Counting Dots Kwok-Wai Ng Feb 1, 2007

Size: px
Start display at page:

Download "Counting Dots Kwok-Wai Ng Feb 1, 2007"

Transcription

1 Counting Dots Kwok-Wai Ng Feb 1, 007 This sounds so easy (indeed it is not difficult), yet so simple that we never think about it carefully. When we are asked to do it, suddenly we do not know what to do! In this document, I provide three examples, from simple two dimensional case to the third example of three dimensional k-space, which is just the stuff we are now learning in class. Through these examples, we will pick up two skills. The first skill is simple arithmetic, even grade school students can do it. The problem is they do not understand what the problem is asking and why it is important. The second skill involved calculus, which is very common in physics (like eating bread every day). Example 1. et us look at a graph paper (in the computer age, I hope you know what a graph paper is). In the graph paper, you can find little squares of 1mm x 1mm in size (see figure 1). The intersections of these lines form a grid. These are the dots we want to count. If I cut a BIG piece of graph paper and all I know is the area (say,.4m ). Do I know how many dots are there? You may ask will the answer depends on the shape of the cut out. The exact answer probably depends on the shape, but answers for different shapes should not be too far apart. That s what we want to do here. We want to estimate how many dots are there. If the area is BIG, the error will be extremely small. (I leave a question for you to think about: How big is BIG? Compare to what?) 1mm 1mm Figure 1 What I am suggesting here is to first calculate how much space (area) belong to one dot. For example, the red region in figure belongs to dot A because it is closest to A than other dots. This region ends up to be a 1mm x 1mm square again. Actually at this point you should have many questions to think about. For example, why the red region have the same size of the original grid? Can I cut up the space differently? Will I get the A 1mm same answer by different cutting methods? If we know how much area belongs to a single dot, we can just divide the total area of the graph paper by the area belongs to a single dot, we will get the total 1mm Figure

2 number of dots. In this example, the total area is.4 m and the area belongs to one dot is 1mmx1mm 10 - x 10 - m 10-6 m, so the number of dots.4 / x 10 6 dots (.4 million dots!). Now it is your turn to try different graph paper and grid sizes. Skill In the last example, I gave you the area of the graph paper. However, it occurs more often that we only know the shape of the graph paper and its size and we have to estimate the area by ourselves. For example, it may be told that the graph paper is a circle of 1.5 m in radius, we will then have to calculate the area of that circle. In two dimension case, it ends up that the most important shape is a ring (because it is an infinitesimal element of a circle), as shown in figure. Now the graph paper is becoming the ring in figure (with the same grid size). How many dots are there? We need to first calculate the area of the ring, and then we can apply skill #1 to get the answer. To calculate the area of the ring, you can first calculate the area of the outer circle, and then use it to subtract the area of the inner circle. Your answer will be near perfect (except not knowing the exact value of π). However, this is the type of calculate I want to discourage you here. First, it is too slow. Second, more importantly, this type of thinking is not calculus compatible. r1.5m t0.1m Figure So the proper way to get a not so proper value of the area of the ring is like this. If the ring is very thin (again, I leave a question for you to think about: How thin is thin? Compare to what?), we can cut it open and stretch it straight. We now have a very long trapezoid, like the one shown in figure 4. It is so long that we can even ignore how the two ends look and treat it like a rectangle! The length of this rectangle is πr and the width is t, so the area must be πrt (so is the area of the ring). Plug in the number, the area of the ring is xπx1.5x m. You can compare this answer with the exact answer, it is probably not off too much. So the number of dots in the ring is 0.94 / x 10 5 dots t0.1m πr with r1.5m Figure 4

3 Example. Now another example (actually a more useful example) to expand our skill to three dimensional space. We consider an array of atoms as shown in figure 5. To make thing slightly more complicated, distance between neighbors is different along the three directions. The problem is the same as before, given a volume of sample (say, 0.4 m ), how many atoms are there? Just like before, we first calculate how much space (volume) belong to one atom. For example, the red region in figure 6 belongs to atom A because it is closest to A than other atoms. This region ends up to have the same size and shape as the cell (figure 6). In the particular example, the volume belongs to one atom is x10-10 x 1x10-10 x 1.5x10-10 x10-0 m, so the number of atoms 0.4 / x x 10 9 atoms. Now it is your turn to try different volume and cell sizes. Skill A x10-10 m 1x10-10 m 1.5x10-10 m Figure 5 Figure 6 Similar to example 1, it occurs more often that we only know the shape of the sample and its size and we have to estimate the volume by ourselves. For example, it may be told that the sample is sphere of 0.5 m in radius, we will then have to calculate the volume of that sphere. In three dimensional case, it ends up that the most important shape is a spherical shell (because it is an infinitesimal element of a sphere), as shown in figure 7. In here, let us consider a spherical shell of 0.01m thickness, and the inner radius is 0.5m. The proper way to get a not so proper value of volume of the shell is like this. If the shell is very thin (again, I leave a question for you to think about: How thin is thin? Compare to what?), we can cur it open and hammer it into a flat thin sheet. The area of this flat sheet is the same as the surface area of the sphere, 4πr and the thickness of this sheet is t. So the volume r 0.5m t 0.01m Figure 7

4 must be 4πr t (so is the volume of the spherical shell). Plug in the number, the volume of the spherical shell is 4πx(0.5) x x 10 - m. You can compare this answer with the exact answer (by subtracting the volume of the inner sphere from the volume of the outer sphere), it is probably not off too much. So the number of atoms in the shell is.14 x 10 - / x x 10 8 atoms. Example. Now we apply what we learnt from the last example to the problem we are studying in class. It is essentially the same as example, except that we are now working in the k- space, instead of the more comfortable real space. Note that the unit length in the k-space is not even in meter. Since kπ/λ, so the unit length in k-space is actually m -. Except a change in length, the way we calculate volume is exactly the same as in real space. Of course, unit of volume in k-space is m -, instead of m π/ x. The dots in figure 8 are not atoms. Each dot represents a state corresponds to a possible (actually two because of polarization) standing wave in the cavity. As demonstrated in class, because of the standing wave requirement, separations between these dots in k-space is (π/ x, π/ y, π/ z ). We want to count how many dots are there between k and k+dk. Is this the same problem as examples 1 and? π/ y π/ z Figure 8 I don t need to say more here now. The volume of space belongs to a dot is π π π π π x y z x y z V The calculation is exactly the same as that in example, except we do not use number this time. Pay attention to V in the above equation. V x y z, so V is a volume in real space (the volume of the cavity). Do not confuse it with the volume in k-space. k z k dk Skill k y k x Figure 9

5 We want to count how many dots are there between k and k+dk. The region in k-space satisfying this condition is just the spherical shell with inner radius k and outer diameter d+dk. So the thickness of the shell is dk (figure 9). Applying what we learnt from skill in example, the volume of this spherical shell is 4πk dk. How many dots are there within the shell? Simple now, # of dots (or states) Volume of the spherical shell Volume belongs to one dot (or state) 4π k dk π / V 4 V k dk π Since in this particular problem, we consider only positive k x, k y and k z, we have only 1/8 of the complete shell, so # of states between k 1 4 V k dk and k + dk 8 π V k dk π

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook.

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. Purpose: Theoretical study of Gauss law. 2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. When drawing field line pattern around charge distributions

More information

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

The Basics of Physics with Calculus Part II. AP Physics C

The Basics of Physics with Calculus Part II. AP Physics C The Basics of Physics with Calculus Part II AP Physics C The AREA We have learned that the rate of change of displacement is defined as the VELOCITY of an object. Consider the graph below v v t lim 0 dx

More information

Introduction. So, why did I even bother to write this?

Introduction. So, why did I even bother to write this? Introduction This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The review contains the occasional

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph 5 6 7 Middle olume Length/olume vs. Diameter, Investigation page 1 of olume vs. Diameter Teacher Lab Discussion Overview Figure 1 In this experiment we investigate the relationship between the diameter

More information

f(x 0 + h) f(x 0 ) h slope of secant line = m sec

f(x 0 + h) f(x 0 ) h slope of secant line = m sec Derivatives Using limits, we can define the slope of a tangent line to a function. When given a function f(x), and given a point P (x 0, f(x 0 )) on f, if we want to find the slope of the tangent line

More information

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve:

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve: NAME: Chapters 12, 13 & 14: Universal Gravitation Text: Chapter 12 Chapter 13 Think and Explain: Think and Explain: Think and Solve: Think and Solve: Chapter 13 Think and Explain: Think and Solve: Vocabulary:

More information

Unit 5. Linear equations and inequalities OUTLINE. Topic 13: Solving linear equations. Topic 14: Problem solving with slope triangles

Unit 5. Linear equations and inequalities OUTLINE. Topic 13: Solving linear equations. Topic 14: Problem solving with slope triangles Unit 5 Linear equations and inequalities In this unit, you will build your understanding of the connection between linear functions and linear equations and inequalities that can be used to represent and

More information

Systems of Linear Equations and Inequalities

Systems of Linear Equations and Inequalities Systems of Linear Equations and Inequalities Alex Moore February 4, 017 1 What is a system? Now that we have studied linear equations and linear inequalities, it is time to consider the question, What

More information

Name Date Partners. Lab 2 GAUSS LAW

Name Date Partners. Lab 2 GAUSS LAW L02-1 Name Date Partners Lab 2 GAUSS LAW On all questions, work together as a group. 1. The statement of Gauss Law: (a) in words: The electric flux through a closed surface is equal to the total charge

More information

A-Level Notes CORE 1

A-Level Notes CORE 1 A-Level Notes CORE 1 Basic algebra Glossary Coefficient For example, in the expression x³ 3x² x + 4, the coefficient of x³ is, the coefficient of x² is 3, and the coefficient of x is 1. (The final 4 is

More information

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions.

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions. Gauss Law 1 Name Date Partners 1. The statement of Gauss' Law: (a) in words: GAUSS' LAW Work together as a group on all questions. The electric flux through a closed surface is equal to the total charge

More information

FINAL EXAM STUDY GUIDE

FINAL EXAM STUDY GUIDE FINAL EXAM STUDY GUIDE The Final Exam takes place on Wednesday, June 13, 2018, from 10:30 AM to 12:30 PM in 1100 Donald Bren Hall (not the usual lecture room!!!) NO books/notes/calculators/cheat sheets

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Advanced Calculus Questions

Advanced Calculus Questions Advanced Calculus Questions What is here? This is a(n evolving) collection of challenging calculus problems. Be warned - some of these questions will go beyond the scope of this course. Particularly difficult

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them?

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 92 3.10 Quick Questions 3.10 Quick Questions 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 0.89 N 90 N 173 N 15 N 2. The electric field inside an isolated conductor

More information

The Change-of-Variables Formula for Double Integrals

The Change-of-Variables Formula for Double Integrals The Change-of-Variables Formula for Double Integrals Minh-Tam Trinh In this document, I suggest ideas about how to solve some of the exercises in ection 15.9 of tewart, Multivariable Calculus, 8th Ed.

More information

8.2 APPLICATIONS TO GEOMETRY

8.2 APPLICATIONS TO GEOMETRY 8.2 APPLICATIONS TO GEOMETRY In Section 8.1, we calculated volumes using slicing and definite integrals. In this section, we use the same method to calculate the volumes of more complicated regions as

More information

1.1 THE MATHEMATICS YOU NEED FOR IB PHYSICS Notes

1.1 THE MATHEMATICS YOU NEED FOR IB PHYSICS Notes 1.1 THE MATHEMATICS YOU NEED FOR IB PHYSICS Notes I. THE MATHEMATICS YOU NEED FOR IB PHYSICS A. ALGEBRA B. TRIGONOMETRY AND GEOMETRY C. WHAT ABOUT CALCULUS? D. PROBLEM-SOLVING I. THE MATHEMATICS YOU NEED

More information

Unit 5. Linear equations and inequalities OUTLINE. Topic 13: Solving linear equations. Topic 14: Problem solving with slope triangles

Unit 5. Linear equations and inequalities OUTLINE. Topic 13: Solving linear equations. Topic 14: Problem solving with slope triangles Unit 5 Linear equations and inequalities In this unit, you will build your understanding of the connection between linear functions and linear equations and inequalities that can be used to represent and

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

AP Calculus AB Mrs. Mills Carlmont High School

AP Calculus AB Mrs. Mills Carlmont High School AP Calculus AB 015-016 Mrs. Mills Carlmont High School AP CALCULUS AB SUMMER ASSIGNMENT NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY! Read through the notes & eamples for each page and then solve all

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY

2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY 2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY The following are topics that you will use in Geometry and should be retained throughout the summer. Please use this practice to review the topics you

More information

2 P a g e. Essential Questions:

2 P a g e. Essential Questions: NC Math 1 Unit 5 Quadratic Functions Main Concepts Study Guide & Vocabulary Classifying, Adding, & Subtracting Polynomials Multiplying Polynomials Factoring Polynomials Review of Multiplying and Factoring

More information

Calculus Workshop. Calculus Workshop 1

Calculus Workshop. Calculus Workshop 1 Physics 251 Laboratory Calculus Workshop For the next three lab periods we will be reviewing the concept of density and learning the calculus techniques necessary to succeed in Physics 251. The first week

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

= - = = 1 = -2 = 3. Jeremy can plant 10 trees in 4 hours. How many trees can he plant in 10 hours? A. 16

= - = = 1 = -2 = 3. Jeremy can plant 10 trees in 4 hours. How many trees can he plant in 10 hours? A. 16 7 th Grade Only 1. Four points are graphed on a line. Which point is located at the opposite of -2? A. Point J B. Point K C. Point L D. Point M OPPOSITE means the SAME DISTANCE from 0 on the opposite side

More information

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true.

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true. Algebra Review In this appendix, a review of algebra skills will be provided. Students sometimes think that there are tricks needed to do algebra. Rather, algebra is a set of rules about what one may and

More information

What is Crater Number Density?

What is Crater Number Density? Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky 2008 What is Crater Number Density? REAL Curriculum Crater Number Density Today we will learn some math that is necessary in order to learn important

More information

College Algebra: Midterm Review

College Algebra: Midterm Review College Algebra: A Missive from the Math Department Learning College Algebra takes effort on your part as the student. Here are some hints for studying that you may find useful. Work Problems If you do,

More information

Are You Ready? Find Area in the Coordinate Plane

Are You Ready? Find Area in the Coordinate Plane SKILL 38 Are You Read? Find Area in the Coordinate Plane Teaching Skill 38 Objective Find the areas of figures in the coordinate plane. Review with students the definition of area. Ask: Is the definition

More information

Homework 4: Hard-Copy Homework Due Wednesday 2/17

Homework 4: Hard-Copy Homework Due Wednesday 2/17 Homework 4: Hard-Copy Homework Due Wednesday 2/17 Special instructions for this homework: Please show all work necessary to solve the problems, including diagrams, algebra, calculus, or whatever else may

More information

O Notation (Big Oh) We want to give an upper bound on the amount of time it takes to solve a problem.

O Notation (Big Oh) We want to give an upper bound on the amount of time it takes to solve a problem. O Notation (Big Oh) We want to give an upper bound on the amount of time it takes to solve a problem. defn: v(n) = O(f(n)) constants c and n 0 such that v(n) c f(n) whenever n > n 0 Termed complexity:

More information

Investigate the relationship between the extension of a spring and the applied force

Investigate the relationship between the extension of a spring and the applied force Physics: 4. Force Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier OP4 OP5 OP6 OP7 Syllabus Appreciate the concept of force, recall that the

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations 4 The Cartesian Coordinate System- Pictures of Equations Concepts: The Cartesian Coordinate System Graphs of Equations in Two Variables x-intercepts and y-intercepts Distance in Two Dimensions and the

More information

System of Linear Equation: with more than Two Equations and more than Two Unknowns

System of Linear Equation: with more than Two Equations and more than Two Unknowns System of Linear Equation: with more than Two Equations and more than Two Unknowns Michigan Department of Education Standards for High School: Standard 1: Solve linear equations and inequalities including

More information

Unit 4 Patterns and Algebra

Unit 4 Patterns and Algebra Unit 4 Patterns and Algebra In this unit, students will solve equations with integer coefficients using a variety of methods, and apply their reasoning skills to find mistakes in solutions of these equations.

More information

=.55 = = 5.05

=.55 = = 5.05 MAT1193 4c Definition of derivative With a better understanding of limits we return to idea of the instantaneous velocity or instantaneous rate of change. Remember that in the example of calculating the

More information

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers Math Exam III (5 minutes) Friday April 9, Answers I. ( points.) Fill in the boxes as to complete the following statement: A definite integral can be approximated by a Riemann sum. More precisely, if a

More information

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group.

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group. 65 Name Date Partners 1. The statement of Gauss' Law: Lab 4 - GAUSS' LAW On all questions, work together as a group. (a) in words: The electric flux through a closed surface is equal to the total charge

More information

New Paltz Central School District Mathematics Third Grade

New Paltz Central School District Mathematics Third Grade September - Unit 1: Place Value and Numeration/Addition and Use hundred charts and number lines. Place Value October Subtraction Read and write numbers to 1,000. Pre- What is place value? Order numbers

More information

Chapter 22 Gauss s Law

Chapter 22 Gauss s Law Chapter 22 Gauss s Law Lecture by Dr. Hebin Li Goals for Chapter 22 To use the electric field at a surface to determine the charge within the surface To learn the meaning of electric flux and how to calculate

More information

Anticipated workload: 6 hours Summer Packets are due Thursday, August 24, 2017 Summer Assignment Quiz (including a unit circle quiz) the same day

Anticipated workload: 6 hours Summer Packets are due Thursday, August 24, 2017 Summer Assignment Quiz (including a unit circle quiz) the same day Dear AP Calculus BC student, Hello and welcome to the wonderful world of AP Calculus! I am excited that you have elected to take an accelerated mathematics course such as AP Calculus BC and would like

More information

Big-oh stuff. You should know this definition by heart and be able to give it,

Big-oh stuff. You should know this definition by heart and be able to give it, Big-oh stuff Definition. if asked. You should know this definition by heart and be able to give it, Let f and g both be functions from R + to R +. Then f is O(g) (pronounced big-oh ) if and only if there

More information

Main topics for the First Midterm Exam

Main topics for the First Midterm Exam Main topics for the First Midterm Exam The final will cover Sections.-.0, 2.-2.5, and 4.. This is roughly the material from first three homeworks and three quizzes, in addition to the lecture on Monday,

More information

1 Closest Pair of Points on the Plane

1 Closest Pair of Points on the Plane CS 31: Algorithms (Spring 2019): Lecture 5 Date: 4th April, 2019 Topic: Divide and Conquer 3: Closest Pair of Points on a Plane Disclaimer: These notes have not gone through scrutiny and in all probability

More information

( ) is called the dependent variable because its

( ) is called the dependent variable because its page 1 of 16 CLASS NOTES: 3 8 thru 4 3 and 11 7 Functions, Exponents and Polynomials 3 8: Function Notation A function is a correspondence between two sets, the domain (x) and the range (y). An example

More information

3: Gauss s Law July 7, 2008

3: Gauss s Law July 7, 2008 3: Gauss s Law July 7, 2008 3.1 Electric Flux In order to understand electric flux, it is helpful to take field lines very seriously. Think of them almost as real things that stream out from positive charges

More information

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions MEI Core Basic Algebra Section : Basic algebraic manipulation and solving simple equations Notes and Examples These notes contain subsections on Manipulating algebraic expressions Collecting like terms

More information

1.1 Variable Expressions

1.1 Variable Expressions . Variable Expressions Learning Objectives Evaluate algebraic expressions. Evaluate algebraic expressions with exponents. Introduction The Language of Algebra Do you like to do the same problem over and

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law 22-1 Electric Flux Electric flux: Electric flux through an area is proportional to the total number of field lines crossing the area. 22-1 Electric Flux Example 22-1: Electric flux.

More information

The University of Texas at Austin. Air Resistance

The University of Texas at Austin. Air Resistance UTeach Outreach The University of Texas at Austin Air Resistance Time of Lesson: 50-60 minutes Content Standards Addressed in Lesson: 8.6A demonstrate and calculate how unbalanced forces change the speed

More information

2/3. Activity 3: Adding and Subtracting Unlike Proper Fractions: (Answer all questions using correct spelling and grammar.)

2/3. Activity 3: Adding and Subtracting Unlike Proper Fractions: (Answer all questions using correct spelling and grammar.) Activity : Adding and Subtracting Unlike Proper Fractions: (Answer all questions using correct spelling and grammar.) The Unit Grid will be introduced for working with Unlike Proper Fractions. We will

More information

Grade 7/8 Math Circles November 14/15/16, Estimation

Grade 7/8 Math Circles November 14/15/16, Estimation Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 7/8 Math Circles November 14/15/16, 2017 Estimation Centre for Education in Mathematics and Computing If you ever find yourself without

More information

2. l = 7 ft w = 4 ft h = 2.8 ft V = Find the Area of a trapezoid when the bases and height are given. Formula is A = B = 21 b = 11 h = 3 A=

2. l = 7 ft w = 4 ft h = 2.8 ft V = Find the Area of a trapezoid when the bases and height are given. Formula is A = B = 21 b = 11 h = 3 A= 95 Section.1 Exercises Part A Find the Volume of a rectangular solid when the width, height and length are given. Formula is V=lwh 1. l = 4 in w = 2.5 in h = in V = 2. l = 7 ft w = 4 ft h = 2.8 ft V =.

More information

CHAPTER 1 LINEAR EQUATIONS

CHAPTER 1 LINEAR EQUATIONS CHAPTER 1 LINEAR EQUATIONS Sec 1. Solving Linear Equations Kids began solving simple equations when they worked missing addends problems in first and second grades. They were given problems such as 4 +

More information

AP Physics C 2015 Summer Assignment

AP Physics C 2015 Summer Assignment AP Physics C 2015 Summer Assignment College Board (the people in charge of AP exams) recommends students to only take AP Physics C if they have already taken a 1 st year physics course and are currently

More information

Projects in Geometry for High School Students

Projects in Geometry for High School Students Projects in Geometry for High School Students Goal: Our goal in more detail will be expressed on the next page. Our journey will force us to understand plane and three-dimensional geometry. We will take

More information

Lesson 2: Put a Label on That Number!

Lesson 2: Put a Label on That Number! Lesson 2: Put a Label on That Number! What would you do if your mother approached you, and, in an earnest tone, said, Honey. Yes, you replied. One million. Excuse me? One million, she affirmed. One million

More information

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a AP Physics C: Mechanics Greetings, For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a brief introduction to Calculus that gives you an operational knowledge of

More information

Precalculus, Quarter 4, Unit 4.1. Matrices. Overview

Precalculus, Quarter 4, Unit 4.1. Matrices. Overview Precalculus, Quarter 4, Unit 4.1 Matrices Overview Number of instructional days: 11 (1 day = 45 60 minutes) Content to be learned Add, subtract, and use scalar multiplication with matrices and equivalent

More information

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018 Topics: Post-main-sequence stellar evolution, degeneracy pressure, and white dwarfs Summary of reading: Review section 2 of Ch. 17. Read the beginning and first section of Ch. 18 (up through the middle

More information

Physics Motion Math. (Read objectives on screen.)

Physics Motion Math. (Read objectives on screen.) Physics 302 - Motion Math (Read objectives on screen.) Welcome back. When we ended the last program, your teacher gave you some motion graphs to interpret. For each section, you were to describe the motion

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

Electricity & Magnetism Lecture 4: Gauss Law

Electricity & Magnetism Lecture 4: Gauss Law Electricity & Magnetism Lecture 4: Gauss Law Today s Concepts: A) Conductors B) Using Gauss Law Electricity & Magne/sm Lecture 4, Slide 1 Another question... whats the applica=on to real life? Stuff you

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

Student Outcomes. Lesson Notes. Classwork. Opening Exercises 1 3 (5 minutes)

Student Outcomes. Lesson Notes. Classwork. Opening Exercises 1 3 (5 minutes) Student Outcomes Students calculate the decimal expansion of using basic properties of area. Students estimate the value of expressions such as. Lesson Notes For this lesson, students will need grid paper

More information

COMPOUND INEQUALITIES

COMPOUND INEQUALITIES 13 (3 1) Chapter 3 Inequalities in One Variable 95. Designer jeans. A pair of ordinary jeans at A-Mart costs $50 less than a pair of designer jeans at Enrico s. In fact, you can buy four pairs of A-Mart

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Chapter 1. Solving Algebraic Equations for a Variable

Chapter 1. Solving Algebraic Equations for a Variable www.ck1.org CHAPTER 1 Solving Algebraic Equations for a Variable Here you ll learn how to isolate the variable in an equation or formula. Problem: You are planning a trip to Spain in the summer. In the

More information

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems In 8.02 we regularly use three different coordinate systems: rectangular (Cartesian), cylindrical and spherical. In order to become

More information

To study the physical pendulum i.e. a composite, rigid body comparing measured and calculated values of moments of inertia.

To study the physical pendulum i.e. a composite, rigid body comparing measured and calculated values of moments of inertia. Physical pendulum Number 135610-EN Topic Mechanics, rigid bodies Version 2016.08.11 / HS Type Student exercise Suggested for grade 12+ p. 1/5 Objective To study the physical pendulum i.e. a composite,

More information

AP Physics 1 Summer Assignment-2016

AP Physics 1 Summer Assignment-2016 AP Physics 1 Summer Assignment-2016 Welcome to the AP Physics 1 Team! AP Physics 1 is an introductory college level physics course. Concept development and problem solving are algebra and trigonometry

More information

d` = 1+( dy , which is part of the cone.

d` = 1+( dy , which is part of the cone. 7.5 Surface area When we did areas, the basic slices were rectangles, with A = h x or h y. When we did volumes of revolution, the basic slices came from revolving rectangles around an axis. Depending on

More information

Similar Shapes and Gnomons

Similar Shapes and Gnomons Similar Shapes and Gnomons May 12, 2013 1. Similar Shapes For now, we will say two shapes are similar if one shape is a magnified version of another. 1. In the picture below, the square on the left is

More information

Section Required Assignments Additional Resources 1-1 Variables and Expressions (Formative)

Section Required Assignments Additional Resources 1-1 Variables and Expressions (Formative) Algebra 1 ~ Chapter 1 Capacity Matrix Learning Targets 1. Evaluating Expressions and Solving Open Sentences (Sec 1-1 to 1-3) 2. Using Algebraic Properties (Sec 1-4 to 1-6) 3. Interpreting and Analyzing

More information

The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of

The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of Charge Example 26.3 in the text uses integration to find the electric field strength at a radial distance r in the plane

More information

9/10/2018. An Infinite Line of Charge. The electric field of a thin, uniformly charged rod may be written:

9/10/2018. An Infinite Line of Charge. The electric field of a thin, uniformly charged rod may be written: The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of Charge Example 26.3 in the text uses integration to find the electric field strength at a radial distance r in the plane

More information

Math Tool: Dot Paper. Reproducible page, for classroom use only Triumph Learning, LLC

Math Tool: Dot Paper. Reproducible page, for classroom use only Triumph Learning, LLC Math Tool: Dot Paper A Reproducible page, for classroom use only. 0 Triumph Learning, LLC CC_Mth_G_TM_PDF.indd /0/ : PM Math Tool: Coordinate Grid y 7 0 9 7 0 9 7 0 7 9 0 7 9 0 7 x Reproducible page, for

More information

Numbers and Operations Review

Numbers and Operations Review C H A P T E R 5 Numbers and Operations Review This chapter reviews key concepts of numbers and operations that you need to know for the SAT. Throughout the chapter are sample questions in the style of

More information

Grade 6 Math Circles 7/8 November, Approximations & Estimations

Grade 6 Math Circles 7/8 November, Approximations & Estimations Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Introduction Grade 6 Math Circles 7/8 November, 2017 Approximations & Estimations When solving problems,

More information

Physics 4A Chapter 1: Concepts of Motion

Physics 4A Chapter 1: Concepts of Motion Physics 4A Chapter 1: Concepts of Motion Anyone who has never made a mistake has never tried anything new. Albert Einstein Experience is the name that everyone gives to his mistakes. Oscar Wilde The only

More information

AP Calculus. Applications of Derivatives. Table of Contents

AP Calculus. Applications of Derivatives.   Table of Contents AP Calculus 2015 11 03 www.njctl.org Table of Contents click on the topic to go to that section Related Rates Linear Motion Linear Approximation & Differentials L'Hopital's Rule Horizontal Tangents 1 Related

More information

Physics 208 Test 2 Spring 2000

Physics 208 Test 2 Spring 2000 Spring 2000 Problems 1-5. Multiple Choice/Short Answer (5 points each / 25 points total) no explanation required, but no partial credit either. However, a bonus of up to two points may be awarded if an

More information

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable.

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable. C H A P T E R 6 Algebra Review This chapter reviews key skills and concepts of algebra that you need to know for the SAT. Throughout the chapter are sample questions in the style of SAT questions. Each

More information

Pre-Algebra Unit 2. Rational & Irrational Numbers. Name

Pre-Algebra Unit 2. Rational & Irrational Numbers. Name Pre-Algebra Unit 2 Rational & Irrational Numbers Name Core Table 2 Pre-Algebra Name: Unit 2 Rational & Irrational Numbers Core: Table: 2.1.1 Define Rational Numbers Vocabulary: Real Numbers the set of

More information

PART A CALCULATOR ACTIVE: Maximum Time: 35 Minutes

PART A CALCULATOR ACTIVE: Maximum Time: 35 Minutes Algebra II: Chapter 5 Unit Test 2 Name: PART A CALCULATOR ACTIVE: Maximum Time: 35 Minutes Fill in the blanks: Put answers in the space provided. 1. The value of k that makes x 2 + kx + 25 4 a perfect

More information

AP Calculus AB Information and Summer Assignment

AP Calculus AB Information and Summer Assignment AP Calculus AB Information and Summer Assignment General Information: Competency in Algebra and Trigonometry is absolutely essential. The calculator will not always be available for you to use. Knowing

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law Electric Flux Gauss s Law Units of Chapter 22 Applications of Gauss s Law Experimental Basis of Gauss s and Coulomb s Laws 22-1 Electric Flux Electric flux: Electric flux through

More information

AP Physics 1 Summer Assignment-2018

AP Physics 1 Summer Assignment-2018 AP Physics 1 Summer Assignment-2018 Welcome to the AP Physics 1 Team! AP Physics 1 is an introductory college level physics course. Concept development and problem solving are algebra and trigonometry

More information

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations

ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ASTRO 1050 LAB #1: Scientific Notation, Scale Models, and Calculations ABSTRACT We will be doing some review of Math concepts in this lab. Scientific notation, unit conversions, scale modeling, time to

More information

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself.

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself. IDS 102 Intensity of Light and Heat When talking about a light source, most people are more comfortable with the word brightness than they are with the word intensity. Scientists generally prefer the word

More information

Curriculum Map: Mathematics

Curriculum Map: Mathematics Curriculum Map: Mathematics Course: Calculus Grade(s): 11/12 Unit 1: Prerequisites for Calculus This initial chapter, A Prerequisites for Calculus, is just that-a review chapter. This chapter will provide

More information

Equipotentials and Electric Fields

Equipotentials and Electric Fields Equipotentials and Electric Fields PURPOSE In this lab, we will investigate the relationship between the equipotential surfaces and electric field lines in the region around several different electrode

More information

Lab Slide Rules and Log Scales

Lab Slide Rules and Log Scales Name: Lab Slide Rules and Log Scales [EER Note: This is a much-shortened version of my lab on this topic. You won t finish, but try to do one of each type of calculation if you can. I m available to help.]

More information

7.7. Factoring Special Products. Essential Question How can you recognize and factor special products?

7.7. Factoring Special Products. Essential Question How can you recognize and factor special products? 7.7 Factoring Special Products Essential Question How can you recognize and factor special products? Factoring Special Products LOOKING FOR STRUCTURE To be proficient in math, you need to see complicated

More information

Building your toolbelt

Building your toolbelt Building your toolbelt Using math to make meaning in the physical world. Dimensional analysis Func;onal dependence / scaling Special cases / limi;ng cases Reading the physics in the representa;on (graphs)

More information