22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 14: Formulation of the Stability Problem

Size: px
Start display at page:

Download "22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 14: Formulation of the Stability Problem"

Transcription

1 .65, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Formulation of the Stability Problem Hierarchy of Formulations of the MHD Stability Problem for Arbitrary 3-D Systems. Linearized equations of motion. Normal mode eigenvalue approach 3. Variational approach 4. Energy principle 5. Extended Energy Principle Linearized Equations of Motion Assume we have an equilibrium satisfying static J B = p V = E = B = u J ρ arb. B = Q = Q x 3D in general Linearize the Equation Q( x,t) = Q ( x) + Q ( x,t) ρ + ρ v = ρ Mass: + ρ v = Energy: dp rp v dt + = p + v p + rp v = amp L: μ J = B μ J = B B : B = B = Faraday: Momentum: B = E = v B dv ρ = J B p dt B = ( v B) v ρ = J B + J B p.65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page of 8

2 Simplify the PDE s by introducing the displacement sector ξ and appropriate initial conditions a. v ξ = t b. ξ is the plasma displacement away from equilibrium Initial Conditions: Assume the plasma is in its equilibrium position moving away with a small velocity ξ x, = B x, = ρ x, = p x, = ξ v ( x,) = ( x,) Simplify the equations ( B = not needed, redundant) Express all quantities in terms of ξ Mass: Energy: ρ + ρ v = ρ + ρξ = ( p +ξ p + rp ξ ) = ( B ξ B ) = Faraday: Ampere μ J = B Momentum: ρ = ( ρξ ) p p rp = ξ ξ B = ( ξ B) μ J = ξ B v ρ = J B + J B ρ a. ξ ξ ρ = F( ξ ) Cξ ( x,) =, ( x,) = given, + B.C. b. ( B ) F ξ = ξ B B + ξ B + ξ p + rp ξ μ a μ.65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page of 8

3 Initial Value Approach Solve the linear equations of motion Advantages: a. directly gives time evolution of the system b. fastest growing mode automatically appears c. good stand for nonlinear calculations Disadvantages: a. more information contained than required to determine stability Normal Mode Approach b. extra work is required analytically and numerically to determine this information c. tough to find marginal stability A more efficient procedure that treats one mode at a time. The initial ξ ( x, ) can be decomposed into normal modes. Each mode is then analyzed separately 3. To do this we fourier analyze in time i t = ω ξ = ξ Q x,t Q x e x,t x e ω i t 4. Why is this legitimate? 5. Note: The equations for ρ,b,j,p no explicit ω's appear. We find (drop subscript) do not have any time durations. Hence, ρ = ρξ p = ξ p rp ξ B ( B) = ξ ( B ) μ J = ξ.65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page 3 of 8

4 The momentum equation becomes (F has no time derivation) ω ρξ = F ( ξ ) ( ξ ) = + F J B J B p We only need B.C. ω eigenvalue This is normal mode approach Advantages: a. more amenable to analysis b. directly addresses stability question (examine from ω ) c. more convenient numerically Disadvantages: a. cannot be generalized for nonlinear calculation Properties of F b. still relatively complicated. To proceed further (variational approach, energy principle) we need to understand the properties of the force operator F ( ξ ). We show that a. F ( ξ ) is self adjoint b. ω is purely real c. the normal modes are orthogonal 3. Self adjointness ( procedures) a. subtle but elegant b. direct but complicated The basic self adjoint property is associated with the conservation of energy; there is no dissipation in the system Self Adjoint Property a. η F( ξ ) dr = ξ F( η) dr where ξ and n are any two arbitrary, independent sectors satisfying the boundary conditions.65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page 4 of 8

5 b. Simple self adjoint equations: ξ η ξdr, η dr = ξ η dr x x ξ η c. A non self adjoint equation: η dr = ξ dr x x Direct Demonstration: Very Tedious Calculation. Assume n ξ = n η= as plasma boundary (can be generalized) μ. η F( ξ ) dr = dr ( B ξ )( B η ) + rp( ξ)( η) ( )( ) B + ξ + ξ κ η + η κ μ F 4B B ( ξ κ)( η κ ) + ( η ξ : ) p + μ μ is self adjoint by inspection: switch ξ and η, get the same result. Show that ω is real ω ρ ξ = ξ > d r ξ. F *. ω ρ ξ = ξ ( ξ) * dr F dr * 3. Similarly * F( * ) ω ρ ξ = ξ > drξ real operator * * * 4. ω ρ ξ = ξ ( ξ ) dr F dr 5. Subtract the equations * * * dr dr F F ω ω ρξ = ξ ξ ξ ξ = because of the self adjoint property.65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page 5 of 8

6 6. Therefore ω = ω * ω is real This has important consequences. At marginal stability we note that by definition ω i =. In ideal MHD ω r = also!! This is a big help. There is no need to find 3. ω ρξ = F ( ξ ) ωr real real ξ real r, t r e ω i t 4. That ξ is real is not initially obvious ξ = ξ 5. We continue to allow complex ξ to simplify fourier analysis in space, later on. i ( r) ( r) e im θ τ kz ξ = ξ for example.65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page 6 of 8

7 Show that the Normal Modes are Orthogonal. Consider two normal modes (assume real ξ now) m m F m n ω ρ ξ = ξ > ξ m n F n m ω ρ ξ = ξ > ξ. Subtract dr dr ( ωn ω ) m ρξm ξ n = ξn ( ξm) ξm ( ξ n) dr F F dr = by the self adjoint property 3. For n m n m, ω ω ρξ n ξ m dr = orthogonal property 4. For n=m choose ρξ m dr = orthonormal Spectrum of E In general F exhibits both discrete eigenvalues and continua Spectrum: F F ω ρ ξ = ξ ξ = ω + initial conditions ρ The points where ω + do not exist define the spectrum of F ρ F.65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page 7 of 8

8 Examples Continua significantly complicate MHD analysis for general initial value problems. They require more than just picking up the pole contributions from the displace transform. However the continua lie on stable side of the spectrum and thus do not affect stability. Accumulation points: these provide a simple necessary condition for stability..65, MHD Theory of Fusion Systems Lecture 4 Prof. Freidberg Page 8 of 8

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

Reflections and Rotations in R 3

Reflections and Rotations in R 3 Reflections and Rotations in R 3 P. J. Ryan May 29, 21 Rotations as Compositions of Reflections Recall that the reflection in the hyperplane H through the origin in R n is given by f(x) = x 2 ξ, x ξ (1)

More information

Linear stability of MHD configurations

Linear stability of MHD configurations Linear stability of MHD configurations Rony Keppens Centre for mathematical Plasma Astrophysics KU Leuven Rony Keppens (KU Leuven) Linear MHD stability CHARM@ROB 2017 1 / 18 Ideal MHD configurations Interested

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

Computations with Discontinuous Basis Functions

Computations with Discontinuous Basis Functions Computations with Discontinuous Basis Functions Carl Sovinec University of Wisconsin-Madison NIMROD Team Meeting November 12, 2011 Salt Lake City, Utah Motivation The objective of this work is to make

More information

Waves and characteristics: Overview 5-1

Waves and characteristics: Overview 5-1 Waves and characteristics: Overview 5-1 Chapter 5: Waves and characteristics Overview Physics and accounting: use example of sound waves to illustrate method of linearization and counting of variables

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

Overview of FRC-related modeling (July 2014-present)

Overview of FRC-related modeling (July 2014-present) Overview of FRC-related modeling (July 2014-present) Artan Qerushi AFRL-UCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 4 Continuous Systems and Fields (Chapter 13) What We Did Last Time Built Lagrangian formalism for continuous system Lagrangian L Lagrange s equation = L dxdydz Derived simple

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 19

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 19 . tability of the straight tokamak.65, MHD Theory of Fusion ystems Prof. Freidberg Lecture 9. ressure driven modes (uydams Criterion). internal modes 3. external modes. Tokamak Ordering Bθ ar B μ q or

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 31 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Linearization and Characteristic Relations 1 / 31 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

More information

Problems in Magnetostatics

Problems in Magnetostatics Problems in Magnetostatics 8th February 27 Some of the later problems are quite challenging. This is characteristic of problems in magnetism. There are trivial problems and there are tough problems. Very

More information

Notes on SU(3) and the Quark Model

Notes on SU(3) and the Quark Model Notes on SU() and the Quark Model Contents. SU() and the Quark Model. Raising and Lowering Operators: The Weight Diagram 4.. Triangular Weight Diagrams (I) 6.. Triangular Weight Diagrams (II) 8.. Hexagonal

More information

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T 16.20 Techniques of Structural Analysis and Design Spring 2013 Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T February 15, 2013 2 Contents 1 Stress and equilibrium 5 1.1 Internal forces and

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Long-wave Instability in Anisotropic Double-Diffusion

Long-wave Instability in Anisotropic Double-Diffusion Long-wave Instability in Anisotropic Double-Diffusion Jean-Luc Thiffeault Institute for Fusion Studies and Department of Physics University of Texas at Austin and Neil J. Balmforth Department of Theoretical

More information

Chapter 0. Preliminaries. 0.1 Things you should already know

Chapter 0. Preliminaries. 0.1 Things you should already know Chapter 0 Preliminaries These notes cover the course MATH45061 (Continuum Mechanics) and are intended to supplement the lectures. The course does not follow any particular text, so you do not need to buy

More information

Current-driven instabilities

Current-driven instabilities Current-driven instabilities Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 21 st February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously In the last

More information

Electromagnetic Theory

Electromagnetic Theory Summary: Electromagnetic Theory Maxwell s equations EM Potentials Equations of motion of particles in electromagnetic fields Green s functions Lienard-Weichert potentials Spectral distribution of electromagnetic

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Relativistic magnetohydrodynamics. Abstract

Relativistic magnetohydrodynamics. Abstract Relativistic magnetohydrodynamics R. D. Hazeltine and S. M. Mahajan Institute for Fusion Studies, The University of Texas, Austin, Texas 78712 (October 19, 2000) Abstract The lowest-order description of

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Intermediate Nonlinear Development of a Line-tied g-mode

Intermediate Nonlinear Development of a Line-tied g-mode Intermediate Nonlinear Development of a Line-tied g-mode Ping Zhu University of Wisconsin-Madison In collaboration with C. C. Hegna and C. R. Sovinec (UW-Madison) A. Bhattacharjee and K. Germaschewski

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Various lecture notes for

Various lecture notes for Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 13: PF Design II The Coil Solver

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 13: PF Design II The Coil Solver .615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 13: PF Design II The Coil Solver Introduction 1. Let us assume that we have successfully solved the Grad Shafranov equation for a fixed boundary

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of

More information

ECE 275A Homework #3 Solutions

ECE 275A Homework #3 Solutions ECE 75A Homework #3 Solutions. Proof of (a). Obviously Ax = 0 y, Ax = 0 for all y. To show sufficiency, note that if y, Ax = 0 for all y, then it must certainly be true for the particular value of y =

More information

Tides in Higher-Dimensional Newtonian Gravity

Tides in Higher-Dimensional Newtonian Gravity Tides in Higher-Dimensional Newtonian Gravity Philippe Landry Department of Physics University of Guelph 23 rd Midwest Relativity Meeting October 25, 2013 Tides: A Familiar Example Gravitational interactions

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

6.1. Linearized Wave Equations in a Uniform Isotropic MHD Plasma. = 0 into Ohm s law yields E 0

6.1. Linearized Wave Equations in a Uniform Isotropic MHD Plasma. = 0 into Ohm s law yields E 0 Chapter 6. Linear Waves in the MHD Plasma 85 Chapter 6. Linear Waves in the MHD Plasma Topics or concepts to learn in Chapter 6:. Linearize the MHD equations. The eigen-mode solutions of the MHD waves

More information

ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL VIA LIE GROUP METHOD

ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL VIA LIE GROUP METHOD Electronic Journal of Differential Equations, Vol. 206 (206), No. 228, pp. 8. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL

More information

Tokamak Fusion Basics and the MHD Equations

Tokamak Fusion Basics and the MHD Equations MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is. The Energy Balance Consider a volume Ω enclosing a mass M and bounded by a surface δω. δω At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Chem 72 Nuclear Magnetic Resonance Experiment 4. Introduction

Chem 72 Nuclear Magnetic Resonance Experiment 4. Introduction Introduction This experiment involves the analysis of the nuclear magnetic resonance spectrum of the two 31 P nuclei, A and B, in the novel platinum compound shown below 1, Pt(dppe)(CH CHCN), where dppe

More information

Nonlinear Waves: Woods Hole GFD Program 2009

Nonlinear Waves: Woods Hole GFD Program 2009 Nonlinear Waves: Woods Hole GFD Program 2009 Roger Grimshaw Loughborough University, UK July 13, 2009 Lecture 10: Wave-Mean Flow Interaction, Part II The Great Wave at Kanagawa 929 (JP1847) The Great Wave

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Tom Elsden 1 Andrew Wright 1 1 Dept Maths & Stats, University of St Andrews DAMTP Seminar - 8th May 2017 Outline Introduction Coordinates

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 12 Saarland University 15. Dezember 2014 c Daria Apushkinskaya (UdS) PDE and BVP lecture 12 15. Dezember 2014 1 / 24 Purpose of Lesson To introduce

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model

Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model 9th IAEA TM on H-mode Physics and Transport Barriers Catamaran Resort Hotel, San Diego 3-9-5 Modeling of Transport Barrier Based on Drift Alfvén Ballooning Mode Transport Model A. Fukuyama, M. Uchida and

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

Chapter 18. Remarks on partial differential equations

Chapter 18. Remarks on partial differential equations Chapter 8. Remarks on partial differential equations If we try to analyze heat flow or vibration in a continuous system such as a building or an airplane, we arrive at a kind of infinite system of ordinary

More information

Radiation Integrals and Auxiliary Potential Functions

Radiation Integrals and Auxiliary Potential Functions Radiation Integrals and Auxiliary Potential Functions Ranga Rodrigo June 23, 2010 Lecture notes are fully based on Balanis [?]. Some diagrams and text are directly from the books. Contents 1 The Vector

More information

Time-Varying Systems; Maxwell s Equations

Time-Varying Systems; Maxwell s Equations Time-Varying Systems; Maxwell s Equations 1. Faraday s law in differential form 2. Scalar and vector potentials; the Lorenz condition 3. Ampere s law with displacement current 4. Maxwell s equations 5.

More information

2 GOVERNING EQUATIONS

2 GOVERNING EQUATIONS 2 GOVERNING EQUATIONS 9 2 GOVERNING EQUATIONS For completeness we will take a brief moment to review the governing equations for a turbulent uid. We will present them both in physical space coordinates

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Implicit Schemes for the Model Problem The Crank-Nicolson scheme and θ-scheme

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: of SP Hard Rods M. Cristina Marchetti Syracuse University Baskaran & MCM, PRE 77 (2008);

More information

Equations of linear stellar oscillations

Equations of linear stellar oscillations Chapter 4 Equations of linear stellar oscillations In the present chapter the equations governing small oscillations around a spherical equilibrium state are derived. The general equations were presented

More information

Lecture Notes 6: Dynamic Equations Part A: First-Order Difference Equations in One Variable

Lecture Notes 6: Dynamic Equations Part A: First-Order Difference Equations in One Variable University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 54 Lecture Notes 6: Dynamic Equations Part A: First-Order Difference Equations in One Variable Peter J. Hammond latest revision 2017

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

Fundamentals of Magnetohydrodynamics (MHD)

Fundamentals of Magnetohydrodynamics (MHD) Fundamentals of Magnetohydrodynamics (MHD) Thomas Neukirch School of Mathematics and Statistics University of St. Andrews STFC Advanced School U Dundee 2014 p.1/46 Motivation Solar Corona in EUV Want to

More information

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere P. Song Center for Atmospheric Research University of Massachusetts Lowell V. M. Vasyliūnas Max-Planck-Institut

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

Nonlinear MHD Stability and Dynamical Accessibility

Nonlinear MHD Stability and Dynamical Accessibility Nonlinear MHD Stability and Dynamical Accessibility Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University Philip J. Morrison Department of Physics and Institute

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets George A. Hagedorn Happy 60 th birthday, Mr. Fritz! Abstract. Although real, normalized Gaussian wave packets minimize the product

More information

EE16B - Spring 17 - Lecture 12A Notes 1

EE16B - Spring 17 - Lecture 12A Notes 1 EE6B - Spring 7 - Lecture 2A Notes Murat Arcak April 27 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4. International License. Sampling and Discrete Time Signals Discrete-Time

More information

26. Non-linear effects in plasma

26. Non-linear effects in plasma Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 1 26. Non-linear effects in plasma Collisionless shocks ([1], p.405-421, [6], p.237-245, 249-254; [4], p.429-440) Collisionless

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

An Application of Perturbation Methods in Evolutionary Ecology

An Application of Perturbation Methods in Evolutionary Ecology Dynamics at the Horsetooth Volume 2A, 2010. Focused Issue: Asymptotics and Perturbations An Application of Perturbation Methods in Evolutionary Ecology Department of Mathematics Colorado State University

More information

Dirac equation for dummies or theory of elasticity for the seriously advanced

Dirac equation for dummies or theory of elasticity for the seriously advanced Dirac equation for dummies or theory of elasticity for the seriously advanced James Burnett, Olga Chervova and Dmitri Vassiliev 30 January 2009 KCL Colloquium Dirac s equation is a model for (a) electron

More information

12. MHD Approximation.

12. MHD Approximation. Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169-183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal

More information

22 Approximations - the method of least squares (1)

22 Approximations - the method of least squares (1) 22 Approximations - the method of least squares () Suppose that for some y, the equation Ax = y has no solutions It may happpen that this is an important problem and we can t just forget about it If we

More information

3 Constitutive Relations: Macroscopic Properties of Matter

3 Constitutive Relations: Macroscopic Properties of Matter EECS 53 Lecture 3 c Kamal Sarabandi Fall 21 All rights reserved 3 Constitutive Relations: Macroscopic Properties of Matter As shown previously, out of the four Maxwell s equations only the Faraday s and

More information

1.7. Stability and attractors. Consider the autonomous differential equation. (7.1) ẋ = f(x),

1.7. Stability and attractors. Consider the autonomous differential equation. (7.1) ẋ = f(x), 1.7. Stability and attractors. Consider the autonomous differential equation (7.1) ẋ = f(x), where f C r (lr d, lr d ), r 1. For notation, for any x lr d, c lr, we let B(x, c) = { ξ lr d : ξ x < c }. Suppose

More information

Linear Hyperbolic Systems

Linear Hyperbolic Systems Linear Hyperbolic Systems Professor Dr E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro October 8, 2014 1 / 56 We study some basic

More information

Ideal MHD Equilibria

Ideal MHD Equilibria CapSel Equil - 01 Ideal MHD Equilibria keppens@rijnh.nl steady state ( t = 0) smoothly varying solutions to MHD equations solutions without discontinuities conservative or non-conservative formulation

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

SOLAR MHD Lecture 2 Plan

SOLAR MHD Lecture 2 Plan SOLAR MHD Lecture Plan Magnetostatic Equilibrium ü Structure of Magnetic Flux Tubes ü Force-free fields Waves in a homogenous magnetized medium ü Linearized wave equation ü Alfvén wave ü Magnetoacoustic

More information

Numerics and Control of PDEs Lecture 7. IFCAM IISc Bangalore. Feedback stabilization of a 1D nonlinear model

Numerics and Control of PDEs Lecture 7. IFCAM IISc Bangalore. Feedback stabilization of a 1D nonlinear model 1/3 Numerics and Control of PDEs Lecture 7 IFCAM IISc Bangalore July August, 13 Feedback stabilization of a 1D nonlinear model Mythily R., Praveen C., Jean-Pierre R. /3 Plan of lecture 7 1. The nonlinear

More information

Lecture #8: Quantum Mechanical Harmonic Oscillator

Lecture #8: Quantum Mechanical Harmonic Oscillator 5.61 Fall, 013 Lecture #8 Page 1 Last time Lecture #8: Quantum Mechanical Harmonic Oscillator Classical Mechanical Harmonic Oscillator * V(x) = 1 kx (leading term in power series expansion of most V(x)

More information

The Rocket Car. UBC Math 403 Lecture Notes by Philip D. Loewen

The Rocket Car. UBC Math 403 Lecture Notes by Philip D. Loewen The Rocket Car UBC Math 403 Lecture Notes by Philip D. Loewen We consider this simple system with control constraints: ẋ 1 = x, ẋ = u, u [ 1, 1], Dynamics. Consider the system evolution on a time interval

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

MHD Linear Stability Analysis Using a Full Wave Code

MHD Linear Stability Analysis Using a Full Wave Code US-Japan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto

More information

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada December

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions R. Farengo, H. E. Ferrari,2, M.-C. Firpo 3, P. L. Garcia-Martinez 2,3, A. F. Lifschitz

More information

Diffusion of a density in a static fluid

Diffusion of a density in a static fluid Diffusion of a density in a static fluid u(x, y, z, t), density (M/L 3 ) of a substance (dye). Diffusion: motion of particles from places where the density is higher to places where it is lower, due to

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

Physics 141. Lecture 3. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 03, Page 1

Physics 141. Lecture 3. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 03, Page 1 Physics 141. Lecture 3. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 03, Page 1 Physics 141. Lecture 3. Today's Topics: Course Information: Laboratories - software.

More information