3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces

Size: px
Start display at page:

Download "3. Period Law: Simplified proof for circular orbits Equate gravitational and centripetal forces"

Transcription

1 Physics 106 Lecture 10 Kepler s Laws and Planetary Motion-continued SJ 7 th ed.: Chap 1., 1.6 Kepler s laws of planetary otion Orbit Law Area Law Period Law Satellite and planetary orbits Orbits, potential, kinetic, total energy. Period Law: Siplified proof for circular orbits Equate gravitational and centripetal forces M v Fg = G = F cent = π recall: v = ω = where T period T ass M 4π cancels: G == T M F g v Kepler Third Law: 4π T = GM. M is ass of the central body. Holds also for eccentric orbits with = sei-ajor axis T Also: 4π = GM, constant for all satellites around the sae object with ass M. For the Solar Syste: M M sun = x 10 0 kg K T 4π S 4 = = = years eter GM 11 0 a sun / 1

2 Sae value for each planet in the solar syste! Sei-ajor Axis Period T /a =K sun Planet a (10 10 ) T (y) (10-4 y / ) Mercury Venus Earth Mars = Jupiter Saturn Uranus Neptune Pluto π GM sun The value of K depends on the object being orbited For exaple, for the Moon around the Earth, K Sun is replaced with K Earth Exaple, Find the ass of the Sun The distance between the Earth and the Sun is x The period of the Earth s orbit is.156 x 10 7 sec. Use Kepler s Third Law to find the ass of the Sun.

3 Exaple: Find the distance a fro Earth to the Moon Moon s period T = 7. days (about 1 onth) Earth s ass e = 5.98 x 10 4 kg G=6.67x10-11 N /kg Exaple: Find Jupiter s period in Earth-years Given: Jupiter s ean distance fro the Sun is 5.19 A. U. Define: 1 AU = 1 Astronoical Unit = Average radius of the Earth s orbit = 9,000,000 iles = 1.5 x eters

4 Orbital radius for Halley s Coet 10.. Since about 40 BC, Halley s coet has reappeared in the sky all over the Earth every 76 years on the average. The latest appearance was in The orbit is quite eccentric, but it still obeys Kepler s rd Law. What is the approxiate, sei-ajor axis of the orbit in A. U.? A) 66 A. U. B).00 A. U. C).056 A. U. D) 4. A. U. E) 17.9 A. U. T a = 4π GM sun for any object orbiting the Sun Physics 106 Lecture 11 Oscillations I SJ 7 th Ed.: Chap 15.1 to, 15.5 Oscillating systes Characterization Exaples: they are everywhere Key concepts Siple haronic otion: a paradig epresentation for displaceent, velocity, acceleration Oscillator equation SHM exaple: spring oscillator (Hooke s law) Energy relations, exaple SHM exaple: torsion pendulu SHM exaple: siple pendulu 4

5 Definition of an Oscillator : A syste executing periodic, repetitive behavior Syste state (t) = state(t+t) = = state(t+nt) T = period = tie to coplete one coplete cycle Exaple: Spring iclicker: If t=0 is chosen as below, which tie corresponds to period T? t=0 A B C D 5

6 Oscillating systes are everywhere in nature: MECHANICAL: pendula (swinging objects on cables) auto suspensions usic/sound (e.g,string instruents) guitar, piano, drus, bells, horns, reeds otating object Siple systes spring x(t) v(t) a(t) vibrating string L pendulu θ θ(t) ω(t) α(t) y(t) v y (t) a y (t) y θ x(t) v x (t) a x (t) unifor circular otion x Water Waves: Haronic oscillations of the level at a point disturbance y1(t) = y10 cos( πft) v y (t) = y cos( πft + φ) 0 v The phase angle Φ sets the clock 6

7 Characterizing oscillations Aplitude x ax axiu displaceent away fro equilibriu (disturbance) displaceent Period T tie for otion to repeat Frequency f = 1/T # of cycles per tie unit [Frequency] = Hertz (Hz) = t -1 Angular frequency: ω = π/τ (π corresponds to one full cycle) ω = πf (units: rad/s) tie Phase where in the cycle the syste is, represented in angle (π corresponds to one full cycle) aplitude Frequency and aplitude of an oscillator The figures show plots of the aplitude of two haronic oscillators versus tie. When object B is copared to object A, which of the following correctly describe the angular frequency and aplitude? A) B has larger frequency and larger aplitude than A B) B has larger frequency and saller aplitude than A C) B has larger period and larger aplitude than A D) B has saller frequency and saller aplitude than A E) B has larger period and larger aplitude than A ω = πf = π/t x(t) = x cos( ωt + ϕ) 7

8 iclicker: What is the phase difference between tie t1 and t? t1 t Α) π/4 Β) π/ C) π D) π/ E) π Matheatical representation of oscillation Haronic oscillation: oscillation that can be represented as sine or cosine function xt () = x cos( ωt+ φ) or xt () = x sin( ωt+ φ) ω T= π, since sine or cosine function repeats every π ω = π/t, which is angular frequency 8

9 Exaple 6s 5 0 s -5 epresent the above siple haronic oscillation in atheatical for, x(t). 9

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

Oscillations: Review (Chapter 12)

Oscillations: Review (Chapter 12) Oscillations: Review (Chapter 1) Oscillations: otions that are periodic in tie (i.e. repetitive) o Swinging object (pendulu) o Vibrating object (spring, guitar string, etc.) o Part of ediu (i.e. string,

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

More Oscillations! (Today: Harmonic Oscillators)

More Oscillations! (Today: Harmonic Oscillators) More Oscillations! (oday: Haronic Oscillators) Movie assignent reinder! Final due HURSDAY April 20 Subit through ecapus Different rubric; reeber to chec it even if you got 00% on your draft: http://sarahspolaor.faculty.wvu.edu/hoe/physics-0

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω =

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω = Thur Oct 9 Assignent 10 Mass-Spring Kineatics (x, v, a, t) Dynaics (F,, a) Tie dependence Energy Pendulu Daping and Resonances x Acos( ωt) = v = Aω sin( ωt) a = Aω cos( ωt) ω = spring k f spring = 1 k

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position

Page 1. Physics 131: Lecture 22. Today s Agenda. SHM and Circles. Position Physics 3: ecture Today s genda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a spring Vertical spring Energy and siple haronic otion Energy o

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds)

1B If the stick is pivoted about point P a distance h = 10 cm from the center of mass, the period of oscillation is equal to (in seconds) 05/07/03 HYSICS 3 Exa #1 Use g 10 /s in your calculations. NAME Feynan lease write your nae also on the back side of this exa 1. 1A A unifor thin stick of ass M 0. Kg and length 60 c is pivoted at one

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Student Book pages 440 443 Vocabulary. aplitude: axiu displaceent of an oscillation antinodes: points of

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Experient 9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Objectives 1. Verify Hoo s law,. Measure the force constant of a spring, and 3. Measure the period of oscillation of a spring-ass syste and copare it

More information

OSCILLATIONS CHAPTER FOURTEEN 14.1 INTRODUCTION

OSCILLATIONS CHAPTER FOURTEEN 14.1 INTRODUCTION CHAPTER FOURTEEN OSCILLATIONS 14.1 INTRODUCTION 14.1 Introduction 14. Periodic and oscilatory otions 14.3 Siple haronic otion 14.4 Siple haronic otion and unifor circular otion 14.5 Velocity and acceleration

More information

Part I Multiple Choice (4 points. ea.)

Part I Multiple Choice (4 points. ea.) ach xam usually consists of 10 ultiple choice questions which are conceptual in nature. They are often based upon the assigned thought questions from the homework. There are also 4 problems in each exam,

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page 5/09/06 PHYSICS 13 Exa #1 NAME FEYNMAN Please write down your nae also on the back side of the last page 1 he figure shows a horizontal planks of length =50 c, and ass M= 1 Kg, pivoted at one end. he planks

More information

Oscillations Equations 0. Out of the followin functions representin otion of a particle which represents SHM I) y = sinωt cosωt 3 II) y = sin ωt III) IV) 3 y = 5cos 3ωt 4 y = + ωt+ ω t a) Only IV does

More information

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ]

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ] L 1 Vibration and Waves [ ] Vibrations (oscillations) resonance pendulu springs haronic otion Waves echanical waves sound waves usical instruents VIBRATING SYSTEMS Mass and spring on air trac Mass hanging

More information

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium Periodic Motion Units of Chapter 13 Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion AP Physics 1 2016-07-20 www.njctl.org Table of Contents Click on the topic to go to that section Period and Frequency SHM and UCM Spring Pendulum Simple Pendulum Sinusoidal Nature of SHM Period and Frequency

More information

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006 Nae: Solve the following probles in the space provided Use the back of the page if needed Each proble is worth 0 points You ust show your work in a logical fashion starting with the correctly applied physical

More information

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition Physics HW Set Chapter 5 Serway 7 th Edition Conceptual Questions:, 3, 5,, 6, 9 Q53 You can take φ = π, or equally well, φ = π At t= 0, the particle is at its turning point on the negative side of equilibriu,

More information

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10.

m A 9. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.12 m (B) 0.25 m (C) 0.50 m (D) 1.0 m (E) 10. P Physics Multiple Choice Practice Oscillations. ass, attache to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu isplaceent fro its equilibriu position is. What

More information

AP Physics C Mechanics

AP Physics C Mechanics 1 AP Physics C Mechanics Simple Harmonic Motion 2015 12 05 www.njctl.org 2 Table of Contents Click on the topic to go to that section Spring and a Block Energy of SHM SHM and UCM Simple and Physical Pendulums

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

Page 1. Physics 131: Lecture 22. SHM and Circles. Today s Agenda. Position. Velocity. Position and Velocity. Acceleration. v Asin.

Page 1. Physics 131: Lecture 22. SHM and Circles. Today s Agenda. Position. Velocity. Position and Velocity. Acceleration. v Asin. Physics 3: ecture Today s enda Siple haronic otion Deinition Period and requency Position, velocity, and acceleration Period o a ass on a sprin Vertical sprin Enery and siple haronic otion Enery o a sprin

More information

Slide 1 / 70. Simple Harmonic Motion

Slide 1 / 70. Simple Harmonic Motion Slide 1 / 70 Simple Harmonic Motion Slide 2 / 70 SHM and Circular Motion There is a deep connection between Simple Harmonic Motion (SHM) and Uniform Circular Motion (UCM). Simple Harmonic Motion can be

More information

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm.

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm. 1. (a) The aplitude is half the range of the displaceent, or x = 1.0. (b) The axiu speed v is related to the aplitude x by v = ωx, where ω is the angular frequency. Since ω = πf, where f is the frequency,

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

Unit 14 Harmonic Motion. Your Comments

Unit 14 Harmonic Motion. Your Comments Today s Concepts: Periodic Motion Siple - Mass on spring Daped Forced Resonance Siple - Pendulu Unit 1, Slide 1 Your Coents Please go through the three equations for siple haronic otion and phase angle

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

Course Information. Physics 1C Waves, optics and modern physics. Grades. Class Schedule. Clickers. Homework

Course Information. Physics 1C Waves, optics and modern physics. Grades. Class Schedule. Clickers. Homework Course Inforation Physics 1C Waves, optics and odern physics Instructor: Melvin Oaura eail: oaura@physics.ucsd.edu Course Syllabus on the web page http://physics.ucsd.edu/ students/courses/fall2009/physics1c

More information

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018 Physics 161 Lecture 17 Simple Harmonic Motion October 30, 2018 1 Lecture 17: learning objectives Review from lecture 16 - Second law of thermodynamics. - In pv cycle process: ΔU = 0, Q add = W by gass

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits Planetary Motion Geocentric Models --Many people prior to the 1500 s viewed the! Earth and the solar system using a! geocentric

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1 Nae: Class: Date: ID: A Quiz 5 PRACTICE--Ch2., 3., 4. Multiple Choice Identify the choice that best copletes the stateent or answers the question.. A bea of light in air is incident at an angle of 35 to

More information

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average.

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average. Celestial Object: Naturally occurring object that exists in space. NOT spacecraft or man-made satellites Which page in the ESRT???? Mean = average Units = million km How can we find this using the Solar

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

The Characteristic Planet

The Characteristic Planet The Characteristic Planet Brano Zivla, bzivla@gail.co Abstract: I have calculated a relation significant for planets fro a logical starting point that a whole and its parts are ianently depandant on each

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

Yes, inner planets tend to be and outer planets tend to be.

Yes, inner planets tend to be and outer planets tend to be. 1. Planet Density Make some general comments about inner and outer planets density Inner Planets Density Outer Planets Density Is there a pattern or a trend in planet density? Yes, inner planets tend to

More information

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz.

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. Chapter 5. (a) During siple haronic otion, the speed is (oentarily) zero when the object is at a turning point (that is, when x = +x or x = x ). Consider that it starts at x = +x and we are told that t

More information

Energy in Planetary Orbits

Energy in Planetary Orbits Lecture 19: Energy in Orbits, Bohr Atom, Oscillatory Motion 1 Energy in Planetary Orbits Consequences of Kepler s First and Third Laws According to Kepler s First Law of Planetary Motion, all planets move

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions Student Boo page 345 Exaple 7. Practice Probles. 60 s T 5.00 in in 300 s f T 300 s 3 3.33 0 Hz The frequency

More information

Astronomy Test Review. 3 rd Grade

Astronomy Test Review. 3 rd Grade Astronomy Test Review 3 rd Grade Match the vocabulary word to its definition. Outer Planets The path a planet takes around the sun. Inner Planets Orbit Sun The center of our solar system. Small, rocky

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0 AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) 60 F 1 F g (b) F NE(Y) = 0 F1 F1 = g / cos(60) = g (c) When the string is cut it swings fro top to botto, siilar to the diagra for 1974B1

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

. The maximum speed m can be doubled by doubling the amplitude, A. 5. The maximum speed of a simple harmonic oscillator is given by v = A

. The maximum speed m can be doubled by doubling the amplitude, A. 5. The maximum speed of a simple harmonic oscillator is given by v = A CHAPTER 4: Oscillations Responses to Questions. Exaples are: a child s swing (SHM, for sall oscillations), stereo speaers (coplicated otion, the addition of any SHMs), the blade on a jigsaw (approxiately

More information

JOURNAL OF PHYSICAL AND CHEMICAL SCIENCES

JOURNAL OF PHYSICAL AND CHEMICAL SCIENCES JOURNAL OF PHYSIAL AND HEMIAL SIENES Journal hoepage: http://scienceq.org/journals/jps.php Review Open Access A Review of Siple Haronic Motion for Mass Spring Syste and Its Analogy to the Oscillations

More information

Chapter 9. Gravitation

Chapter 9. Gravitation Chapter 9 Gravitation 9.1 The Gravitational Force For two particles that have masses m 1 and m 2 and are separated by a distance r, the force has a magnitude given by the same magnitude of force acts on

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

Name Class Date. Chapter 23 Touring Our Solar System Investigation 23

Name Class Date. Chapter 23 Touring Our Solar System Investigation 23 Chapter 23 Touring Our Solar System Investigation 23 Exploring Orbits Introduction In 1609, the German mathematician and astronomer Johannes Kepler deciphered a major puzzle of the solar system. The strange

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Simple Harmonic Motion of Spring

Simple Harmonic Motion of Spring Nae P Physics Date iple Haronic Motion and prings Hooean pring W x U ( x iple Haronic Motion of pring. What are the two criteria for siple haronic otion? - Only restoring forces cause siple haronic otion.

More information

Laws describing the planetary motion. Weight and acceleration due to gravity. Calculating the mass of Earth (6378 M G

Laws describing the planetary motion. Weight and acceleration due to gravity. Calculating the mass of Earth (6378 M G Laws describing the planetary motion Kepler s Laws a Newton s Laws Speed, velocity, acceleration, force, inertia, mass, balanced and unbalanced forces Weight and acceleration due to gravity 1. Weight gravitational

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion:

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion: Fro Last Tie Newton s three laws of otion: 1) Law of inertia ) F=a ( or a=f/ ) 3) Action and reaction (forces always coe in pairs Question If an apple falls toward the Earth, why doesn t the oon fall toward

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Simple Harmonic Motion Lectures 24-25 Chapter 10 (Cutnell & Johnson, Physics 7 th edition) 1 The Ideal Spring Springs are objects that exhibit elastic behavior. It will return back

More information

Physics 201 Lecture 29

Physics 201 Lecture 29 Phsics 1 ecture 9 Goals ecture 9 v Describe oscillator otion in a siple pendulu v Describe oscillator otion with torques v Introduce daping in SHM v Discuss resonance v Final Ea Details l Sunda, Ma 13th

More information

2. Which of the following best describes the relationship between force and potential energy?

2. Which of the following best describes the relationship between force and potential energy? Work/Energy with Calculus 1. An object oves according to the function x = t 5/ where x is the distance traveled and t is the tie. Its kinetic energy is proportional to (A) t (B) t 5/ (C) t 3 (D) t 3/ (E)

More information

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW)

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW) !! www.clutchprep.com CONCEPT: Hooke s Law & Springs When you push/pull against a spring (FA), spring pushes back in the direction. (Action-Reaction!) Fs = FA = Ex. 1: You push on a spring with a force

More information

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm EN40: Dynaics and Vibrations Final Exaination Monday May 13 013: p-5p School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You

More information

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13

PHY 140Y FOUNDATIONS OF PHYSICS Tutorial Questions #9 Solutions November 12/13 PHY 4Y FOUNDAIONS OF PHYSICS - utorial Questions #9 Solutions Noveber /3 Conservation of Ener and Sprins. One end of a assless sprin is placed on a flat surface, with the other end pointin upward, as shown

More information

Discussion Examples Chapter 13: Oscillations About Equilibrium

Discussion Examples Chapter 13: Oscillations About Equilibrium Discussion Exaples Chapter 13: Oscillations About Equilibriu 17. he position of a ass on a spring is given by x 6.5 c cos t 0.88 s. (a) What is the period,, of this otion? (b) Where is the ass at t 0.5

More information