Astronomy. = k. Phys We now understand HOW the planets move but not WHY they move. Review. Galileo: The Death of the Earth Centered Universe

Size: px
Start display at page:

Download "Astronomy. = k. Phys We now understand HOW the planets move but not WHY they move. Review. Galileo: The Death of the Earth Centered Universe"

Transcription

1 Phys 8-70 Astronoy Galileo s Apparatus Deutches Museu, Munchen, Gerany To coand the professors of astronoy to confute their own obserations is to enjoin an ipossibility, for it is to coand the to not see what they do see, and not to understand what they do understand, and to find what they do not discoer. Galileo Galilei In Science EVIEW: Kepler Deelops Three Laws: Law of Ellipses Law of Areas Haronic Law P a = k = constant Nuero pondere et ensura Deus onia condidit. Sir Isaac Newton Principia Matheatica P = k =constant a If I hae been able to see further, it was only because I stood on the shoulders of giants. Newton, in a letter to obert Hooke We now understand HOW the planets oe but not WHY they oe. eiew Galileo: The Death of the Earth Centered Unierse 56-6 Conteporary of Kepler Deonstrated that all objects are accelerated by graity by the sae aount Moing objects reain in otion Built a telescope in 609 * and obsered the Sun, Moon, Milky Way, Moons of Jupiter and the phases of Venus. * Hans Lippershey inented the telescope in 608 If we assue (incorrectly) that the Tower of Pisa is 0 tall, the ball will take s to hit the ground. 5 6

2 Sir Isaac Newton 6-77 Newton s Laws: Een if the ball is thrown horizontally fro the tower, the acceleration toward the earth is still 0/s.. All objects at rest shall reain at rest and all objects in otion shall reain in otion in a straight line, unless copelled by a FOCE to do otherwise. As a result, the ball that is dropped and the ball that is thrown both hit the ground after seconds!!!. The ACCELEATION of any object is directly proportional to the FOCE applied to it and inersely proportional to its MASS. We will return to this essential idea in a few slides 7. For eery force applied to an object, there is an equal and opposite force applied by the object on the actor. 8 N e w t o n. s Newton s Laws elatie to Galileo s Experient:. When the ball is dropped it ceases to be at rest. Therefore there ust be a force, directed downward, to cause the acceleration.. The acceleration will be equal to the force that graity exerts on the ball diided by the ass of the ball, that is, the acceleration is equal to the force per unit ass.. If the Earth exerts a graitational force on the ball, the ball ust exert an equal and opposite force on the Earth!!!! 9 Law of Uniersal Graitation Newton knows that the ore ass an object has, the greater the force of Graity on it. F G = g Where g is the special nae gien to the acceleration that is caused by graity. 0 /s 0 The inerse square law Inerse square F The Law = G MM r G = kg s

3 Exaple: M = ass of professor = M = ass of earth = kg 6 r = radius of the earth = F = = 9 Newtons ( ) kg 6 9 Newtons = 90 lbs 6. Newtons = lb Exaple = B kg Assuptions Mass of baby Knowns = 6. x0kg M Mass of Mars D = 70kg Mass of doctor = 8. x0 BM Mars-Baby Distance = BD Distance between baby and doctor G = 667. x0 Uniersal Graitational Constant 5 6 F BD G B D = = 9. x0 BD 9 N Weighing the Earth F BM G B M = = BM 60 x N A & B hae equal asses and therefore equal weights. The rod is balanced. 7 8

4 eturn to Pisa The earth is not flat eturn to Pisa The ery sall ass is needed to balance the graitational force of the ery large ass. G can be calculated! Knowing G and Kepler s Law s allows us to calculate the ass of the Earth, Sun and all of the planets oons and asteroids in the solar syste 9 0 Cured Earth Question If the earth is cured such that it cures away 5 eters for eery 8000 eters traeled, how fast would the projectile need to be going so that, after falling 5 eters, it was still 5 eters aboe the earth? After one second the projectile has fallen fie eters But the earth has cured away. Q u e s t i a = k P 8000 /s!!! WE NOW UNDESTAND Suary Calculus and Planetary Motion Uniersal Graitation used to deterine the ass of the Earth Satellite otion possible Solar syste trael ade possible WE AE UNCLEA ON Newton inents calculus Newton Proes Kepler s Laws Tides understood Moon lock understood

5 t h h= at ( ) ( ) + t = + h + ( t) = ( + h) + t = + h+ h t = at + at = a+ a t WHICH IS NOT THE IGHT ANSWE. 5 6 This does not represent the true otion. The true otion is reealed when we Make the tie ery, ery, ery sall 7 = a+ a t = a a = 8 Newton Tells us that F = a An that, for graity in particular F = G M We hae just discoered that We ay deduce then that a = = G M = G M G M π = but = T T π = GM 9 0 5

6 Deterine the ass of the SUN. M = π G T =.96 x 0 T =.56 x 0 7 s G = 6.67 x 0 - N /kg M =.99 x 0 0 kg Forces are Balanced on a Spherical Moon Forces in Copetition on a Prolate Moon Forces are Balanced when Collinear on a Prolate Moon S u a IMPOTANT Objects fall at the sae rate. Newton s Laws Inerse Square Law of Graity Nature of Orbits enaissance Astronoers Electroagnetic adiation NEXT TIME 5 6 6

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

The Acceleration of Gravity (g)

The Acceleration of Gravity (g) The Acceleration of Gravity (g) Galileo demonstrated that g is the same for all objects, regardless of their mass! Confirmed by Apollo astronauts on the Moon, where there is no air resistance. https://www.youtube.com/watch?v=5c5_doeyafk

More information

Name Class Date. two objects depends on the masses of the objects.

Name Class Date. two objects depends on the masses of the objects. CHAPTER 12 2 Gravity SECTION Forces KEY IDEAS As you read this section keep these questions in ind: What is free fall? How are weight and ass related? How does gravity affect the otion of objects? What

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Lecture 5. Galileo & Kepler to Newton Universal Laws of Classical Mechanics

Lecture 5. Galileo & Kepler to Newton Universal Laws of Classical Mechanics Galileo & Kepler to Newton Uniersal Laws of lassical Mechanics Inertia rbit = Ellipse P = ka 3 Equal reas in Equal Times Today Newton puts it together: Generally regarded as the greatest scientific achieement

More information

5. Universal Laws of Motion

5. Universal Laws of Motion 5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (164 177) Physicist Image courtesy of NASA/JPL Sir Isaac Newton (164-177)

More information

11 Newton s Law of Universal Gravitation

11 Newton s Law of Universal Gravitation Physics 1A, Fall 2003 E. Abers 11 Newton s Law of Universal Gravitation 11.1 The Inverse Square Law 11.1.1 The Moon and Kepler s Third Law Things fall down, not in some other direction, because that s

More information

T = 2.34x10 6 s = 27.2days.

T = 2.34x10 6 s = 27.2days. Sole the following probles in the space proided Use the back of the page if needed Each proble is worth 10 points You ust show your work in a logical fashion starting with the correctly applied and clearly

More information

Lecture: October 1, 2010

Lecture: October 1, 2010 Lecture: October 1, 2010 How long would it take to walk to Alpha Centauri? Announcements: Next Observatory Opportunity: Wednesday October 6 Phases of Matter the phases solid liquid gas plasma depend on

More information

3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces

3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces Physics 106 Lecture 10 Kepler s Laws and Planetary Motion-continued SJ 7 th ed.: Chap 1., 1.6 Kepler s laws of planetary otion Orbit Law Area Law Period Law Satellite and planetary orbits Orbits, potential,

More information

2. Which of the following best describes the relationship between force and potential energy?

2. Which of the following best describes the relationship between force and potential energy? Work/Energy with Calculus 1. An object oves according to the function x = t 5/ where x is the distance traveled and t is the tie. Its kinetic energy is proportional to (A) t (B) t 5/ (C) t 3 (D) t 3/ (E)

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Kepler Galileo and Newton

Kepler Galileo and Newton Kepler Galileo and Newton Kepler: determined the motion of the planets. Understanding this motion was determined by physicists like Galileo and Newton and many others. Needed to develop Physics as a science:

More information

Today. Laws of Motion. Conservation Laws. Gravity. tides

Today. Laws of Motion. Conservation Laws. Gravity. tides Today Laws of Motion Conservation Laws Gravity tides Newton s Laws of Motion Our goals for learning: Newton s three laws of motion Universal Gravity How did Newton change our view of the universe? He realized

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Lecture Fall 2005 Astronomy 110 1

Lecture Fall 2005 Astronomy 110 1 Lecture 9 + 10 Fall 2005 Astronomy 110 1 Isaac Newton and the birth of Physics If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (1642 1727) Nature

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

Astronomy 1 Winter 2011

Astronomy 1 Winter 2011 Astronomy 1 Winter 2011 Lecture 5; January 12 2011 Previously on Astro-1 Planets appear to move on the sky mostly West to East but occasionally with retrograde motions The ancients thought that the Earth

More information

PHYS 101 Previous Exam Problems. Gravitation

PHYS 101 Previous Exam Problems. Gravitation PHYS 101 Previous Exam Problems CHAPTER 13 Gravitation Newton s law of gravitation Shell theorem Variation of g Potential energy & work Escape speed Conservation of energy Kepler s laws - planets Orbits

More information

4.1 Describing Motion

4.1 Describing Motion Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets. Chapter Four Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Unit 5 Gravitation Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Into to Gravity Phet Simulation Today: Make sure to collect all data. Finished lab due tomorrow!! Universal Law

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves example: speed of

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (1642 1727)

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

Questions Chapter 13 Gravitation

Questions Chapter 13 Gravitation Questions Chapter 13 Gravitation 13-1 Newton's Law of Gravitation 13-2 Gravitation and Principle of Superposition 13-3 Gravitation Near Earth's Surface 13-4 Gravitation Inside Earth 13-5 Gravitational

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 1: In the Beginning Introduction to Spacecraft Dynamics Overview of Course Objectives Determining Orbital Elements Know

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves $ speed = distance!#"units

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

Keplerian Orbits. If two otherwise isolated particles interact through a force law their trajectories can be

Keplerian Orbits. If two otherwise isolated particles interact through a force law their trajectories can be Keplerian Orbits 1 If two otherwise isolated particles interact through a force law their trajectories can be r reduced to conic sections. This is called Kepler s problem after Johannes Kepler who studied

More information

Sir Isaac Newton. Newton s Laws of Motion. Mass. First Law of Motion. Weight. Weight

Sir Isaac Newton. Newton s Laws of Motion. Mass. First Law of Motion. Weight. Weight Sir Isaac Newton Newton s Laws of Motion Suppleental Textbook Material Pages 300-320 Born 1642 1665 began individual studies Proved universal gravitation Invented the Calculus Reflector telescope 1672

More information

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity Welcome back to Physics 211 Today s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 211 Spring 2014 Lecture 14-1 1 Gravity Before 1687, large amount of data collected

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

Astronomy 104: Stellar Astronomy

Astronomy 104: Stellar Astronomy Astronomy 104: Stellar Astronomy Lecture 8: Becoming Astrophysicists 2 Spring Semester 2013 Dr. Matt Craig 1 1 Galileo s Observations and Newton s Laws a.k.a. Becoming Astrophysicists 2 2 Objectives Explain

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: Gravity 15-2 1 Current assignments HW#15 due Monday, 12/12 Final Exam, Thursday, Dec. 15 th, 3-5pm in 104N. Two sheets of handwritten notes and a calculator

More information

Gravity and the Orbits of Planets

Gravity and the Orbits of Planets Gravity and the Orbits of Planets 1. Gravity Galileo Newton Earth s Gravity Mass v. Weight Einstein and General Relativity Round and irregular shaped objects 2. Orbits and Kepler s Laws ESO Galileo, Gravity,

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

Gravity and the Laws of Motion

Gravity and the Laws of Motion Gravity and the Laws of Motion Mass Mass is the amount of stuff (matter) in an object. Measured in grams (kg, mg, cg, etc.) Mass will not change unless matter is added or taken away. Weight Weight is the

More information

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion?

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Agenda Announce: Stony Brook talk this Friday on Precision Cosmology Project Part I due in one week before class: one paragraph

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

In this chapter, you will consider the force of gravity:

In this chapter, you will consider the force of gravity: Gravity Chapter 5 Guidepost In this chapter, you will consider the force of gravity: What were Galileo s insights about motion and gravity? What were Newton s insights about motion and gravity? How does

More information

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium Gat ew ay T o S pace AS EN / AS TR 2500 Class # 19 Colorado S pace Grant Consortium Announcements: - Launch Readiness Review Cards - 11 days to launch Announcements: - Launch Readiness Review Cards - 11

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: More rolling without slipping Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2018 Lecture 13-1 1 Rolling without slipping

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Homework #2 is online and is due next Friday! Planetarium shows are getting full. Solar Observing starts Monday!

Homework #2 is online and is due next Friday! Planetarium shows are getting full. Solar Observing starts Monday! Homework #1 was due at 11:50am! Now it s too late! Homework #2 is online and is due next Friday! New format for lectures 4 sheets per page PDF. Planetarium shows are getting full. Solar Observing starts

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity 9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

More information

Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes

Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes Module 3: Astronomy The Universe The Age of Astronomy was marked by the struggle to understand the placement of Earth in the universe and the effort to understand planetary motion. Behind this struggle

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL LINEAR IMPULSE AND MOMENTUM On copletion of this ttorial yo shold be able to do the following. State Newton s laws of otion. Define linear

More information

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index.

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index. Page 1 of 6 1. A certain string just breaks when it is under 400 N of tension. A boy uses this string to whirl a 10-kg stone in a horizontal circle of radius 10. The boy continuously increases the speed

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 05 Saskatchewan High School Physics Scholarship Copetition May, 05 Tie allowed: 90 inutes This copetition is based on the Saskatchewan

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton. Orbits of the planets, moons, Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

More information

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 )

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 ) Chapter Seenteen: Electric Potential and Electric Energy Key Ter Electric Potential electrical potential energy per unit charge (JC -1 ) Page 1 of Electrical Potential Difference between two points is

More information

HSC Physics Core 9.2 Space! Part 2: Launching into orbit! Overview of Part 2:!

HSC Physics Core 9.2 Space! Part 2: Launching into orbit! Overview of Part 2:! Go to the ideo lesson for this slide deck: h2p://edrolo.com.au/subjects/physics/hsc- physics/space- part- 2/escape- elocity/lesson/ HSC Physics Core 9.2 Space Part 2: Launching into orbit Oeriew of Part

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Comet Halley Edmund Halley, a friend of Newton s used Newton s math to predict the return of a comet seen at intervals of 76 years. Lecture 3; September 29, 2016 Previously on Astro-1

More information

WYSE Academic Challenge Sectional Physics 2006 Solution Set

WYSE Academic Challenge Sectional Physics 2006 Solution Set WYSE Acadeic Challenge Sectional Physics 6 Solution Set. Correct answer: d. Using Newton s nd Law: r r F 6.N a.kg 6./s.. Correct answer: c. 6. sin θ 98. 3. Correct answer: b. o 37.8 98. N 6. N Using Newton

More information

Finding Extrasolar Planets. I

Finding Extrasolar Planets. I ExtraSolar Planets Finding Extrasolar Planets. I Direct Searches Direct searches are difficult because stars are so bright. How Bright are Planets? Planets shine by reflected light. The amount reflected

More information

Unit 4 Forces (Newton s Laws)

Unit 4 Forces (Newton s Laws) Name: Pd: Date: Unit Forces (Newton s Laws) The Nature of Forces force A push or pull exerted on an object. newton A unit of measure that equals the force required to accelerate kilogram of mass at meter

More information

Venus Phases & Newton s Laws

Venus Phases & Newton s Laws Venus Phases & Newton s Laws Homework: Questions? Seasons: Count the number of days! Winter is shortest (in northern hemisphere) Copernicus did away with major but not minor epicycles Thanks a lot for

More information

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc.

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc. Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Our goals for learning: How do we describe motion? How is mass different from weight?

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information

Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space. https://saturn.jpl.nasa.gov/mission/grand-finale/overview/

Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space. https://saturn.jpl.nasa.gov/mission/grand-finale/overview/ Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space https://saturn.jpl.nasa.gov/mission/grand-finale/overview/ Laws of Motion Conservation Laws Gravity tides Today Why are astronauts weightless

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

Chapter GRAVITATION. Activity Gravitation. Let us try to understand the motion of the moon by recalling activity 8.11.

Chapter GRAVITATION. Activity Gravitation. Let us try to understand the motion of the moon by recalling activity 8.11. Chapter 10 GRAVITATION In Chapters 8 and 9, we have learnt about the otion of objects and force as the cause of otion. We have learnt that a force is needed to change the speed or the direction of otion

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about!

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about! Collisions (L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details of the

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39.

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39. Systes of Masses. Ignoring friction, calculate the acceleration of the syste below and the tension in the rope. Drawing individual free body diagras we get 4.0kg 7.0kg g 9.80 / s a?? g and g (4.0)(9.80)

More information

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases.

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 8IDENTIFY and SET U: p = K = EXECUTE: (a) 5 p = (, kg)( /s) = kg /s 5 p kg /s (b) (i) = = = 6 /s (ii) kg =, so T T SUV SUV, kg ( /s) 68 /s T SUV = T = = SUV kg EVALUATE:The SUV ust hae less speed to hae

More information

CH 8. Universal Gravitation Planetary and Satellite Motion

CH 8. Universal Gravitation Planetary and Satellite Motion CH 8 Universal Gravitation Planetary and Satellite Motion Sir Isaac Newton UNIVERSAL GRAVITATION Newton: Universal Gravitation Newton concluded that earthly objects and heavenly objects obey the same physical

More information

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion:

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion: Fro Last Tie Newton s three laws of otion: 1) Law of inertia ) F=a ( or a=f/ ) 3) Action and reaction (forces always coe in pairs Question If an apple falls toward the Earth, why doesn t the oon fall toward

More information

Kepler Galileo and Newton

Kepler Galileo and Newton Kepler Galileo and Newton Kepler: determined the motion of the planets. Understanding this motion was determined by physicists like Galileo and Newton and many others. Needed to develop Physics as a science:

More information

What is mass? What is inertia? Turn to a partner and discuss. Turn to a new partner and discuss. Mass is. Newton s Law of Universal Gravitation

What is mass? What is inertia? Turn to a partner and discuss. Turn to a new partner and discuss. Mass is. Newton s Law of Universal Gravitation Turn to a partner and discuss Newton s Law of Universal Gravitation ass? Mass is the aount of atter in an object.! a easure of the inertia of an object.! easured in units of kilogras.! constant everywhere.!!

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Physics 11 HW #7 Solutions

Physics 11 HW #7 Solutions hysics HW #7 Solutions Chapter 7: Focus On Concepts: 2, 6, 0, 3 robles: 8, 7, 2, 22, 32, 53, 56, 57 Focus On Concepts 7-2 (d) Moentu is a ector quantity that has a agnitude and a direction. The agnitudes

More information