisor: Stan Durkin The Ohio State University Introduction For the past summer I have been working with Professor

More information

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration LHCb Overview Barbara Storaci on behalf of the LHCb Collaboration CERN Council, December 14 th, 2012 Overview Introduction Collaboration Type of physics considered Detector Detector performances Selection

More information

LHC: where are we? Kajari Mazumdar. Department of High Energy Physics Tata Institute of Fundamental Research Mumbai.

LHC: where are we? Kajari Mazumdar. Department of High Energy Physics Tata Institute of Fundamental Research Mumbai. LHC: where are we? Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai. Kajari.Mazumdar@tifr.res.in http://www.tifr.res.in/~mazumdar Colloquium, IMSc, Chennai.

More information

Analyzing CMS events

Analyzing CMS events Quarknet University of Rochester, March 23, 2012 Analyzing CMS events Questions in Particle Physics Introducing the Standard Model The Large Hadron Collider The CMS detector W and Z bosons: decays ispy

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

LHC experiment. Summer student lectures, DESY Zeuthen 2011 Elin Bergeaas Kuutmann. DESY summer student lectures 25 July 2011

LHC experiment. Summer student lectures, DESY Zeuthen 2011 Elin Bergeaas Kuutmann. DESY summer student lectures 25 July 2011 LHC experiment. Summer student lectures, DESY Zeuthen 2011 Elin Bergeaas Kuutmann 1 Some recent news... Presented at the EPS conference, Friday 22 July Is this a discovery of the Higgs boson? If not, what

More information

(I)LC Software and the grid

(I)LC Software and the grid (I)LC Software and the grid JAN STRUBE Pacific Northwest National Laboratory IAS Program on High Energy Physics The International Linear Collider Jan Strube -- IAS, HKUST January 24, 2017 2 Precision requirements

More information

Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department. 05 Novembre

Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department. 05 Novembre Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department 05 Novembre 2003 1 1949-1950: First ideas for creating a European laboratory in physics 1952: Foundation of the European Council

More information

Wolfgang Pauli, CERN, and the LHC. Rüdiger Voss Physics Department, CERN

Wolfgang Pauli, CERN, and the LHC. Rüdiger Voss Physics Department, CERN Wolfgang Pauli, CERN, and the LHC Rüdiger Voss Physics Department, CERN Pauli and the origins of CERN Letter to Oppenheimer (1952): I am more urgently needed... here, particularly in connection with the

More information

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Introductory Lecture August 3rd 2014 International Centre for Theoretical Physics and

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 Risultati dell esperimento ATLAS dopo il run 1 di LHC C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 1 LHC physics Standard Model is a gauge theory based on the following

More information

LHC: The Super Probe. Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai. Colloquium, Mumbai Vidhyapeeth

LHC: The Super Probe. Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai. Colloquium, Mumbai Vidhyapeeth LHC: The Super Probe Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai Colloquium, Mumbai Vidhyapeeth August 5, 2011 Eternal questions of mankind What principles

More information

Electroweak Symmetry Breaking

Electroweak Symmetry Breaking Electroweak Symmetry Breaking An enduring mystery of the standard model of particle physics and how we hope to solve it David Schaich Department of Physics and Center for Computational Science Boston University

More information

Operation and Performance of the LHCb experiment

Operation and Performance of the LHCb experiment 1 on behalf of the LHCb Collaboration CERN Geneva, Switzerland E-mail: federico.alessio@cern.ch -1 The LHCb experiment collected 37.7 pb of integrated luminosity during the first year of proton collisions

More information

A Search for the Higgs

A Search for the Higgs A Search for the Higgs The Four Muon Channel Author: Alexander Burgman Supervisor: Oxana Smirnova Division of Particle Physics Lund University Content Background Facts Some theoretical background Machines

More information

Particles, Energy, and Our Mysterious Universe

Particles, Energy, and Our Mysterious Universe Particles, Energy, and Our Mysterious Universe 1 The End of Physics "The more important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established

More information

The LHC The Large Hadron Collider and ATLAS

The LHC The Large Hadron Collider and ATLAS INTRODUCTION The LHC The Large Hadron Collider and ATLAS The accelerator is located at CERN, in a tunnel at a depth of around 100m beneath the French-Swiss border near Geneva. The protons used in the experiments

More information

FASTER, SMALLER, CHEAPER

FASTER, SMALLER, CHEAPER FASTER, SMALLER, CHEAPER DISCOVERING THE UNIVERSE ON A SHOESTRING BUDGET Pagels Public Lecture, Aspen Center for Physics Jonathan Feng, University of California, Irvine 9 August 2018 9 Aug 2018 Feng 1

More information

Dark Side of the Universe

Dark Side of the Universe Dark Side of the Universe Bhaskar Dutta Department of Physics & Astronomy Texas A&M University Dark Side of the Universe 1 Content of the Universe 4% The 23% is still unobserved in the laboratory.. (This

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

Accelerating Science and Innovation Welkom CERN

Accelerating Science and Innovation Welkom CERN Accelerating Science and Innovation Welkom Nederlanders @ CERN Herman ten Kate The Mission of CERN Push forward the frontiers of knowledge E.g. the secrets of the Big Bang what was the matter like within

More information

60 YEARS of SCIENCE FOR PEACE. R.-D. Heuer Prague, 8 Sept

60 YEARS of SCIENCE FOR PEACE. R.-D. Heuer Prague, 8 Sept 60 YEARS of SCIENCE FOR PEACE R.-D. Heuer Prague, 8 Sept 2014 1 CERN was founded 1954: 12 European States Science for Peace Today: 21 Member States ~ 2300 staff ~ 1600 other paid personnel ~ 10500 scientific

More information

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 OUTLINE! Some things we ve learned about the physical

More information

PoS(EPS-HEP 2013)508. CMS Detector: Performance Results. Speaker. I. Redondo * CIEMAT

PoS(EPS-HEP 2013)508. CMS Detector: Performance Results. Speaker. I. Redondo * CIEMAT : Performance Results * CIEMAT Av. Compluense 40 Madrid 28040, Spain E-mail: ignacio.redondo@ciemat.es The Compact Muon Solenoid (CMS) detector is one of the two multipurpose experiments at the Large Hadron

More information

Year- 1 (Heavy- Ion) Physics with CMS at the LHC

Year- 1 (Heavy- Ion) Physics with CMS at the LHC Year- 1 (Heavy- Ion) Physics with CMS at the LHC Edwin Norbeck and Yasar Onel (for the CMS collaboration) University of Iowa For the 26 th Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica 8 January

More information

Welcome to DESY. What is DESY and what kind of research is done here?

Welcome to DESY. What is DESY and what kind of research is done here? Welcome to DESY. What is DESY and what kind of research is done here? Michael Grefe DESY Press and Public Relations (PR) What is DESY? > Deutsches Elektronen-Synchrotron (German electron synchrotron) DESY

More information

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy Ions at the LHC: Selected Predictions Georg Wolschin Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy-ion collisions at relativistic energy have been investigated for many

More information

The Big-Bang Machine. Stefan Spanier Physics and Astronomy University of Tennessee, Knoxville. 25 February 2017 Stefan Spanier, The Big Bang Machine

The Big-Bang Machine. Stefan Spanier Physics and Astronomy University of Tennessee, Knoxville. 25 February 2017 Stefan Spanier, The Big Bang Machine The Big-Bang Machine Stefan Spanier Physics and Astronomy University of Tennessee, Knoxville 1 Accelerator = Microscope Length to be resolved L L 1/Particle Energy Pocket Electron-Accelerator - Energy

More information

Introduction to CERN and CMS

Introduction to CERN and CMS Introduction to CERN and CMS and background for the CMS analysis Jamie Gainer University of Hawaii at Manoa April 1, 2017 What do I do? I am a postdoc at UH Manoa I am a theorist In physics there are theorists:

More information

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Identifying Particle Trajectories in CMS using the Long Barrel Geometry Identifying Particle Trajectories in CMS using the Long Barrel Geometry Angela Galvez 2010 NSF/REU Program Physics Department, University of Notre Dame Advisor: Kevin Lannon Abstract The Compact Muon Solenoid

More information

Outlook Enhancing World Collaboration

Outlook Enhancing World Collaboration Outlook Enhancing World Collaboration R-D Heuer, Univ.Hamburg/DESY/CERN ICFA Seminar, SLAC, 31 Oct 2008 A look back to the Seventies: 1975 New Orleans: Topical seminar to discuss facilities which could

More information

What does Dark Matter have to do with the Big Bang Theory?

What does Dark Matter have to do with the Big Bang Theory? Gents of Texas A&M What does Dark Matter have to do with the Big Bang Theory? Prof. David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy March 2018 Prologue We live

More information

Physics For The 21 st Century. Unit 2: The Fundamental Interactions. Srini Rajagopalan and Ayana Arce

Physics For The 21 st Century. Unit 2: The Fundamental Interactions. Srini Rajagopalan and Ayana Arce Physics For The 21 st Century Unit 2: The Fundamental Interactions Srini Rajagopalan and Ayana Arce The Strong Nuclear Force, the Weak Nuclear Force, Electromagnetism, and Gravity: these are the four fundamental

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/094 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH211 GENEVA 23, Switzerland 18 March 2017 (v3, 20 March 2017) Recent

More information

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas)

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas) The Higgs Boson as a Probe of New Physics Ian Lewis University of Kansas 1 July 4, 2012 ATLAS and CMS announce discovery of a new particle. Consistent with long sought-after Higgs boson. "We have reached

More information

Finish up our overview of small and large

Finish up our overview of small and large Finish up our overview of small and large Lecture 5 Limits of our knowledge Clicker practice quiz Some terminology... "Elementary particles" = objects that make up atoms (n,p,e) or are produced when atoms

More information

What does Dark Matter have to do with the Big Bang Theory?

What does Dark Matter have to do with the Big Bang Theory? MSC Bethancourt Lecture What does Dark Matter have to do with the Big Bang Theory? Prof. David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy Prologue We live in a

More information

Status of LHC. Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai.

Status of LHC. Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai. Status of LHC Kajari Mazumdar Department of High Energy Physics Tata Institute of Fundamental Research Mumbai. IISc. Bangalore, November 28, 2012 New Era in Fundamental Science CMS LHCb Exploration of

More information

Recent results from the LHCb experiment

Recent results from the LHCb experiment Recent results from the LHCb experiment University of Cincinnati On behalf of the LHCb collaboration Brief intro to LHCb The Large Hadron Collider (LHC) proton-proton collisions NCTS Wksp. DM 2017, Shoufeng,

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

Chamonix XII: LHC Performance Workshop. Requirements from the experiments in Year 1*

Chamonix XII: LHC Performance Workshop. Requirements from the experiments in Year 1* Chamonix XII: LHC Performance Workshop Requirements from the experiments in Year 1* 3-8 March, 2003 Experiments: Foreseen Status in April 2007 Physics Reach in the First Year Requirements from the Experiments

More information

Curriculum Vitae. Reader-F: Institute of Physics, Bhubaneswar (Oct till date)

Curriculum Vitae. Reader-F: Institute of Physics, Bhubaneswar (Oct till date) Curriculum Vitae Employment Reader-F: Institute of Physics, Bhubaneswar (Oct 2015 - till date) Fellow: Deutsches Elektronen-Synchrotron - DESY, Hamburg, Germany (Feb 2014 - Oct 2015) Post-doc: Institute

More information

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe Mysteries of the Universe Quarks Leptons Higgs Bosons Supersymmetric Particles SuperString Theory Dark Matter Dark Energy and the cosmological

More information

DISCOVERING THE QUANTUM UNIVERSE

DISCOVERING THE QUANTUM UNIVERSE DISCOVERING THE QUANTUM UNIVERSE Jonathan Feng University of California, Irvine Physical Sciences Breakfast Lecture Series Beckman Center of the National Academies 28 November 2006 QUANTUM UNIVERSE? Quantum

More information

Studies of top pair production in the fully hadronic channel at LHC with CMS

Studies of top pair production in the fully hadronic channel at LHC with CMS Studies of top pair production in the fully hadronic channel at LHC with CMS Claudia Ciocca University of Bologna CMS Collaboration DIS 2006 XIV International Workshop on Deep Inelastic Scattering Tsukuba,

More information

Looking for strange particles in ALICE. 1. Overview

Looking for strange particles in ALICE. 1. Overview Looking for strange particles in ALICE 1. Overview The exercise proposed here consists of a search for strange particles, produced from collisions at LHC and recorded by the ALICE experiment. It is based

More information

How to make the most of LHC data

How to make the most of LHC data How to make the most of LHC data low-mass resonances, triggering opportunities Antonio Boveia - CERN Caterina Doglioni - Lund University Matt Strassler 11/05/2016 - KITP plenary Introduction LHC: the biggest

More information

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick March 30th 2011

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick March 30th 2011 IoP Masterclass The Physics of Flavour at the Large Hadron Collider Tim Gershon University of Warwick March 30th 2011 The Standard Model 2 Some Questions What is antimatter? Why are there three colours

More information

What does Dark Matter have to do with the Big Bang Theory?

What does Dark Matter have to do with the Big Bang Theory? Lunar Society What does Dark Matter have to do with the Big Bang Theory? Prof. David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy Prologue We live in a time of remarkable

More information

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2 THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2 S. Shaw a on behalf of the ATLAS Collaboration University of Manchester E-mail: a savanna.marie.shaw@cern.ch The ATLAS trigger has been used very

More information

UK input to European Particle Physics Strategy Update FINAL DRAFT

UK input to European Particle Physics Strategy Update FINAL DRAFT UK input to European Particle Physics Strategy Update STFC Particle Physics Advisory Panel: P.N. Burrows, C. Da Via, E.W.N. Glover, P. Newman, J. Rademacker, C. Shepherd-Themistocleous, W. Spence, M. Thomson,

More information

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook EIC Science Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook Introduction Invited to give a talk EIC Science and JLEIC Status I will

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

Higgs Boson Physics. Analysis Techniques. Günter Quast, Roger Wolf, Andrew Gilbert Master-Kurs SS

Higgs Boson Physics. Analysis Techniques. Günter Quast, Roger Wolf, Andrew Gilbert Master-Kurs SS Higgs Boson Physics Analysis Techniques Günter Quast, Roger Wolf, Andrew Gilbert Master-Kurs SS 2015 Institut für Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

More information

QCD cross section measurements with the OPAL and ATLAS detectors

QCD cross section measurements with the OPAL and ATLAS detectors QCD cross section measurements with the OPAL and ATLAS detectors Abstract of Ph.D. dissertation Attila Krasznahorkay Jr. Supervisors: Dr. Dezső Horváth, Dr. Thorsten Wengler University of Debrecen Faculty

More information

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada Dean Karlen University of Victoria & TRIUMF APS NW Section Meeting 2005 Victoria, Canada The International Linear Collider Next in the line of e + e - colliders at the high energy frontier of particle

More information

Fermilab Experiments. Daniel Wicke (Bergische Universität Wuppertal) Outline. (Accelerator, Experiments and Physics) Computing Concepts

Fermilab Experiments. Daniel Wicke (Bergische Universität Wuppertal) Outline. (Accelerator, Experiments and Physics) Computing Concepts Fermilab Experiments CDF Daniel Wicke (Bergische Universität Wuppertal) Outline Motivation (Accelerator, Experiments and Physics) Computing Concepts (SAM, RACs, Prototype and GRID) Summary 30. Oct. 2002

More information

Particle accelerators

Particle accelerators Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

More information

7 Physics at Hadron Colliders

7 Physics at Hadron Colliders 7 Physics at Hadron Colliders The present and future Hadron Colliders - The Tevatron and the LHC Test of the Standard Model at Hadron Colliders Jet, W/Z, Top-quark production Physics of Beauty Quarks (T.

More information

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Particle physics today. Giulia Zanderighi (CERN & University of Oxford) Particle physics today Giulia Zanderighi (CERN & University of Oxford) Particle Physics Particle Physics is fundamental research, as opposed to many applied sciences (medicine, biology, chemistry, nano-science,

More information