Lecture 3 Numerical Solutions to the Transport Equation

Size: px
Start display at page:

Download "Lecture 3 Numerical Solutions to the Transport Equation"

Transcription

1 Lecture 3 Numerical Solutions to the Transport Equation

2 Introduction I There are numerous methods for solving the transport problem numerically. First we must recognize that we need to solve two problems: The formal solution Integral Methods Feautrier Method Characteristic Methods The scattering problem Λ iteration Variable Eddington Factor Method Accelerated Λ iteration Today we will study the Feautrier Method, Λ iterations, the Variable Eddington Factor Method, and Accelerated Λ Iteration

3 Λ Iterations I Let s first start out with what to avoid. First off let s be clear that the solution of the RTE is a solution for J ν. Once we have that we just have to do a formal solution. The existance of scattering terms is what makes the solution of the RTE so difficult. Physically these terms couple regions that are spatial separate and hence couple regions with vastly different temperatures causing large departures of J ν from B ν even for τ ν >> 1. This leads to the failure of Λ iteration. Consider S ν = (1 ɛ ν )J ν + ɛ ν B ν µ di ν dτ ν = I ν S ν J ν = Λ τν [S ν ] = Λ τν [ɛ ν B ν ] + Λ τν [(1 ɛ ν )J ν ] if ɛ ν = 1 the answer is exact. So the obvious thing to do is to set J ν = B ν (which is true at great depth) and then iterate J (n) ν = Λ τν [S ν (n) ] = Λ τν [ɛ ν B ν ] + Λ τν [(1 ɛ ν )J ν (n 1) ]

4 Λ Iterations II But but for large τ Λ τν [f (t)] = 1/2 0 E 1 e τ τ f (t)e 1 ( t τ ν ) dt so information about J can only propagate of ( τ = 1). If we start with J ν = B ν then we need 1 ɛν iterations to allow the outer boundary to be felt by the solution. For lines ɛ ν iterations. In practice J ν (n) J ν (n 1) tends to stabilize leading to apparent convergence even though J ν is still far from the true solution.

5 Convergence Rate in Static Atmosphere

6 Geometry for Solution to Plane-Parallel Equation

7 Variable Eddington Factor Method I Feautrier Solution The Plane-parallel transfer can be written as or where di ω dτ ω ±µ di dτ = I S = I ω S ω di ω dτ ω = I ω S ω dτ ω dτ/µ If we assume S ω = S ω Then we can define j ω = 1/2(I ω + I ω )

8 Variable Eddington Factor Method II Feautrier Solution h ω = 1/2(I ω I ω ) Then adding the two equations we get and subtracting gives or dj ω dτ ω = h ω dh ω dτ ω = j ω S ω d 2 j ω dτ 2 ω = j ω S ω for each ray and each frequency. Okay we need two boundary conditions I ω (0) = 0 and I ω (τ ) = I BC so we can write these in terms of the Feautrier variables as

9 Variable Eddington Factor Method III Feautrier Solution at τ = 0 and at τ = τ h ω = 1/2(I ω I ω ) + 1/2I ω 1/2I ω = j ω I ω Moment Equations h ω = 1/2(I ω I ω ) + 1/2I ω 1/2I ω = I + ω j ω dτ ω = dτ/µ so we have µ dh dτ = j S µ dj dτ = h

10 Variable Eddington Factor Method IV Feautrier Solution then or J = H = K = j dµ hµ dµ jµ 2 dµ dh dτ = J S d 2 K dτ 2 dk dτ = H = J S

11 Variable Eddington Factor Method V Feautrier Solution Let s define the Eddington factor: f K = K /J = 1 0 jµ2 dµ 1 0 j dµ and at the surface, we ll define f H = H/J = 1 0 jµ dµ 1 0 j dµ where we used the BC at the surface and assumed no incoming radiation. Okay now we can solve the whole problem numerically, if we assume that the Eddington factors are known functions of depth. Then we get d 2 (f K J) dτ 2 = J S

12 Variable Eddington Factor Method VI Feautrier Solution with BCs where d(f K J) dτ d(f K J) dτ = f H J + H at τ = 0 = H + f H J at τ = τ H = H + = µi dµ µi + dµ These follow directly from the Feautrier BCs Okay now we have the tools to solve the scattering problem: We start with the Feautrier Equations µ 2 d 2 j dτ 2 = j S

13 Variable Eddington Factor Method VII Feautrier Solution and BCs µ dj dτ = j I at τ = 0 µ dj dτ = I+ j at τ = τ Now we introduce a grid and Finite Difference so our transfer equation becomes df dx = f j+1 f j x d 2 f dx 2 = f j+1 2f j + f j 1 x 2 µ 2 2 [j d+1 2j d + j d 1 ] = S d

14 Variable Eddington Factor Method VIII Feautrier Solution with BCs or µ [j 2 j 1 ] = j 1 I 1 µ [j D j D 1 ] = j D I + D µ j 2 + (1 + µ )j 1 = I 1 µ j D 1 + (1 + µ )j D = I + D

15 Variable Eddington Factor Method IX Feautrier Solution 1 + µ µ µ µ2 µ µ µ2 µ µ 1 + µ I S 2 S 3 = S D 1 I + D j 1 j 2 j 3... j D

16 Variable Eddington Factor Method X Feautrier Solution So given S d I can solve this by solving the tri-diagonal matrix.

17 Solution to a Tri-diagonal Matrix Equation I In general inverting an N N matrix requires N 3 operations, so even with a supercomputer you can t invert a very big matrix N < few thousand But consider a system of equations of the form A j u j+1 + B j u j + C j u j 1 = D j (1) Then we can solve this for the vector u with (N) operations as follows: We seek two quantities E j and F j such that We assume the boundary conditions require u j = E j u j+1 + F j (2) u 0 = 0 and u N = 0 which implies that E 0 = F 0 = 0

18 Solution to a Tri-diagonal Matrix Equation II then re-writing equation 2 as u j 1 = E j 1 u j + F j 1 and plugging into equation 1 we obtain u j = from which we can read off and A j B j + C j E j 1 u j+1 + D j C j F j 1 B j + C j E j 1 A j E j = B j + C j E j 1 F j = D j C j F j 1 B j + C j E j 1 and we sweep through the grid twice, first to get the E and F starting at j = 1 and then backwards to get the u j, starting with the BC value u N = 0.

19 Putting together VEF I So now we can consider the scattering problem S = (1 ɛ)j + ɛb J = The Eddington factor Equation is with BCs 1 0 j(µ) dµ d 2 (f K J) dτ 2 = J S = ɛ(j B) d(f K J) dτ d(f K J) dτ Again we finite difference and obtain = f H J + H at τ = 0 = H + f H J at τ = τ

20 Putting together VEF II or with BCs f K d+1 J d+1 2f K d J d + f K d 1 J d 1 2 f K d+1 J d+1 2 = ɛ d J d ɛ d B d (ɛ d + 2f d K 2 )J d f d 1 K J d 1 2 (f H 1 + f K 1 )J 1 f K 2 J 2 = H 1 = ɛ d B d f K D 1 J D 1 + (f H D + f K D )J D = H + D

21 Putting together VEF III And again we have a tridiagonal matrix f 1 H + f 1 K f 2 k f 1 K ɛ f 2 K f 2 3 K 2 f 2 K ɛ f 3 K f 2 4 K f D 1 K fd H + f D K H 1 ɛ 2 B 2 ɛ 3 B 3 = ɛ D 1 B D 1 H + D J 1 J 2 J J D

22 Putting together VEF IV So given f K d, f H 1, and f H D we can solve for J d and then given J d we have S d = (1 ɛ d )J d + ɛ d B d. But then given S d we get get j d at each µ and from that we can calculate the Eddington factors: f K d, f H 1, and f H D. As a first approximation we can take f K d = 1/3, f H 1 = 1/ 3, and f H D = 0 and repeat the whole thing until it converges

23 Accelerated Λ Interation I We have an idea already how to constuct the Λ τ operator using the Exponential Integrals. Numerically we will not construct the operator that way and I leave the details to papers by Olson & Kunasz; Hauschildt; Hauschildt & Baron. Let s for the moment return to the Plane-Parallel static RTE µ di dz = χi + κb + σj J = 1/2 1 1 χ = κ + σ dτ = χdz I dµ µ di dτ = I κb + σj χ = I S S = ɛb + (1 ɛ)j

24 Accelerated Λ Interation II ɛ = κ χ And we ve seen in Lecture 2, that if S is known then I can be computed by numerical integration J = Λ[S] Formal solutions are numerically cheap and we don t need an explicit expression for Λ in order to obtain the formal solution. Problems: 1. Stability of numerical integration (relatively easy to beat down) 2. S depends on J

25 Accelerated Λ Interation III If we knew Λ numerically then solution is simple: but J = Λ[ɛB] + Λ[(1 ɛ)j] [1 Λ[(1 ɛ)]j = Λ[ɛB] J = [1 Λ[(1 ɛ)] 1 Λ[ɛB] 1. Numerical computation of Λ is expensive 2. Numerical inversion of Λ may also be expensive Straight forward Λ iteration J new = Λ[S old ] S new = (1 ɛ)j new + ɛb Will always converge

26 Accelerated Λ Interation IV Formal solutions are cheap Needs (1/ ɛ) iterations for convergence Mathematically Λ iterations are totally stable and will converge Eigenvalues < 1, but Eigenvalues of (1 ɛ). So convergence is extremely slow. Idea: Accelerate convergence Technically: Reduce Eigenvalues of Amplification matrix Practically: Introduce approximate Lambda operator Λ Now operator split iteration so Λ = Λ + (Λ Λ )

27 Accelerated Λ Interation V J new = Λ [S new ] + (Λ Λ )S old = Λ [(1 ɛ)j new ] + (Λ[S old ] Λ [(1 ɛ)j old ]) = Λ [(1 ɛ)j new ] + J FS Λ [(1 ɛ)j old ] J FS = Λ[S old ] J new = [1 Λ [(1 ɛ)] 1 [J FS Λ [(1 ɛ)j old ]] Now if Λ has a simple form inversion is not too expensive. We want that the eigenvalues of Λ Λ << Eigenvalues of Λ Solution: Choose Λ as bands of Λ including diagonal. Diagonal: Core saturation (Rybicki & Hummer, Scharmer) Tri-Diag: Olson & Kunasz Bands: Hauschildt et al. Why use bands? Easy to invert

28 Accelerated Λ Interation VI Eigenvalues significantly reduced Easy to evaluate Practically: Exists a tradeoff between band-width of Λ and number of iterations Tridiag is often a good choice Can be Ng accelerated

29 Convergence Rate in Static Atmosphere

30 Spherical Geometry This is standard method for spherical symmetry

31 Spherical Geometry Question But why not do it this way?

Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres

Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres Jiří Kubát Astronomický ústav AV ČR Ondřejov Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. Outline 1.

More information

Lecture 2 Solutions to the Transport Equation

Lecture 2 Solutions to the Transport Equation Lecture 2 Solutions to the Transport Equation Equation along a ray I In general we can solve the static transfer equation along a ray in some particular direction. Since photons move in straight lines

More information

In this method, one defines

In this method, one defines 1 Feautrier s Method for Radiative Transfer This project is to use Feautrier s method to solve the Gray Atmosphere problem for a plane-parallel atmosphere Although we have developed alternate techniques

More information

3-D Radiative Transfer in the Next Decade

3-D Radiative Transfer in the Next Decade 3-D Radiative Transfer in the Next Decade E. Baron, 1,2 Peter H. Hauschildt 3 Abstract Type Ia supernovae have played a crucial role in the discovery of the dark energy, via the measurement of their light

More information

Solution of the radiative transfer equation in NLTE stellar atmospheres

Solution of the radiative transfer equation in NLTE stellar atmospheres Solution of the radiative transfer equation in NLTE stellar atmospheres Jiří Kubát kubat@sunstel.asu.cas.cz Astronomický ústav AV ČR Ondřejov Non-LTE Line Formation for Trace Elements in Stellar Atmospheres,

More information

PHAS3135 The Physics of Stars

PHAS3135 The Physics of Stars PHAS3135 The Physics of Stars Exam 2013 (Zane/Howarth) Answer ALL SIX questions from Section A, and ANY TWO questions from Section B The numbers in square brackets in the right-hand margin indicate the

More information

Astro 305 Lecture Notes Wayne Hu

Astro 305 Lecture Notes Wayne Hu Astro 305 Lecture Notes Wayne Hu Set 1: Radiative Transfer Radiation Observables From an empiricist s point of view there are 4 observables for radiation Energy Flux Direction Color Polarization Energy

More information

Fundamental Stellar Parameters

Fundamental Stellar Parameters Fundamental Stellar Parameters Radiative Transfer Specific Intensity, Radiative Flux and Stellar Luminosity Observed Flux, Emission and Absorption of Radiation Radiative Transfer Equation, Solution and

More information

Radiative Transfer with Polarization

Radiative Transfer with Polarization The Radiative Transfer Equation with Polarization Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot, USA Hale COLLAGE, Boulder, Feb 16, 2016 Today s Lecture Equation of transfer with polarization

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Radiative Transfer Plane-Parallel Frequency-Dependent

Radiative Transfer Plane-Parallel Frequency-Dependent 4 Radiative Transfer Plane-Parallel Frequency-Dependent variables I ν J ν H ν K ν in astronomy 4. Basic Equations After Fukue, J. 2, PASJ, 63, in press We here assume the followings: i) The disk is steady

More information

FINITE DIFFERENCES. Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations.

FINITE DIFFERENCES. Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations. FINITE DIFFERENCES Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations. 1. Introduction When a function is known explicitly, it is easy

More information

The Radiative Transfer Equation

The Radiative Transfer Equation The Radiative Transfer Equation R. Wordsworth April 11, 215 1 Objectives Derive the general RTE equation Derive the atmospheric 1D horizontally homogenous RTE equation Look at heating/cooling rates in

More information

Modelling stellar atmospheres with full Zeeman treatment

Modelling stellar atmospheres with full Zeeman treatment 1 / 16 Modelling stellar atmospheres with full Zeeman treatment Katharina M. Bischof, Martin J. Stift M. J. Stift s Supercomputing Group FWF project P16003 Institute f. Astronomy Vienna, Austria CP#AP

More information

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν Absorption Consider a beam passing through an absorbing medium. Define the absorption coefficient, α ν, by ie the fractional loss in intensity in travelling a distance ds is α ν ds (convention: positive

More information

Non-LTE models for synthetic spectra of Type Ia supernovae

Non-LTE models for synthetic spectra of Type Ia supernovae A&A 569, A62 (24) DOI:.5/4-636/2322265 c ESO 24 Astronomy & Astrophysics Non-LTE models for synthetic spectra of Type Ia supernovae IV. A modified Feautrier scheme for opacity-sampled pseudo-continua at

More information

Stellar Atmospheres: Basic Processes and Equations

Stellar Atmospheres: Basic Processes and Equations Stellar Atmospheres: Basic Processes and Equations Giovanni Catanzaro Abstract The content of this chapter is a very quick summary of key concepts that concern the interaction between photons created in

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information

Model Photospheres with Accelerated Lambda Iteration

Model Photospheres with Accelerated Lambda Iteration Stellar Atmosphere Modeling ASP Conference Series, Vol. xxx, 23 I. Hubeny, D. Mihalas, K. Werner Model Photospheres with Accelerated Lambda Iteration Klaus Werner, Jochen L. Deetjen, Stefan Dreizler, Thorsten

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Beam Propagation Method Solution to the Seminar Tasks

Beam Propagation Method Solution to the Seminar Tasks Beam Propagation Method Solution to the Seminar Tasks Matthias Zilk The task was to implement a 1D beam propagation method (BPM) that solves the equation z v(xz) = i 2 [ 2k x 2 + (x) k 2 ik2 v(x, z) =

More information

Nearly everything that we know about stars comes from the photons they emit into space.

Nearly everything that we know about stars comes from the photons they emit into space. STELLAR ATMOSPHERES Nearly everything that we know about stars comes from the photons they emit into space. In the interior, we saw the photon distribution had a dominant isotropic part I 0, and just a

More information

The Curve of Growth of the Equivalent Width

The Curve of Growth of the Equivalent Width 9 The Curve of Growth of the Equivalent Width Spectral lines are broadened from the transition frequency for a number of reasons. Thermal motions and turbulence introduce Doppler shifts between atoms and

More information

1 3 µ2 p ν (τ ν ) = I ν. s ν (τ ν ) + (1) µ dq ν. dτ ν. and. = Q ν {( 1 µ 2) p ν (τ ν ) }, (2)

1 3 µ2 p ν (τ ν ) = I ν. s ν (τ ν ) + (1) µ dq ν. dτ ν. and. = Q ν {( 1 µ 2) p ν (τ ν ) }, (2) 1. Plane-parallel atmospheres with polarized scattering. In the treatment by Chandrasehar (196, pp 38-5), the transfer equations are expressed in terms of I l and I r, the intensities in directions parallel

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν 1 2. NOTES ON RADIATIVE TRANSFER 2.1. The specific intensity I ν Let f(x, p) be the photon distribution function in phase space, summed over the two polarization states. Then fdxdp is the number of photons

More information

Parallel Methods for ODEs

Parallel Methods for ODEs Parallel Methods for ODEs Levels of parallelism There are a number of levels of parallelism that are possible within a program to numerically solve ODEs. An obvious place to start is with manual code restructuring

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

Assignment 4 Solutions [Revision : 1.4]

Assignment 4 Solutions [Revision : 1.4] Assignment 4 Solutions [Revision : 1.4] Q9.7 We typically see a optical distance τ 2/3 through an opaque medium. Using τ = κρs, for constant κ = 0.03 m 2 kg 1 and ρ = 1.2 kgm 3, gives a physical distance

More information

ˆd = 1 2π. d(t)e iωt dt. (1)

ˆd = 1 2π. d(t)e iωt dt. (1) Bremsstrahlung Initial questions: How does the hot gas in galaxy clusters cool? What should we see in their inner portions, where the density is high? As in the last lecture, we re going to take a more

More information

Introduction to Solar Radiative Transfer II Non-LTE Radiative Transfer

Introduction to Solar Radiative Transfer II Non-LTE Radiative Transfer Introduction to olar Radiative Transfer II Non-LTE Radiative Transfer Han Uitenbroek National olar Observatory/acramento Peak unspot NM Overview I Basic Radiative Transfer Intensity, emission, absorption,

More information

CHAPTER 26. Radiative Transfer

CHAPTER 26. Radiative Transfer CHAPTER 26 Radiative Transfer Consider an incoming signal of specific intensity I ν,0 passing through a cloud (i.e., any gaseous region). As the radiation transits a small path length dr through the cloud,

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science AOSC 65 Partial Differential Equations Week 1, Day 3 1 Nov 014 1 Partial Differential Equation An equation that defines the relationship between an unknown

More information

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

Process Modelling. Table of Contents

Process Modelling. Table of Contents Process Modelling 1 Process Modelling prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada More about this document Summary: The general

More information

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Dispersion Introduction - An electromagnetic wave with an arbitrary wave-shape

More information

Problem Set 1 October 30, 2017

Problem Set 1 October 30, 2017 1. e π can be calculated from e x = x n. But that s not a good approximation method. The n! reason is that π is not small compared to 1. If you want O(0.1) accuracy, then the last term you need to include

More information

MAE294B/SIOC203B: Methods in Applied Mechanics Winter Quarter sgls/mae294b Solution IV

MAE294B/SIOC203B: Methods in Applied Mechanics Winter Quarter sgls/mae294b Solution IV MAE9B/SIOC3B: Methods in Applied Mechanics Winter Quarter 8 http://webengucsdedu/ sgls/mae9b 8 Solution IV (i The equation becomes in T Applying standard WKB gives ɛ y TT ɛte T y T + y = φ T Te T φ T +

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

MAS114: Solutions to Exercises

MAS114: Solutions to Exercises MAS114: s to Exercises Up to week 8 Note that the challenge problems are intended to be difficult! Doing any of them is an achievement. Please hand them in on a separate piece of paper if you attempt them.

More information

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation I. Rayleigh Scattering 1. Rayleigh scattering 2. Dipole interpretation 3. Cross sections 4. Other approximations EE 816 - Lecture 4 Rayleigh scattering is an approximation used to predict scattering from

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Lecture 22. r i+1 = b Ax i+1 = b A(x i + α i r i ) =(b Ax i ) α i Ar i = r i α i Ar i

Lecture 22. r i+1 = b Ax i+1 = b A(x i + α i r i ) =(b Ax i ) α i Ar i = r i α i Ar i 8.409 An Algorithmist s oolkit December, 009 Lecturer: Jonathan Kelner Lecture Last time Last time, we reduced solving sparse systems of linear equations Ax = b where A is symmetric and positive definite

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

de = j ν dvdωdtdν. (1)

de = j ν dvdωdtdν. (1) Transfer Equation and Blackbodies Initial questions: There are sources in the centers of some galaxies that are extraordinarily bright in microwaves. What s going on? The brightest galaxies in the universe

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

Cache Oblivious Stencil Computations

Cache Oblivious Stencil Computations Cache Oblivious Stencil Computations S. HUNOLD J. L. TRÄFF F. VERSACI Lectures on High Performance Computing 13 April 2015 F. Versaci (TU Wien) Cache Oblivious Stencil Computations 13 April 2015 1 / 19

More information

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews.

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews. New variables in spherical geometry David G Dritschel Mathematical Institute University of St Andrews http://www-vortexmcsst-andacuk Collaborators: Ali Mohebalhojeh (Tehran St Andrews) Jemma Shipton &

More information

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes DIFFERENTIATION AND INTEGRATION PART 1 Mr C s IB Standard Notes In this PDF you can find the following: 1. Notation 2. Keywords Make sure you read through everything and the try examples for yourself before

More information

3 Some Radiation Basics

3 Some Radiation Basics 12 Physics 426 Notes Spring 29 3 Some Radiation Basics In this chapter I ll store some basic tools we need for working with radiation astrophysically. This material comes directly from Rybicki & Lightman

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Lecture 2: Transfer Theory

Lecture 2: Transfer Theory Lecture 2: Transfer Theory Why do we study transfer theory? The light we detect arrives at us in two steps: - first, it is created by some radiative process (e.g., blackbody, synchrotron, etc etc ) -

More information

One-Dimensional Stefan Problem

One-Dimensional Stefan Problem One-Dimensional Stefan Problem Tracy Backes May 5, 2007 1 Introduction Working with systems that involve moving boundaries can be a very difficult task. Not only do we have to solve the equations describing

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

Lecture 3: Specific Intensity, Flux and Optical Depth

Lecture 3: Specific Intensity, Flux and Optical Depth Lecture 3: Specific Intensity, Flux and Optical Depth We begin a more detailed look at stellar atmospheres by defining the fundamental variable, which is called the Specific Intensity. It may be specified

More information

Matrices and Linear transformations

Matrices and Linear transformations Matrices and Linear transformations We have been thinking of matrices in connection with solutions to linear systems of equations like Ax = b. It is time to broaden our horizons a bit and start thinking

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

STAT 801: Mathematical Statistics. Moment Generating Functions. M X (t) = E(e tx ) M X (u) = E[e utx ]

STAT 801: Mathematical Statistics. Moment Generating Functions. M X (t) = E(e tx ) M X (u) = E[e utx ] Next Section Previous Section STAT 801: Mathematical Statistics Moment Generating Functions Definition: The moment generating function of a real valued X is M X (t) = E(e tx ) defined for those real t

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

Srednicki Chapter 9. QFT Problems & Solutions. A. George. August 21, Srednicki 9.1. State and justify the symmetry factors in figure 9.

Srednicki Chapter 9. QFT Problems & Solutions. A. George. August 21, Srednicki 9.1. State and justify the symmetry factors in figure 9. Srednicki Chapter 9 QFT Problems & Solutions A. George August 2, 22 Srednicki 9.. State and justify the symmetry factors in figure 9.3 Swapping the sources is the same thing as swapping the ends of the

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

The Exponential of a Matrix

The Exponential of a Matrix The Exponential of a Matrix 5-8- The solution to the exponential growth equation dx dt kx is given by x c e kt It is natural to ask whether you can solve a constant coefficient linear system x A x in a

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Circular motion. Aug. 22, 2017

Circular motion. Aug. 22, 2017 Circular motion Aug. 22, 2017 Until now, we have been observers to Newtonian physics through inertial reference frames. From our discussion of Newton s laws, these are frames which obey Newton s first

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Wave equation techniques for attenuating multiple reflections

Wave equation techniques for attenuating multiple reflections Wave equation techniques for attenuating multiple reflections Fons ten Kroode a.tenkroode@shell.com Shell Research, Rijswijk, The Netherlands Wave equation techniques for attenuating multiple reflections

More information

The implicit finite-difference method in matrix terms. Vrije Universiteit Amsterdam

The implicit finite-difference method in matrix terms. Vrije Universiteit Amsterdam - in matrix terms André Ran Vrije Universiteit Amsterdam 1 methods Last week we did the explicit finite, based on forward difference in time. This week we consider so-called implicit finite s, based on

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Nonlinear Computational Methods for Simulating Interactions of Radiation with Matter in Physical Systems

Nonlinear Computational Methods for Simulating Interactions of Radiation with Matter in Physical Systems Nonlinear Computational Methods for Simulating Interactions of Radiation with Matter in Physical Systems Dmitriy Y. Anistratov Department of Nuclear Engineering North Carolina State University NE Seminar,

More information

The Distribution Function

The Distribution Function The Distribution Function As we have seen before the distribution function (or phase-space density) f( x, v, t) d 3 x d 3 v gives a full description of the state of any collisionless system. Here f( x,

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information

1 GSW Sets of Systems

1 GSW Sets of Systems 1 Often, we have to solve a whole series of sets of simultaneous equations of the form y Ax, all of which have the same matrix A, but each of which has a different known vector y, and a different unknown

More information

Articulated body dynamics

Articulated body dynamics Articulated rigid bodies Articulated body dynamics Beyond human models How would you represent a pose? Quadraped animals Wavy hair Animal fur Plants Maximal vs. reduced coordinates How are things connected?

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 14: Formulation of the Stability Problem

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 14: Formulation of the Stability Problem .65, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Formulation of the Stability Problem Hierarchy of Formulations of the MHD Stability Problem for Arbitrary 3-D Systems. Linearized equations

More information

Dynamic interpretation of eigenvectors

Dynamic interpretation of eigenvectors EE263 Autumn 2015 S. Boyd and S. Lall Dynamic interpretation of eigenvectors invariant sets complex eigenvectors & invariant planes left eigenvectors modal form discrete-time stability 1 Dynamic interpretation

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

5 Irreducible representations

5 Irreducible representations Physics 129b Lecture 8 Caltech, 01/1/19 5 Irreducible representations 5.5 Regular representation and its decomposition into irreps To see that the inequality is saturated, we need to consider the so-called

More information

Counting Dots Kwok-Wai Ng Feb 1, 2007

Counting Dots Kwok-Wai Ng Feb 1, 2007 Counting Dots Kwok-Wai Ng Feb 1, 007 This sounds so easy (indeed it is not difficult), yet so simple that we never think about it carefully. When we are asked to do it, suddenly we do not know what to

More information

Regression #5: Confidence Intervals and Hypothesis Testing (Part 1)

Regression #5: Confidence Intervals and Hypothesis Testing (Part 1) Regression #5: Confidence Intervals and Hypothesis Testing (Part 1) Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #5 1 / 24 Introduction What is a confidence interval? To fix ideas, suppose

More information

Lecture 10: Finite Differences for ODEs & Nonlinear Equations

Lecture 10: Finite Differences for ODEs & Nonlinear Equations Lecture 10: Finite Differences for ODEs & Nonlinear Equations J.K. Ryan@tudelft.nl WI3097TU Delft Institute of Applied Mathematics Delft University of Technology 21 November 2012 () Finite Differences

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

8 A pseudo-spectral solution to the Stokes Problem

8 A pseudo-spectral solution to the Stokes Problem 8 A pseudo-spectral solution to the Stokes Problem 8.1 The Method 8.1.1 Generalities We are interested in setting up a pseudo-spectral method for the following Stokes Problem u σu p = f in Ω u = 0 in Ω,

More information

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011.

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011. Lecture 7 3 Ordinary differential equations (ODEs) (continued) 6 Linear equations of second order 7 Systems of differential equations Please note Please note that there is no lecture on Tuesday, 15 November

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 7 Heat Conduction 4 Today we are going to look at some one dimensional

More information

NOTES ON LINEAR ODES

NOTES ON LINEAR ODES NOTES ON LINEAR ODES JONATHAN LUK We can now use all the discussions we had on linear algebra to study linear ODEs Most of this material appears in the textbook in 21, 22, 23, 26 As always, this is a preliminary

More information

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377 Section 11.5 and Problem 11.51 Radiative Transfer from Astronomy Methods A Physical Approach to Astronomical Observations Pages 365-375, 377 Cambridge University Press 24 by Hale Bradt Hale Bradt 24 11.5

More information

4.5 Linearization Calculus 4.5 LINEARIZATION. Notecards from Section 4.5: Linearization; Differentials. Linearization

4.5 Linearization Calculus 4.5 LINEARIZATION. Notecards from Section 4.5: Linearization; Differentials. Linearization 4.5 Linearization Calculus 4.5 LINEARIZATION Notecards from Section 4.5: Linearization; Differentials Linearization The goal of linearization is to approximate a curve with a line. Why? Because it s easier

More information

Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999)

Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999) Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999) This is intended to be a detailed by fairly-low-math explanation of Stam s Stable Fluids, one of the key papers in a recent series of advances

More information

Quick Introduction to Momentum Principle. Momentum. Momentum. Basic principle not at all obvious on Earth 24/02/11

Quick Introduction to Momentum Principle. Momentum. Momentum. Basic principle not at all obvious on Earth 24/02/11 Momentum Quick Introduction to Momentum Principle We will come back to all of this - this is just a taster. The momentum principle is another way of saying Newton s Laws It is one of the three great principles

More information

Notes: DERIVATIVES. Velocity and Other Rates of Change

Notes: DERIVATIVES. Velocity and Other Rates of Change Notes: DERIVATIVES Velocity and Oter Rates of Cange I. Average Rate of Cange A.) Def.- Te average rate of cange of f(x) on te interval [a, b] is f( b) f( a) b a secant ( ) ( ) m troug a, f ( a ) and b,

More information