The Big-Bang Machine. Stefan Spanier Physics and Astronomy University of Tennessee, Knoxville. 25 February 2017 Stefan Spanier, The Big Bang Machine

Size: px
Start display at page:

Download "The Big-Bang Machine. Stefan Spanier Physics and Astronomy University of Tennessee, Knoxville. 25 February 2017 Stefan Spanier, The Big Bang Machine"

Transcription

1 The Big-Bang Machine Stefan Spanier Physics and Astronomy University of Tennessee, Knoxville 1

2 Accelerator = Microscope Length to be resolved L L 1/Particle Energy Pocket Electron-Accelerator - Energy - + 2

3 Particle Collider Experiment Principle Particle Accelerator provides large kinetic energy Very High Voltage (year 1932) E = m c 2 short lived particle new matter? Particles live long enough to make signals in a detector (material) - create light -generate new particles 3

4 Particle Collider Experiment Principle Measure many particles e.g. their energy more like exists ~10-23 seconds Background Lifetime 1 / Width Signal 4

5 The Standard Model Building Blocks Proton u u hadrons Quarks Leptons d particles Latest addition 1995 Tevatron at Fermilab _ u c t d s b _ d s b u c t e - e e e + mass _ d _ u anti-particles u Anti-proton 5

6 Particles and Forces Franklin, June 1752 Force Charge Electric Force: same sign electrical charges repel each other even at infinite separation Electromagnetic Force: Unification electricity+magnetism Maxwell ~ Distance 2 Coulomb law,

7 Particle Interactions Particle Physics (Quantum Field Theory) Started ~ 1925 Time Photon virtual photon Coupling to Charge + + Range 1 Mass Boson Mass Photon 0 Range Theory works extremely well precision within ten parts in a billion 7

8 Particle Interactions 8

9 Particle Interactions Radioactive Decay Weak Force ~10-15 m e - u ~10-18 m W - e - Neutron Proton d Range 1 Mass Boson Mass W ~ 80 Mass Proton Could the forces be the same? What is the underlying important principle? 9

10 Standard Model Fundamentals The SM is a Quantum Field Theory: describes all interactions as exchange of particles 1) Force laws must apply at all places and times gauge invariance (know how to calibrate) 2) Predicted reaction rates should be finite at all energies renormalizable Turns out: Theories based on principle 1) deliver predictions with high precisions But: To work everywhere the force particles need to be massless!!! 10

11 Noble Price

12 The Higgs Mechanism How particles acquire masses The Higgs particle mass generation Standard Model safe!???? 12

13 Why should it be safe? The Standard Model has ~ 18 (+9) dials (parameters) that are adjusted in agreement with measurements - precisely They are not a fundamental outcome of the present theory = appear to be arbitrary settings - could be linked Arbitrariness is Ignorance we do not know yet the more fundamental theory what is it? 13

14 Standard Model in Everyday Life e.g. the W-boson controls the Sun this weak force process starts the cycle that fuels the Sun: p p p n Set W mass dial to lower value Sun hotter, brighter more UV light W mass is given by Higgs interaction, but not its value e + Deuterium 14

15 The Time Machine 15

16 TimeThe Bigger Picture if this is it ~ 13.7 billion years 1 mev Today ( T= 2.7 K ) Solar system 400,000 yr Galaxy formation 1s 10-8 s Nuclei form (D, He, Li) Quark protons, neutrons form LHC Big Bang s s s 10 3 GeV Higgs acts Particle Desert: Are there more particles? GeV Unification of electroweak and strong force GeV Planck Epoch Why here? ( T~10 32 K ) 16

17 Grand Unification of Forces Minimal Supersymmetric SM develop new theories, e.g. Supersymmety? Simplest super-symmetric model has 105 dials 17

18 The Experiment Smash things together and see what happens! 18

19 How to produce particles at LHC? Proton Collision d u u d u d d d Proton b b u d d u u u d Proton d u Higgs, X, Y d b b 19

20 Higgs Hunt? How do you find one Higgs? If each person is one collision event you need to search ~100 times the number of people on Earth In 2017 there are 7.5 billion people on Earth! Because you need several Higgs and you will miss some you need to do this over an over. 20

21 LHC at CERN The Higgs Mechanism Mont Blanc Airport CERN CMS LHC control room 21

22 LHC Storage Ring LINAC Magnet Need injector, since magnetic field cannot start from zero. RF Beam broken up into bunches ~ 3000 bunches in LHC ~ 100 billion protons/bunch 22

23 The LHC Protons The bottle with hydrogen gas (the protons) ~ 12 liters of gas compressed Airport (1 gram of gas) How often does it need to be refilled? In a year 8 months/year x 120 fills/month CERN x 3 *10 14 protons/fill ~ 3 *10 17 protons / year In the bottle are ~6 *10 23 protons The bottle lasts for 2 Million years! 23

24 LHC RF Cavity Acceleration to full energy takes 20 minutes. 24

25 PS Accelerator Section 25

26 LHC LHC in LEP tunnel Superconducting magnets: 1232 dipole magnets (bending) -T = -271 o C (superfluid Helium) - 100,000 x earth magnetic field superconducting dipole magnet Each beam Circulation time: 89 s Current: ~ 0.6 Ampere Time between collisions: 25 ns Fill time (450 GeV): 7.5 min Acceleration time : 20 min Beam lifetime : several hours 26

27 Beam Protection Energy stored/beam: 360 MJ Energy stored in magnets: 700 GJ The energy per proton is equivalent to using ~70,000 Hiroshima bombs ( Little Boy ) to accelerate a 22 caliber bullet. The energy stored in the beam is equivalent to a small aircraft carrier of mass 10,000 tons traveling at 20 miles/hour. This energy can lighten up a 100W light bulb for 1000 hours. Beam loss is fatal: copper plate 450 GeV beam bunches 27

28 Develop Diamond Detectors Prototype diamond pixel detector readout at UTK (SERF) using radioactive sources Installation of diamond diode detectors near the beam pipe in the CMS detector to continuously monitor the beams in the CMS detector region 28

29 How to detect the Higgs? Every 25ns protons in bunches collide Interactions/crossing = 25 (~1000 charged particles) Simulation in 100,000x earth magnetic field Higgs + 25 other events + - p Higgs p + Z - In CMS collision information corresponds to 100 billion phone calls per second. 29

30 The LHC Collaboration About 10,000 of Earth s inhabitants came together to make it happen. 30

31 The CMS Detector Superconducting coil -270 o C Charged Particle Tracker Photon and Electron Detector Width: 22m Diameter: 15m Weight: 13,000 tons Iron return yoke Muon Detectors Weighs ~25% more than the Eiffel Tower in Paris 31

32 The first force studied carefully by CMS was Gravity 32

33 The CMS Collaboration 33

34 The CMS Detector Superconducting Solenoid E/M Calorimeter Hadron Calorimeter [scintillators & brass] All Silicon Tracker (Pixels and Microstrips) Muon System 34

35 PLT New detector to measure precisely the interaction rate close to LHC beam Grant UTK GradStudent at CERN Collaboration between UTK Princeton, Rutgers, Wisconsin Vanderbilt, CERN, Fermilab Successful measurements since

36 Higgs 4 36

37 But we have only just started to understand the Higgs boson 37

38 we need to look from every angle as there might be something unexpected! 38

39 39

40 40

41 The full picture 41

42 The larger picture 42

43 Probing Gravity Simulation of a black hole event with in CMS Strength of Forces LED al on nti ty avi r G nve o C (1 mm) 1 1/R M* 1 TeV MPlanck N. Arkani Hamed, S. Dimopoulos, G. Dvali (1998). "The Hierarchy problem and new dimensions at a millimeter". Physics Letters B429 : February 2017 No signal in direct searches Stefan Spanier, The Big Bang Machine 43

44 The End 44

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Analyzing CMS events

Analyzing CMS events Quarknet University of Rochester, March 23, 2012 Analyzing CMS events Questions in Particle Physics Introducing the Standard Model The Large Hadron Collider The CMS detector W and Z bosons: decays ispy

More information

High Energy Particle Physics at the University of Tennessee

High Energy Particle Physics at the University of Tennessee University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Physics and Astronomy Publications and Other Works Physics and Astronomy Summer 2009 High Energy Particle Physics at the

More information

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1 LHC & ATLAS The largest particle physics experiment in the world 1 CERN A laboratory for the world Torsten Gustavson CERN was founded in 1954 There were 12 member states in the beginning. 2 OBSERVERS:

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Introduction to CERN and CMS

Introduction to CERN and CMS Introduction to CERN and CMS and background for the CMS analysis Jamie Gainer University of Hawaii at Manoa April 1, 2017 What do I do? I am a postdoc at UH Manoa I am a theorist In physics there are theorists:

More information

Particle Physics Columbia Science Honors Program

Particle Physics Columbia Science Honors Program Particle Physics Columbia Science Honors Program Week 10: LHC and Experiments April 8th, 2017 Inês Ochoa, Nevis Labs, Columbia University 1 Course Policies Attendance: Up to four excused absences (two

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

Particle accelerators

Particle accelerators Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

Search for a Z at an e + e - Collider Thomas Walker

Search for a Z at an e + e - Collider Thomas Walker Search for a Z at an e + e - Collider Thomas Walker Significance: Many theories predict that another neutral gauge boson (Z ) may exist. In order to detect this Z, I would use an e + e - linear collider

More information

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Introductory Lecture August 3rd 2014 International Centre for Theoretical Physics and

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today M. Herndon, Phys 301 2018 1 The Periodic Table: The early 20 th century understanding of the

More information

John Ellison University of California, Riverside. Quarknet 2008 at UCR

John Ellison University of California, Riverside. Quarknet 2008 at UCR Overview of Particle Physics John Ellison University of California, Riverside Quarknet 2008 at UCR 1 Particle Physics What is it? Study of the elementary constituents of matter And the fundamental forces

More information

First some Introductory Stuff => On The Web.

First some Introductory Stuff => On The Web. First some Introductory Stuff => On The Web http://hep.physics.utoronto.ca/~orr/wwwroot/phy357/phy357s.htm PHY357 = What is the Universe Made Of? Is the Universe Made of These? Proton = (u u d) held

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration Recent CMS results on heavy quarks and hadrons Alice Bean Univ. of Kansas for the CMS Collaboration July 25, 2013 Outline CMS at the Large Hadron Collider Cross section measurements Search for state decaying

More information

At lunch with the largest particle accelerator in the world

At lunch with the largest particle accelerator in the world University of Canterbury, 9/3/05 D.J.A. Cockerill Rutherford Appleton Laboratory 1 At lunch with the largest particle accelerator in the world Dr David Cockerill Group Leader for Calorimetry Particle Physics

More information

Discovery of the W and Z 0 Bosons

Discovery of the W and Z 0 Bosons Discovery of the W and Z 0 Bosons Status of the Standard Model ~1980 Planning the Search for W ± and Z 0 SppS, UA1 and UA2 The analyses and the observed events First measurements of W ± and Z 0 masses

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 OUTLINE! Some things we ve learned about the physical

More information

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014 I. Antoniadis CERN IAS CERN Novice Workshop, NTU, 7 Feb 2014 1 2 3 the Large Hadron Collider (LHC) Largest scientific instrument ever built, 27km of circumference >10 000 people involved in its design

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Finish up our overview of small and large

Finish up our overview of small and large Finish up our overview of small and large Lecture 5 Limits of our knowledge Clicker practice quiz Some terminology... "Elementary particles" = objects that make up atoms (n,p,e) or are produced when atoms

More information

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns Compact Muon Solenoid o Results and Plans Stephan Linn - Florida International Univ. on behalf of the CMS Collaboration 1 Large Hadron Collider Diameter 8.5 km Beam energy: 7 TeV Luminosity: 10 34 Protons/bunch:

More information

Last Friday: pp(bar) Physics Intro, the TeVatron

Last Friday: pp(bar) Physics Intro, the TeVatron Last Friday: pp(bar) Physics Intro, the TeVatron Today: The Large Hadron Collider (LHC) The Large Hadron Collider (LHC) 7 TeV + 7 TeV Protons Protons 10 11 Protons per bunch Bunch Crossings 4x10 7 Hz Proton

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Bill Murray, RAL, Quarks and leptons Bosons and forces The Higgs March 2002 1 Outline: An introduction to particle physics What is the Higgs Boson? Some unanswered questions

More information

7 Physics at Hadron Colliders

7 Physics at Hadron Colliders 7 Physics at Hadron Colliders The present and future Hadron Colliders - The Tevatron and the LHC Test of the Standard Model at Hadron Colliders Jet, W/Z, Top-quark production Physics of Beauty Quarks (T.

More information

The Start of the LHC Era. Peter Wittich Laboratory of Elementary Particle Physics Cornell University

The Start of the LHC Era. Peter Wittich Laboratory of Elementary Particle Physics Cornell University The Start of the LHC Era Peter Wittich Laboratory of Elementary Particle Physics Cornell University Big Bang - where it all began 3 4 13 billion years ago 4 13 billion years ago hot, highly energetic

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

Phys 102 Lecture 28 Life, the universe, and everything

Phys 102 Lecture 28 Life, the universe, and everything Phys 102 Lecture 28 Life, the universe, and everything 1 Today we will... Learn about the building blocks of matter & fundamental forces Quarks and leptons Exchange particle ( gauge bosons ) Learn about

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Source:CERN. Size and Scale

Source:CERN. Size and Scale Table of Contents Introduction Unification of Forces Size and Scale Standard Model Summary Standard Model Particles and Force Carriers About Mass and Energy Standard Model Fermions: Generations and Masses

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

2 ATLAS operations and data taking

2 ATLAS operations and data taking The ATLAS experiment: status report and recent results Ludovico Pontecorvo INFN - Roma and CERN on behalf of the ATLAS Collaboration 1 Introduction The ATLAS experiment was designed to explore a broad

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University Results from the Tevatron: Standard Model Measurements and Searches for the Higgs Ashutosh Kotwal Duke University SLAC Summer Institute 31 July 2007 Why Build Accelerators? From Atoms to Quarks Scattering

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

Saeid Paktinat School of Particles and accelerators IPM, Tehran

Saeid Paktinat School of Particles and accelerators IPM, Tehran LHC/CMS Saeid Paktinat School of Particles and accelerators IPM, Tehran Third National Workshop on Detectors and Calculation Methods in Particle Physics Azar 26-28, 1387 Introduction CERN What and Where

More information

17/01/17 F. Ould-Saada

17/01/17 F. Ould-Saada Chapter 3 3.1 Why Do We Need Accelerators? 3.1.1 The Center-of-Mass (c.m.) System 3.1.2 The Laboratory System 3.1.3 Fixed Target Accelerator and Collider 3.2 Linear and Circular Accelerators 3.2.1 Linear

More information

The Collider Detector at Fermilab. Amitabh Lath Rutgers University July 25, 2002

The Collider Detector at Fermilab. Amitabh Lath Rutgers University July 25, 2002 The Collider Detector at Fermilab Amitabh Lath Rutgers University July 25, 2002 What is Fermilab? A user facility with the Tevatron: 4 mile ring with superconducting magnets. Collides protons with antiprotons.

More information

The Nature of Light and Matter: 3

The Nature of Light and Matter: 3 The Nature of Light and Matter: 3 Doppler Effect, Mater and Energy ASTR 101 10/31//2017 1 Light from Moving objects: Doppler effect When there is a relative motion between the source and the observer,

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

What is the HIGGS BOSON and why does physics need it?

What is the HIGGS BOSON and why does physics need it? What is the HIGGS BOSON and why does physics need it? Stephen Naculich, Department of Physics Uncommon Hour Talk, May 3, 2013 THE HIGGS BOSON 1964: new particle predicted by Peter Higgs THE HIGGS BOSON

More information

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does?

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does? The Particle World What is our Universe made of? Where does it come from? Why does it behave the way it does? Particle physics tries to answer these questions. This talk: particles as we understand them

More information

Study and Simulation of the Radiation background of the ATLAS Experiment at CERN using the Monte Carlo method

Study and Simulation of the Radiation background of the ATLAS Experiment at CERN using the Monte Carlo method Study and Simulation of the Radiation background of the ATLAS Experiment at CERN using the Monte Carlo method Maria Lymperaiou ECE NTUA Under the supervision of Professor Evangelos Gazis March 30, 2018

More information

8.882 LHC Physics. Review

8.882 LHC Physics. Review 8.882 LHC Physics Experimental Methods and Measurements Review [Lecture 26, May 13, 2009] Organization Final Students Conference Tuesday May 19, starts at 12:00am in 26-528 please ask questions as early

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang Re-cap from last lecture Discovery of the CMB- logic From Hubble s observations, we know the Universe is expanding This can be understood theoretically in terms of solutions of GR equations Earlier in

More information

MINERVA Masterclass. Teachers Manual. Vera Zimanyine Horvath Francesco Mezzanotte Tom Lambert

MINERVA Masterclass. Teachers Manual. Vera Zimanyine Horvath Francesco Mezzanotte Tom Lambert MINERVA Masterclass Teachers Manual Vera Zimanyine Horvath Francesco Mezzanotte Tom Lambert 1 Fundamental Particles theoretical background of using Minerva for teachers 1. Standard Model of Fundamental

More information

Mojtaba Mohammadi Najafabadi School of Particles and Accelerators, IPM Aban 22- IPM Workshop on Electroweak and Higgs at the LHC

Mojtaba Mohammadi Najafabadi School of Particles and Accelerators, IPM Aban 22- IPM Workshop on Electroweak and Higgs at the LHC Electroweak studies for the LHC Mojtaba Mohammadi Najafabadi School of Particles and Accelerators, IPM Aban 22- IPM Workshop on Electroweak and Higgs at the LHC 1 Why accelerator? We live in a cold and

More information

THE HIGGS BOSON WINDOW ON THE BIG BANG.

THE HIGGS BOSON WINDOW ON THE BIG BANG. THE HIGGS BOSON WINDOW ON THE BIG BANG http://www.astropics.com Science 21 Dec 2012 BREAKTHROUGH OF THE YEAR Science 21 Dec 2012 BREAKTHROUGH OF THE YEAR Higgs Boson What is the Higgs Boson? Why is it

More information

E = mc 2 Opening Windows on the World

E = mc 2 Opening Windows on the World E = mc 2 Opening Windows on the World Young-Kee Kim The University of Chicago Physics Department Colloquium January 11, 2006 University of Pennsylvania Accelerators (output of Accelerator Science) are

More information

The ATLAS Detector at the LHC

The ATLAS Detector at the LHC The ATLAS Detector at the LHC Results from the New Energy Frontier Cristina Oropeza Barrera Experimental Particle Physics University of Glasgow Somewhere near the Swiss Alps... A Toroidal LHC ApparatuS

More information

In Pursuit of Discovery at The Large Hadron Collider

In Pursuit of Discovery at The Large Hadron Collider In Pursuit of Discovery at The Large Hadron Collider Prof. Christopher Neu Department of Physics University of Virginia My name is Chris Neu An Introduction Experimental high energy physics Office: 119

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-2 April 5, 2010 A. T. Goshaw Duke University 1 HEP 101 Plan March 29: Introduction and basic HEP terminology March 30: Special LHC event:

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

Introduction to Particle Physics and the Standard Model. Robert Clare UCR

Introduction to Particle Physics and the Standard Model. Robert Clare UCR Introduction to Particle Physics and the Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960

More information

The Compact Muon Solenoid (CMS) experiment. at the Large Hadron Collider (LHC)

The Compact Muon Solenoid (CMS) experiment. at the Large Hadron Collider (LHC) The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) Thursday, 12 February 2015 $ whoami S Lukasz (Luke) Kreczko Particle Physicist S Computing Research Assistant at the University

More information

Particle Acceleration

Particle Acceleration Nuclear and Particle Physics Junior Honours: Particle Physics Lecture 4: Accelerators and Detectors February 19th 2007 Particle Beams and Accelerators Particle Physics Labs Accelerators Synchrotron Radiation

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

The Early Universe. Overview: The Early Universe. Accelerators recreate the early universe. Simple Friedmann equation for the radiation era:

The Early Universe. Overview: The Early Universe. Accelerators recreate the early universe. Simple Friedmann equation for the radiation era: The Early Universe Notes based on Teaching Company lectures, and associated undergraduate text with some additional material added. ) From µs to s: quark confinement; particle freezout. 2) From s to 3

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

The Large Hadron Collider, a marvel of technology Lyn Evans. Royal Institution of South Wales St David s day lecture, 16 th March 2017

The Large Hadron Collider, a marvel of technology Lyn Evans. Royal Institution of South Wales St David s day lecture, 16 th March 2017 The Large Hadron Collider, a marvel of technology Lyn Evans Royal Institution of South Wales St David s day lecture, 16 th March 2017 CERN was founded 1954: 12 European States Science for Peace Today:

More information

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad Introduction of CMS Detector Ijaz Ahmed National Centre for Physics, Islamabad Layout of my Lectures: 1) Introduction of CMS Detector 2) CMS sub-detectors 3) CMS Trigger System Contents Introduction of

More information

Particles, Energy, and Our Mysterious Universe

Particles, Energy, and Our Mysterious Universe Particles, Energy, and Our Mysterious Universe 1 The End of Physics "The more important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established

More information

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge An Introduction to Modern Particle Physics Mark Thomson University of Cambridge Science Summer School: 30 th July - 1 st August 2007 1 Course Synopsis Introduction : Particles and Forces - what are the

More information

Year- 1 (Heavy- Ion) Physics with CMS at the LHC

Year- 1 (Heavy- Ion) Physics with CMS at the LHC Year- 1 (Heavy- Ion) Physics with CMS at the LHC Edwin Norbeck and Yasar Onel (for the CMS collaboration) University of Iowa For the 26 th Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica 8 January

More information

Did we discover the Higgs?

Did we discover the Higgs? Did we discover the Higgs? UTA Physics Public Symposium July 6, 2012 Dr. Outline What is High Energy Physics? What is the Higgs particle and what does it do? What did we see? (some scientific plots ) Did

More information

A few thoughts on 100 years of modern physics. Quanta, Quarks, Qubits

A few thoughts on 100 years of modern physics. Quanta, Quarks, Qubits A few thoughts on 100 years of modern physics Quanta, Quarks, Qubits Quanta Blackbody radiation and the ultraviolet catastrophe classical physics does not agree with the observed world Planck s idea: atoms

More information

Part 1: Protons to heavy elements!

Part 1: Protons to heavy elements! Cosmic Evolution Part 1: Protons to heavy elements Big Bang occurred 13.8 Billion yrs ago (13.8 x 10 9 yr) Only fundamental particles existed for first few minutes Name Proton Neutron Electron Photon Neutrino

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-2 January 28, 2013 Al Goshaw 1 HEP 101-2 plan Jan. 14: Introduction to CERN and ATLAS DONE Today: 1. Comments on grant opportunities 2. Overview

More information

Large Hadron Collider

Large Hadron Collider Large Hadron Collider Himadri Barman TSU, JNCASR September 18, 2008 0-0 Large Hadron Collider (LHC): Plan We ll see 4 short videos. In between I ll give you a little guideline. Purpose is to understand

More information

A Study of the Higgs Boson Production in the Dimuon Channelat 14 TeV

A Study of the Higgs Boson Production in the Dimuon Channelat 14 TeV A Study of the Higgs Boson Production in the Dimuon Channelat 14 TeV M.S.El-Nagdy 1, A.A.Abdelalim 1,2, A.Mahrous 1, G.Pugliese 3 and S.Aly 1 (1) Physics department, Faculty of Science, Helwan University,

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Particle Theory Beyond the Standard Model. Ann Nelson University of Washington August 9, 2010

Particle Theory Beyond the Standard Model. Ann Nelson University of Washington August 9, 2010 Particle Theory Beyond the Standard Model Ann Nelson University of Washington August 9, 2010 The world physics community has spent > 4B dollars (including 600M from American taxpayers) on the Large Hadron

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 Risultati dell esperimento ATLAS dopo il run 1 di LHC C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 1 LHC physics Standard Model is a gauge theory based on the following

More information

Mass (Energy) in the Universe:

Mass (Energy) in the Universe: Mass (Energy) in the Universe: smooth (vacuum) clumping Parameters of our Universe present values H = (71±4)km/s/Mpc = 1.0±0.0 m = 0.7±0.0 incl. b = 0.044±0.004 and < 0.014 photons r = 4.9-5 dark energy

More information

Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3)

Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3) Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3) Key Ideas Physics of the Early Universe Informed by experimental & theoretical physics Later stages confirmed by observations

More information

Physics at the Fermilab Tevatron Collider. Darien Wood Northeastern University

Physics at the Fermilab Tevatron Collider. Darien Wood Northeastern University Physics at the Fermilab Tevatron Collider Darien Wood Northeastern University 1 Outline Introduction: collider experiments The Tevatron complex (review) Examples of physics studies at the Tevatron jet

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Lecture 1: S. D. Holmes, An Introduction to Accelerators for High Energy Physics I. Introduction to the Course

More information

Modern physics 1 Chapter 13

Modern physics 1 Chapter 13 Modern physics 1 Chapter 13 13. Particle physics Particle studied within the ATLAS-project CERN In the beginning of 1930, it seemed that all the physics fundaments was placed within the new areas of elementary

More information

Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY

Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY 1 I am going to go through some of the major unsolved problems in theoretical physics. I mean the existing theories seem

More information

Visiting LHCb and LHC

Visiting LHCb and LHC Visiting LHCb and LHC 1 Visit itinerary and key messages The visit itinerary consists of six points of interest: 1. On the way to pit 8 or upstairs For suggestions and more information, see http://...

More information

Frontier Science: The mystery of Antimatter

Frontier Science: The mystery of Antimatter Frontier Science: The mystery of Antimatter Cristina Lazzeroni Professor in Particle Physics STFC Public Engagement Fellow ASE Frontier Science Lecture University of Birmingham Poynting Physics S02 7th

More information

Little bang.. On earth experiments emulating time between second after the BIG_Bang. PartI : actors (particles) Tools (accelerators)

Little bang.. On earth experiments emulating time between second after the BIG_Bang. PartI : actors (particles) Tools (accelerators) Little bang.. On earth experiments emulating time between 0.001-1 second after the BIG_Bang PartI : actors (particles) Tools (accelerators) Can we restore creation of matter in experiments on Earth? Structure

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information