Image Quality and Adaptive Imaging

Size: px
Start display at page:

Download "Image Quality and Adaptive Imaging"

Transcription

1 Image Quality and Adaptive Imaging Matthew A. Kupinski Associate Professor College of Optical Sciences University of Arizona Tucson, Arizona November 7, 2012

2 Introduction Imaging equation The need for objective measures of image quality Task-based assessment of image quality Adaptive and multimodality imaging Summary

3 Imaging Equation g = Hf + n f : Continuous function representing the distribution of the radiotracer n : Noise. Not necessarily additive H : Imaging operating g : Discrete image data

4 Potential methods Qualitative Visual inspection using a single image Visual inspection using a series of images Visual inspection by committee Quantitative Noise, resolution, contrast, etc.

5 CNR

6 CNR

7 CNR

8 MSE (a) (b) (c) (d) (e) (f)

9 Task-based assessment Task-based assessment of image quality Task What is the image to be used for? Observer Who is performing the task? Objects What are you imaging? Measure the ability of the observer to perform the task

10 Task-based assessment Task-based assessment of image quality Task What is the image to be used for? Observer Who is performing the task? Objects What are you imaging? Measure the ability of the observer to perform the task

11 Tasks Classification Signal present vs signal absent Estimation Estimation of cardiac ejection fraction Combined tasks Detection and localization of abnormalities

12 Figures of merit Need a scalar figure of merit for comparisons Detection tasks Area under ROC Curve or SNR Estimation EMSE (not pixel-based!) or Bayes risk Combined EROC analysis

13 Decision Variables t=t(g) T(g) Decision Variable t Image g

14 Decision Variables Signal absent images pr(t H 0 ) 0.35 T(g) Probability Decision Variable t

15 Decision Variables Signal present images pr(t H 0 ) 0.35 T(g) Probability pr(t H 1 ) Decision Variable t

16 Decision Variables Probability pr(t H 0 ) pr(t H 1 ) Decision Variable t

17 Decision Variables D 0 D 1 Probability pr(t H 0 ) pr(t H 1 ) Decision Variable t

18 Decision Variables D 0 D False-positive fraction Probability pr(t H 0 ) True-positive fraction pr(t H 1 ) 0 Decision Variable t

19 ROC Curve Probability Decision Variable t True-Positive Fraction False-Positive Fraction 1

20 ROC Curve Probability Decision Variable t True-Positive Fraction False-Positive Fraction 1

21 ROC Curve Probability Decision Variable t True-Positive Fraction False-Positive Fraction 1

22 Estimation : Parameters to be estimated b (g) : Estimates for image g EMSE = D b 2E g

23 Combined Tasks 1 Probability of Correct Location Guessing Observer False-Positive Fraction 1

24 Task-based assessment Task-based assessment of image quality Task What is the image to be used for? Observer Who is performing the task? Objects What are you imaging? Measure the ability of the observer to perform the task

25 Observers Classification t = T (g) Estimation b = b (g) Combined t = T (g) b = b (g)

26 Ideal Classifier Requires knowing the distributions of the image data Ideal observer maximizes the ROC curve T (g) = (g) = pr(g H 2) pr(g H 1 )

27 Ideal Estimator Posterior mean: PM = d pr( g) ML: MAP: ML = arg max pr(g ) MAP = arg max pr( g) Estimators can be nonlinear in the image data

28 Ideal Observers Require knowledge of the PDF for the data conditioned on the object class! Classification: Estimation: pr(g H i ) pr(g ) pr( g) pr(g )pr( )

29 Ideal Linear Classifier Hotelling observer Computes test statistic t t = w g where w = K 1 g g Harold Hotelling

30 Ideal Linear Estimator Generalized Wiener estimator Computes linear estimate = + W g g where W = K,g K 1 g Norbert Wiener

31 Ideal Linear Observers Require only first- and second-order statistics of the image data Require the inversion of a large covariance matrix

32 Task-based assessment Task-based assessment of image quality Task What is the image to be used for? Observer Who is performing the task? Objects What are you imaging? Measure the ability of the observer to perform the task

33 Objects are continuous functions Nuclear medicine: Object is 3D distribution of radiopharmaceutical; 4D if we consider time variation X-ray imaging: Object is 3D distribution of x-ray absorption and scattering coefficients (vector valued) Written as f(r) or f(r,t) or f

34 Multimodality and Adaptive Imaging Ideal observers Detection Estimation (g) = pr(g H 2) pr(g H 1 ) PM = d pr( g) pr(g H i ) pr( g) pr(g )pr( )

35 Multimodality and Adaptive Imaging Ideal observers Detection Estimation pr(g ) (g) = pr(g H 2) PM = d pr( g) pr(g H 1 ) pr(g H i ) pr( g) pr(g )pr( )

36 Subject Traditional multimodality imaging (polyscopic) f 1 f 2 Modality 1 (e.g., PET, SPECT) Modality 2 (e.g., CT) g 1 g 1 = H 1 f 1 + n 1 g 2 = H 2 f 2 + n 2 Recon 1 Recon 2 f 1 f 2 g 2 Observer Decision Figure of Merit

37 Traditional multimodality imaging pr(g 1, g 2 )= pr(g 1 f 1 )pr(g 2 f 2 )pr(f 1, f 2 )df 1 df 2 Each system has independent noise The objects depend on one another

38 Subject Isoscopic Multimodality Imaging f Dual Energy SPECT g 1 g 2 Recon 1 Recon 2 f 1 f 2 Observer Decision Figure of Merit

39 Isoscopic Multimodality Imaging pr(g 1, g 2 )= pr(g 1 f)pr(g 2 f)pr(f )df Each system has independent noise Each image depends on the same object

40 Subject Adaptive imaging (isoscopic) f Modality 1 Modality 2 g 1 or f 1 g 1 = H 1 f + n 1 g 2 = H 2 (g 1 )f + n 2 Recon 1 (optional) Recon 2 g 1 or f 1 f 2 Observer Decision Figure of Merit

41 Isoscopic Adaptive Imaging pr(g 1, g 2 )= pr(g 1 g 2, f)pr(g 2 f)pr(f )df g 2 g 1 The scout image affects the second acquisition

42 Subject Polyscopic Adaptive Imaging f 1 f 2 CT SPECT g 1 g 2 f 1 Recon 1 Recon 2 f 1 f 2 Observer Decision Figure of Merit

43 Polyscopic Adaptive Imaging pr(g 1, g 2 )= pr(g 1 g 2, f 1 )pr(g 2 f 2 )pr(f 2, f 2 )df 1 df 2

44 Multimodality and adaptive imaging Ideal linear observers g = Hf + n

45 Multimodality and adaptive imaging Ideal linear observers g = H 0 Af + n The effects of the imaging aperture and detector are characterized by H 0 The patient-dependent effects of attenuation and scatter are characterized by A

46 Multimodality and adaptive imaging Ideal linear observers g = H 0 (g s )Af + n The imaging system now adapts itself based on the scout measurements

47 Multimodality and adaptive imaging Ideal linear observers g = H 0 (g s )Af + n w(g s )=K 1 g g s H 0 (g s )Af sig A is the average of the patient-specific portion of the imaging operator w = K 1 g g

48 Multimodality and adaptive imaging Ideal linear observers g = H 0 (g s )Af + n w(g s )=K 1 g g s H 0 (g s )Af sig K g gs = K (noise) g g s + K (sys) g g s + K (obj) g g s

49 Multimodality and adaptive imaging Ideal linear observers g = H 0 (g s )Af + n (g, gs )= + K,g gs K 1 g g s g g(g s ) = + W g g W = K,g K 1 g

50 How to adapt? Heuristic Task-based

51 How to adapt?

52 How to adapt?

53 How to adapt?

54 How to adapt?

55 How to adapt? True positive fraction (TPF) False positive fraction (FPF)

56 How to adapt?

57 How to adapt? Task-based assessment of image quality Task What is the image to be used for? Observer Who is performing the task? Objects What are you imaging? Measure the ability of the observer to perform the task

58 How to adapt? Task-based assessment of image quality Task What is the image to be used for? Observer Who is performing the task? Objects What are you imaging? Measure the ability of the observer to perform the task

59 How to adapt? Generate adaptation strategy for patients that are consistent with the scout data generated

60 How to adapt? pr(f g s )

61 Summary Image quality measures should account for the task, the observer, and the patient population Knowledge of ideal observers helps define the limits of observer performance and can be used for hardware optimizations Adaptive imaging can be accomplished by analyzing patients consistent with the scout data

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

Computational Methods Short Course on Image Quality

Computational Methods Short Course on Image Quality Computational Methods Short Course on Image Quality Matthew A. Kupinski What we Will Cover Sources of randomness Computation of linear-observer performance Computation of ideal-observer performance Miscellaneous

More information

Introduction to Medical Imaging. Medical Imaging

Introduction to Medical Imaging. Medical Imaging Introduction to Medical Imaging BME/EECS 516 Douglas C. Noll Medical Imaging Non-invasive visualization of internal organs, tissue, etc. I typically don t include endoscopy as an imaging modality Image

More information

Estimation in Medical Imaging without a Gold Standard 1

Estimation in Medical Imaging without a Gold Standard 1 Estimation in Medical Imaging without a Gold Standard 1 Matthew A. Kupinski, PhD, John W. Hoppin, MS, Eric Clarkson, PhD, Harrison H. Barrett, PhD, George A. Kastis, MS Rationale and Objectives. In medical

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Marcus Ressner, PhD, Medical Radiation Physicist, Linköping University Hospital Content What is Nuclear medicine? Basic principles of Functional

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -

More information

Image quality assessment. Question: which is a better image? Answer: what are you trying to do?

Image quality assessment. Question: which is a better image? Answer: what are you trying to do? Image Quality Image quality assessment Question: which is a better image? Answer: what are you trying to do? Image Quality Image quality, for the purposes of medical imaging, can be defined as the ability

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν Positron Emission Tomography Physics & Instrumentation Dimitra G. Darambara, Ph.D Multimodality Molecular Imaging Joint Department of Physics RMH/ICR Outline Introduction PET Physics overview Types of

More information

A. I, II, and III B. I C. I and II D. II and III E. I and III

A. I, II, and III B. I C. I and II D. II and III E. I and III BioE 1330 - Review Chapters 7, 8, and 9 (Nuclear Medicine) 9/27/2018 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in

More information

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras?

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras? BioE 1330 - Exam 2 11/13/2018 Answer Sheet - Correct answer is A for all questions 1. Unlike CT, in nuclear medicine A. Bremsstrahlung is not used to produce high-energy photons. B. signal can be increased

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

Physics in Nuclear Medicine

Physics in Nuclear Medicine SIMON R. CHERRY, PH.D. Professor Department of Biomedical Engineering University of California-Davis Davis, California JAMES A. SORENSON, PH.D. Emeritus Professor of Medical Physics University of Wisconsin-Madison

More information

Introduction to Detection Theory

Introduction to Detection Theory Introduction to Detection Theory Detection Theory (a.k.a. decision theory or hypothesis testing) is concerned with situations where we need to make a decision on whether an event (out of M possible events)

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Novel Quantization Strategies for Linear Prediction with Guarantees

Novel Quantization Strategies for Linear Prediction with Guarantees Novel Novel for Linear Simon Du 1/10 Yichong Xu Yuan Li Aarti Zhang Singh Pulkit Background Motivation: Brain Computer Interface (BCI). Predict whether an individual is trying to move his hand towards

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

CHAPTER 5 OPTIMUM SPECTRUM MASK BASED MEDICAL IMAGE FUSION USING GRAY WOLF OPTIMIZATION

CHAPTER 5 OPTIMUM SPECTRUM MASK BASED MEDICAL IMAGE FUSION USING GRAY WOLF OPTIMIZATION CHAPTER 5 OPTIMUM SPECTRUM MASK BASED MEDICAL IMAGE FUSION USING GRAY WOLF OPTIZATION Multimodal medical image fusion is an efficient technology to combine clinical features in to a single frame called

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Minimum Error-Rate Discriminant

Minimum Error-Rate Discriminant Discriminants Minimum Error-Rate Discriminant In the case of zero-one loss function, the Bayes Discriminant can be further simplified: g i (x) =P (ω i x). (29) J. Corso (SUNY at Buffalo) Bayesian Decision

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

Lecture 3 Classification, Logistic Regression

Lecture 3 Classification, Logistic Regression Lecture 3 Classification, Logistic Regression Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se F. Lindsten Summary

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 7. Models with binary response II GLM (Spring, 2018) Lecture 7 1 / 13 Existence of estimates Lemma (Claudia Czado, München, 2004) The log-likelihood ln L(β) in logistic

More information

Z. Hradil, J. Řeháček

Z. Hradil, J. Řeháček Likelihood and entropy for quantum tomography Z. Hradil, J. Řeháček Department of Optics Palacký University,Olomouc Czech Republic Work was supported by the Czech Ministry of Education. Collaboration SLO

More information

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning Topics Bayesian Learning Sattiraju Prabhakar CS898O: ML Wichita State University Objectives for Bayesian Learning Bayes Theorem and MAP Bayes Optimal Classifier Naïve Bayes Classifier An Example Classifying

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ Design and Construction of a High Energy X-Ray R&D Facility, and the Development and Optimization of Real Time Radioisotopic Characterization of Remote Handled Waste at MeV Energies. S. Halliwell, V.J.Technologies

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition Memorial University of Newfoundland Pattern Recognition Lecture 6 May 18, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 Review Distance-based Classification

More information

Parameter estimation Conditional risk

Parameter estimation Conditional risk Parameter estimation Conditional risk Formalizing the problem Specify random variables we care about e.g., Commute Time e.g., Heights of buildings in a city We might then pick a particular distribution

More information

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links NM - introduction Relies on EMISSION of photons from body (versus transmission of photons through

More information

Noise Analysis of Regularized EM for SPECT Reconstruction 1

Noise Analysis of Regularized EM for SPECT Reconstruction 1 Noise Analysis of Regularized EM for SPECT Reconstruction Wenli Wang and Gene Gindi Departments of Electrical Engineering and Radiology SUNY at Stony Brook, Stony Brook, NY 794-846 Abstract The ability

More information

CLASSIFICATION AND IMAGING OF SPENT NUCLEAR FUEL DRY CASKS USING COSMIC RAY MUONS

CLASSIFICATION AND IMAGING OF SPENT NUCLEAR FUEL DRY CASKS USING COSMIC RAY MUONS CLASSIFICATION AND IMAGING OF SPENT NUCLEAR FUEL DRY CASKS USING COSMIC RAY MUONS S. Chatzidakis, P. A. Hausladen, S. Croft, J. A. Chapman, J. J. Jarrell, J. M. Scaglione Oak Ridge National Laboratory

More information

Chicago PET Development and

Chicago PET Development and Chicago PET Development and Recent Progress in Digital i TOFPET 1. Heejong Kim, Chien-Min Kao, Qingguo Xie, Yun Dong, Ming-Chi Shih, Antonio Machado, and Chin-Tu Chen 2. Octavia Biris, Jialin Lin, Fukun

More information

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or Let's remind... What is nuclear medicine? Nuclear medicine can be broadly divided into two branches "in vitro" and "in vivo" procedures. There are numerous radioisotopic "in vitro" procedures for genotyping

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -Monitoring

More information

Basic concepts in estimation

Basic concepts in estimation Basic concepts in estimation Random and nonrandom parameters Definitions of estimates ML Maimum Lielihood MAP Maimum A Posteriori LS Least Squares MMS Minimum Mean square rror Measures of quality of estimates

More information

Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size

Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size Berkman Sahiner, a) Heang-Ping Chan, Nicholas Petrick, Robert F. Wagner, b) and Lubomir Hadjiiski

More information

Lecture 5: Tomographic nuclear systems: SPECT

Lecture 5: Tomographic nuclear systems: SPECT Lecture 5: Tomographic nuclear systems: SPECT Field trip this saturday at 11 AM at UWMC meet in main hospital lobby at 11 AM if you miss the 'boat', page me at 540-4950 should take ~1 to 1.5 hours, depending

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

Machine Learning and Data Mining. Bayes Classifiers. Prof. Alexander Ihler

Machine Learning and Data Mining. Bayes Classifiers. Prof. Alexander Ihler + Machine Learning and Data Mining Bayes Classifiers Prof. Alexander Ihler A basic classifier Training data D={x (i),y (i) }, Classifier f(x ; D) Discrete feature vector x f(x ; D) is a con@ngency table

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Bayes Decision Theory - I

Bayes Decision Theory - I Bayes Decision Theory - I Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statistical Learning from Data Goal: Given a relationship between a feature vector and a vector y, and iid data samples ( i,y i ), find

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Statistical Signal Processing Detection, Estimation, and Time Series Analysis

Statistical Signal Processing Detection, Estimation, and Time Series Analysis Statistical Signal Processing Detection, Estimation, and Time Series Analysis Louis L. Scharf University of Colorado at Boulder with Cedric Demeure collaborating on Chapters 10 and 11 A TT ADDISON-WESLEY

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set MAS 6J/1.16J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Counting Statistics and Error Propagation!

Counting Statistics and Error Propagation! Counting Statistics and Error Propagation Nuclear Medicine Physics Lectures 10/4/11 Lawrence MacDonald, PhD macdon@uw.edu Imaging Research Laboratory, Radiology Dept. 1 Statistics Type of analysis which

More information

IPNDV Working Group 3: Technical Challenges and Solutions Nuclear Material (3) Technology Data Sheet

IPNDV Working Group 3: Technical Challenges and Solutions Nuclear Material (3) Technology Data Sheet Nuclear Material (NM) Technology Name: Gamma-Ray Imaging Physical Principle/Methodology of Technology: Gamma-ray imaging provides the location and shape information of gamma-ray emitting radionuclides.

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

Foundations of Image Science

Foundations of Image Science Foundations of Image Science Harrison H. Barrett Kyle J. Myers 2004 by John Wiley & Sons,, Hoboken, 0-471-15300-1 1 VECTORS AND OPERATORS 1 1.1 LINEAR VECTOR SPACES 2 1.1.1 Vector addition and scalar multiplication

More information

Sample Spectroscopy System Hardware

Sample Spectroscopy System Hardware Semiconductor Detectors vs. Scintillator+PMT Detectors Semiconductors are emerging technology - Scint.PMT systems relatively unchanged in 50 years. NaI(Tl) excellent for single-photon, new scintillation

More information

Chapter 2 PET Imaging Basics

Chapter 2 PET Imaging Basics Chapter 2 PET Imaging Basics Timothy G. Turkington PET Radiotracers Positron emission tomography (PET) imaging is the injection (or inhalation) of a substance containing a positron emitter, the subsequent

More information

SF2935: MODERN METHODS OF STATISTICAL LECTURE 3 SUPERVISED CLASSIFICATION, LINEAR DISCRIMINANT ANALYSIS LEARNING. Tatjana Pavlenko.

SF2935: MODERN METHODS OF STATISTICAL LECTURE 3 SUPERVISED CLASSIFICATION, LINEAR DISCRIMINANT ANALYSIS LEARNING. Tatjana Pavlenko. SF2935: MODERN METHODS OF STATISTICAL LEARNING LECTURE 3 SUPERVISED CLASSIFICATION, LINEAR DISCRIMINANT ANALYSIS Tatjana Pavlenko 5 November 2015 SUPERVISED LEARNING (REP.) Starting point: we have an outcome

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

2 Statistical Estimation: Basic Concepts

2 Statistical Estimation: Basic Concepts Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 2 Statistical Estimation:

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Least Squares Classification

Least Squares Classification Least Squares Classification Stephen Boyd EE103 Stanford University November 4, 2017 Outline Classification Least squares classification Multi-class classifiers Classification 2 Classification data fitting

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 3: Detection Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Detection theory

More information

LECTURE NOTE #3 PROF. ALAN YUILLE

LECTURE NOTE #3 PROF. ALAN YUILLE LECTURE NOTE #3 PROF. ALAN YUILLE 1. Three Topics (1) Precision and Recall Curves. Receiver Operating Characteristic Curves (ROC). What to do if we do not fix the loss function? (2) The Curse of Dimensionality.

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

Objective Comparison of Quantitative Imaging Modalities Without the Use of a Gold Standard

Objective Comparison of Quantitative Imaging Modalities Without the Use of a Gold Standard IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002 441 Objective Comparison of Quantitative Imaging Modalities Without the Use of a Gold Standard John W. Hoppin*, Matthew A. Kupinski, George

More information

Chapter 2 Signal Processing at Receivers: Detection Theory

Chapter 2 Signal Processing at Receivers: Detection Theory Chapter Signal Processing at Receivers: Detection Theory As an application of the statistical hypothesis testing, signal detection plays a key role in signal processing at receivers of wireless communication

More information

Procesamiento de Imágenes y Bioseñales

Procesamiento de Imágenes y Bioseñales Procesamiento de Imágenes y Bioseñales Dr. Víctor Castañeda Agenda Physical basis of X-ray- CT, NMR, Ultrasound, Nuclear Medicine Sensors (cameras, gamma probes, microphone) Computational Tomography (CT)

More information

Estimation of Optical Link Length for Multi Haul Applications

Estimation of Optical Link Length for Multi Haul Applications Estimation of Optical Link Length for Multi Haul Applications M V Raghavendra 1, P L H Vara Prasad 2 Research Scholar Department of Instrument Technology 1, Professor & Chairman (BOS) Department of Instrument

More information

Theoretical questions for the final exam ED 2012.

Theoretical questions for the final exam ED 2012. Theoretical questions for the final exam ED 2012. 1. Radiation a) Properties and types of radiation b) Physical parameters of radiation 2. Law of attenuation of radiation a) Experimental interpretation

More information

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide Nuclear Medicine Imaging Systems: The Scintillation Camera List of Nuclear Medicine Radionuclides Tc99m 140.5 kev 6.03 hours I-131 364, 637 kev 8.06 days I-123 159 kev 13.0 hours I-125 35 kev 60.2 days

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Course content (will be adapted to the background knowledge of the class):

Course content (will be adapted to the background knowledge of the class): Biomedical Signal Processing and Signal Modeling Lucas C Parra, parra@ccny.cuny.edu Departamento the Fisica, UBA Synopsis This course introduces two fundamental concepts of signal processing: linear systems

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

Effect of source spectral shape on task-based assessment of detection and resolution in optical coherence tomography

Effect of source spectral shape on task-based assessment of detection and resolution in optical coherence tomography Effect of source spectral shape on task-based assessment of detection and resolution in optical coherence tomography A. Ceyhun Akcay, Eric Clarkson, and Jannick P. Rolland We demonstrate the effect of

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 1 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Statistical Decision Theory II: Costs, Rewards, & Ideal Actors

Statistical Decision Theory II: Costs, Rewards, & Ideal Actors Statistical Decision Theory II: Costs, Rewards, & Ideal Actors Loss Functions Statistical decision theory involves determining which decisions (or actions) are best It formalizes good versus bad outcomes

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis Jonathan Taylor, 10/12 Slide credits: Sergio Bacallado 1 / 1 Review: Main strategy in Chapter 4 Find an estimate ˆP

More information

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging Topic #1: Intro to medical imaging Medical Imaging Classifications n Measurement physics Send Energy into body Send stuff

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information