SMOOTHING QUANTILE REGRESSIONS

Size: px
Start display at page:

Download "SMOOTHING QUANTILE REGRESSIONS"

Transcription

1 SMOOTHING QUANTILE REGRESSIONS Emmauel Guerre Marcelo Ferades Eduardo Horta Scool of Ecoomics ad Fiace Scool of Ecoomics ad Fiace Departmet of Statistics Quee Mary Uiversity of Lodo Quee Mary Uiversity of Lodo UFRGS ABSTRACT: Te paper proposes a ew smooted versio of te quatile regressio estimator. We sow tat smootig te objective fuctio improves te efficiecy of quatile regressio estimatio relative to smootig oly te ceck fuctio. Its secod-order mea squared error is studied ad sow to be smaller ta te oe of Koeker ad Bassett 978 quatile regressio estimator we a optimal badwidt is used. Te paper proposes a data-drive coice of te badwidt troug cross-validatio. A simulatio experimet reveals tat te improvemet ca be substatial wit a Mea Squared Error reductio as ig as 4% compared to te usual quatile regressio estimator of Koeker ad Bassett 978. JEL CLASSIFICATION: C4. KEYWORDS: Baadur approximatio, data-drive badwidt, kerel estimatio, quatile regressio. ACKNOWLEDGEMENTS:

2 . INTRODUCTION 2. THE OTHER SMOOTHED QUANTILE REGRESSOR ESTIMATOR I wat follows. we restrict attetio to te media estimatio. Tis is just for simplicity i tat it is straigtforward to exted te discussio to ay oter quatile. Defie te media estimator as te miimizer of H b Y i b K Yi b, 2 were K t t Ku du. Te first ad secod derivatives of te are H b H 2 b { Y i b K Y i b + K Yi b }, 2 { Yi b 2 K Yi b } + 2 K Y i b. 2.. Te secod-order term. Observe tat t k K t dt k t k Kt dt for ay iteger k as log as bot itegrals exist. It te olds tat y b y b E H2 b 2 K fy dy + 2 K y b fy dy t K t fb + z dz + 2 Kz fb + z dz fb + O s + 2 fb + O s fb + O s Te first-order term. Te variace of te first-order term satisfies var H b var K Yi b It turs out tat var K Yi b + var Y i b K Y i b + 2 cov Y i b K Y i b, K Yi b { F b F b 2 } K z K z dz + o, 2

3 wereas var Y i b K Y i b fb cov Y i b K Y i b, K Yi b fb u 2 K 2 u du + o, zkzk zfb + z dz K z K z dz + o give tat z Kz K z dz K z K z dz. It te follows tat { } var H 2 b F b F b 2 K z K z dz + o + 2 fb K z K z dz + fb u 2 K 2 u du + o. 3. SMOOTHING QUANTILE REGRESSIONS Cosider a radom sample {Y i, X i, i,..., } of Y, X R R d + suc tat Y i X iβu i X i β U i + + X id β d U i, were U i is a, -uiform radom variable idepedet of X i. Let F y x P Y y X x deote te coditioal cumulative distributio fuctio of Y give X. Assumig tat te mappigs u β j u for j,..., d are cotiuous ad icreasig over te uit iterval, te coditioal quatile fuctio is te uiquely defied by Qτ x F τ x x βτ. Koeker ad Bassett 978 estimate te quatile regressio by βτ argmi ρ τ Yi X b R d ib, 2 wit ρ τ v v τ Iv <. Te stadard approac i te literature is to smoot te ceck fuctio ρ τ by replacig te idicator fuctio I v < wit a kerel-based couterpart see Amemiya, 982; Horowitz, 998. We take a differet route by usig a smooted estimator of te cumulative distributio of deviatio V i b Y i X i b rater ta te empirical distributio i 2. We sow tat tis etails a more efficiet smootig of te objective fuctio ta just smootig te ceck fuctio. 3

4 Let F t; b IV ib t ad F t; b t f v; b dv, were f v; b is te kerel desity estimator, wit badwidt >, give by f v; b K v t d F t; b wit Kt dt. Itegratio by parts gives way to ρ τ V i b ρ τ v d F v; b τ τ F v; b dv + τ K v V i b, v d F v; b + τ F v; b dv. We propose smootig te objective fuctio by replacig F t; b wit F t; b, amely, Rb; τ, τ F v; b dv + τ Te resultig smooted quatile regressio estimator te is F v; b dv. v d F v; b βτ; arg mi b R d R b; τ,. 3 It is easier to appreciate te motivatio for smootig directly te objective fuctio by lookig at te first-order coditio, i.e., te score fuctio R b; τ, b Rb; τ,. It follows from te defiitios of F ad f tat R b; τ, τ τ F t; b dt τ F t; b dt b b X i K t V i b dt τ X i K t V i b dt { } X X i τk i b Y i X τ K i b Y i X X i K i b Y i τ. If d ad X i, solvig R b; τ, reduces to τ F b τ F b, 4 wit F b K b Yi or, equivaletly, F b τ. Tis meas tat te solutio of 4 is te well-kow Nadaraya s 964 smooted quatile estimator. Tis also illustrates te fact tat R b; τ, is 4

5 aalogous to a smooted cumulative distributio fuctio. Tis is i cotrast wit te smootig procedure put fort by Horowitz 998, wose first-order coditio ivolves a quatity aalogous to a kerel-based estimator of te probability desity fuctio. As a result, te secod-order derivative of our smooted quatile regressio estimator R 2 b; τ, is similar to a kerel desity estimator, wereas Horowitz s 998 ivolves terms tat are similar to a kerel estimator of te derivative of a probability desity fuctio. Tis esures tat our estimator as better ig-order properties ta Horowitz s 998 give tat te kerel desity estimator coverges at a faster rate relative to te kerel derivative estimator. Our mai assumptios are as follows. Deote te coditioal probability desity fuctio of Y give X x by fy x d x j β j Q y x j ad let f j y x deote its jt derivative j y j fy x. Let also s s deote te lower iteger part of ay positive real umber s, tat is to say, te uique iteger umber satisfyig s s < s. Defie X ad Y R as te port of X ad Y. Assumptio Q Te coditioal probability desity fuctio fy x is cotiuous over X Y, wit fy x > for all x, y X Y. Te coditioal quatile fuctio y Qy x is strictly icreasig for all x X. Assumptio D Tere exist some s, L > suc tat x,y f j y x L, wit lim y ± f j y x for j,..., s, ad f s y x f s y x L y y s s for all x X ad y, y Y. Assumptio X Te covariates X X,..., X d are almost surely positive, bouded ad suc tat D EXX as full rak. Assumptio K Te kerel K is symmetric, cotiuous ad twice differetiable wit Ky dy <, Ky dy, K y dy <, K 2 y dy <, ad < For s as i Assumptio Q, y s+ Ky dy < ad yky dy K y K y dy <. y s+ Ky dy. 5

6 Assumptio H Te badwidt is i te iterval, wit / o/ l ad o. Remarks a Commets o Assumptio D ad te Laplace distributio 2 exp x for wic s eve if tere is o derivative. b Ay symmetric o-egative kerel automatically meets te coditio K y K y dy > i Assumptio K. Te latter is oterwise fairly geeral, requirig oly tat te kerel fuctio is moderately large i te tails so as to esure tat K y remais iferior to oe. Before establisig te mai results, it is ecessary to itroduce some furter otatio. Let ad deote te cadidate limit of R 2 b; τ, by R 2 b; τ, 2 Rb; τ, b b D τ E XX f X βτ X. Assumptios Q, D ad X te esure tat D τ exists for all τ. Let deote te Euclidea orm of a vector or a matrix, amely, V trv V. 4. MAIN RESULTS Altoug tis paper ougt to illustrate te positive aspects of smootig, ay reader familiar wit oparametric approaces is probably already aware tat te beefits expected from tis teciques comes wit potetially importat drawbacks. Ideed, te smooted quatile regressio estimator β τ; sould ot be viewed as a estimator of βτ, a approac wic would amout to igore te impact of smootig. It is more oest to iterpret β τ; as a estimator of β τ; arg mi E Rb; τ,, b R d a poit of view tat ackowledges tat β τ; ca be a biased estimator of βτ. Te ext result studies te order of te bias term β τ; βτ. THEOREM BiasQ. Give Assumptios Q, X, K, β τ; is uiquely defied for all τ τ, τ ad satisfies, uiformly wit respect to τ, τ, τ,, βτ; βτ + O L s+. 6

7 Additioally, if s is a iteger umber ad y fy x is st cotiuously differetiable for all x, te followig expasio olds βτ; βτ s+ Bτ { + o}, 5 were Bτ z fx βτ x xx s+ Kz dz fx dx s +! E Xf s X βτ X. Let us ow tur to te positive improvemets iduced by smootig. Te ext teorem deals wit Baadur represetatios for βτ; βτ;, tat is, te approximatio of tis quatity by a stadardized sum. THEOREM 2 Baa. Give Assumptios K, Q ad X, βτ; is uique for τ, τ, τ, wit probability tedig to ad satisfies βτ; βτ; R2 βτ; ; τ, R βτ; ; τ, l + O P 3/2 + s /2 D τ R βτ; ; τ, +O P l 3/2 + s /2 + l /2 + L s 6 7 uiformly wit respect to τ, τ, τ,, were R2 τ, τ,τ, βτ; ; τ, ad τ, τ,τ, R βτ; ; τ, are bot of order O P. Tese liear approximatios for βτ; βτ; differ oly because tey employ distict stadardizatios. Te latter is te radom sum R 2 βτ; ; τ, i 6, wereas 7 uses istead its limitig couterpart D τ. As a cosequece, te remaider term of 7 icludes a additioal term l / /2 + s relative to 6, correspodig to te order of R2 τ τ,τ βτ; ; τ, D τ. As usual, tere is a factor l because of te uiform ature of te result. Note tat bot approximatios ivolve te term R βτ; ; τ,, wic is cetered give tat E R βτ; ; τ, b E bβτ; Rb; τ,. 7

8 Koeker 25 discusses similar approximatios for te regressio quatile estimator βτ βτ. See page 23 as well as refereces terei. It is well kow tat te best possible error for te correspodig remaider term is /4 up to iessetial logaritmic factors. Tis cotrasts wit te remaider term of 6 wic is at worst of order /4 provided tat s > /2 ad remais larger ta l /3 / /2. Ideed, te remaider term 6 acieves te order /2 wic is typical of estimators wic miimize a smoot criterio fuctio provided s ad assumig tat te order of remais larger or equal ta l / /3. Te study of te remaider term of 7 is more complex due to te additioal term l / /2 + s. Coosig a badwidt proportioal to /2s+, wic is optimal i view of te criterio cosidered i Teorem 3 below, gives tat te order of l / /2 + s is l / s/2s+ wic is always larger ta /2 but is smaller ta /4 provided s > /2. Teorem 2 is also a crucial step for te study of te asymptotic properties of te smooted quatile regressio estimator. Te liear approximatio 7 sows tat te asymptotic properties of β; τ are give by te leadig term βτ; D τ R βτ; ; τ,. I wat follows, we focus o te optimal coice of te badwidt we estimatig a liear combiatio λ βτ. Tis icludes i particular estimatio of eac of te coefficiets β j τ by a proper coice of te vector of λ. Defie te Asymptotic Mea Square Error of λ βτ as AMSEλ β; τ E λ βτ; D τ 2 R βτ; ; τ, βτ. Tis quatity is a proxy for te mea square error MSEλ β; τ E λ β; τ βτ 2. Studyig te AMSE istead of te MSE amouts to eglectig te remaider term of 7, wic sriks to. Te ext result describes a optimal badwidt coice wit respect to te AMSE criterio. For te quatile estimator 4, Ralescu 996 gives a liear approximatio wit a remaider of order /4 up to a logaritmic term witout restrictio o s > but provided tat te badwidt is larger ta l l / /4, suggestig tat te order of 6 is too pessimistic for small s. Ideed our proof teciques are cetered o larger values of s for wic a liear approximatio ca old wit a better order ta /4. 8

9 THEOREM 3 VarQ. Give Assumptios Q, D, X, K, ad H we ave uiformly wit respect to τ, τ, τ,, D var τ R βτ; ; τ, τ τd τd D τ { } 2 K y K y dy + O +s. 8 If te expasio i 5 olds, AMSEλ β; τ is asymptotically miimal if + oopt, were opt as log as λ Bτ. I tis case, λ D τd D τλτ τ K y K y dy s + λ Bτ 2 2s+ AMSEλ λ β; D τ τd D τλτ τ { 2s + } 2 opt K y K y dy + o 2s 2s+. 2s + 2 A key poit i Teorem 3 is te fact tat te variace expasio i 8 icludes a egative term, amely, 2 K y K y dy. Tis implies tat te asymptotic variace of te smooted βτ; is smaller ta te oe of te quatile regressio estimator βτ. As already oticed by Azzalii 98 for stadard quatile estimatio, it te follows tat te AMSE of λ βτ; ca be made smaller ta te oe of λ βτ. I oter words, smootig te loss fuctio ρ τ as i 3 improves te stadard regressio quatile estimator. I te case of quatile estimatio, a fudametal reaso for suc a improvemet is tat te smoot estimator of te cumulative distributio fuctio domiates te sample cumulative distributio fuctio as sow i Reiss 98. Uder Assumptios Q ad D, te optimal badwidt is of order /2s+ as te oe wic would be used to estimate te ucoditioal probability desity fuctio of Y. Te order of te secod-order variace term wit is /2s+ / 2s+2/2s+ wic is close to te first-order variace term λ D τd D τλτ τ/ we s is reasoably large, beig for istace 6/5 if s 2. Teorem 3 gives more detailed expasio i te case were y fy x is s-t times cotiuously differetiable. Te expressio of te optimal badwidt opt resembles te oe give i Lio ad Padgett 99 for estimatio of te cumulative distributio fuctio, see also Reiss 98. 9

10 5. A DATA-DRIVEN BANDWIDTH CHOICE Defie β λ τ; λ βτ; ad Bλ β λ τ; β λ τ; for λ R d. For a badwidt b, let D X ix i, D R 2 βτ; b; τ, b, D τ τ D D D, ad D λ λ Dλ. Let also H {,,..., K }, wit k k. Cosider te data-drive badwidt ĥ arg mi H Q;, wit Q; B 2 λ 4 Dλ K y K y dy, for. We propose to compute te badwidt by ĥ ĥ+, leadig to te fully data-drive estimator β λ τ β λ τ; ĥ. Let argmi H Q;, were Q; B 2 λ 2 D λ τ β λ τ; λ βτ;, ad B λ β λ τ; β λ τ;. K y K y dy, Assumptio B: Te badwidt b is suc tat b o ad /b o/ l, wereas te badwidts ad K respectively satisfy C /2 l ad K o, wit Kl. I additio, > is suc tat wit meetig te followig coditios. l l l. Tere also exist ukow s > /2 ad L > L > B B λ / Ls + s, L s+ B λ, ad is uiquely defied i te limit wit /2s++. B2 For all ɛ >, lim if mi 2s/2s++ H; / ɛ Q; Q ; >. THEOREM 4 DD. Uder Assumptios B ad K, te data-drive smooted quatile regressio estimator is suc tat, for +, βτ βτ Z + o P, were EZ ad varz { 2 } K y K y dy τ τd τd D τ. Note tat tere is o bias term above because βτ; βτ o P.

11 Lettig Rb; τ, E Rb; τ, yields 6. PROOFS Rb; τ Rb; τ, E ρ τ Y X b x b τ F v x dv + τ wose first- ad secod-order derivatives are respectively x b F v x dv fx dx, R b; τ R 2 b; τ F x b x τ x fx dx, fx b xxx fx dx. Let also deote S b,τ, te set R d,, to wic b, τ, belog. 6.. Prelimiary results. LEMMA BiasRF. Assumptios K, D ad X esure tat R 2 b; τ, R 2 b; τ b,τ, S b,τ, L s O, R b; τ, R b; τ b,τ, S b,τ, L s+ O, Rb; τ, Rb; τ b,τ, S b,τ, maxl, s+ O, R 2 max j j 2 b + δ; τ, R 2 j j 2 b; τ, j,j 2 d b,τ, S b,τ, L δ s O. Proof of Lemma. We ave Rb; τ, τ + τ τ + τ { v E { v E K t Y X b } dt E K t Y X b } dt dv, dv { } v+x b E E K t Y X dt dv { E v+x b K t Y X } dt dv.

12 It te follows from te Lebesgue Domiated Covergece teorem tat { R b; τ, E τ XE K v + X b Y X dv τ E τ X b X K v Y dv τ X b X K v Y dv R 2 b; τ, τe XX K X b Y + τe XX K X b Y E XX K X b Y. XE K v + X b Y X Assume from ow o tat s give tat te case s is trivial. Uder Assumptio D, a Taylor expasio wit itegral remaider gives s fv + z x f l v x l zl l! + zs s! Usig a cage of variables y t + x b + z yields uder Assumptio K E K t Y X b X x ft + x b x f s v + wz x w s dw. K t y x bfy x dy ft + x b x Kzft + x b + z x ft + x b x dy, } dv It te follows from Assumptio D tat E K X b Y { f s t + x b + wz x f s t + x b x z s fx b xfxdx C s z s Kz dz. s! Kz d Tis yields te first stated result. We ow tur our attetio to te stated results for R ad R. Itegratig 9 wit b yields x b { } E K t Y X x ft x dt { } z f s x b + wz x f s x b x s Kz dz w s dw s! { } z f s x b + vwz x f s x s+ b x dv Kz dz w w s dw s! C L s+, 2

13 wereas v+x b { } E K t Y X x ft x dt { } z f s 2 v + x b + wz x f s 2 v + x s b x s! Kz dz w s dw C maxl, s+. Tis implies tat { R b; τ, τf x b x τ F x b x } x fx dx CLs+, + } { Rb; τ, τ F v + x b x dv + τ F v + x b x dv fx dx CL s+ for all τ,. Observe ow tat R 2 j j 2 b; τ, E X j X j2 K X b Y x x 2 Kz fx b + z x fx dx dz. It te follows tat R 2 j j 2 b + δ; τ, R 2 j j 2 b; τ, uiformly i b,, δ, τ, j ad j 2. L x x 2 Kz fx b + x δ + z x fx b + z x fx dx dz x x 2 Kz x δ s fx dx dz CL δ s, LEMMA 2 StocR. Give Assumptios K ad X, max b,τ, R d,, b,τ, R d,, j,j 2 d b,τ, R d,, were, for te latter R b; τ, R b; τ, O P, R2 b; τ, R 2 b; τ, l / l l O P, 2 R j j 2 b; τ, R 2 j j 2 b; τ, δ l / l l O P, R 2 j j 2 b; τ, R 2 j j 2 b + δ; τ, R 2 j j 2 b; τ,, R 2 j j 2 b; τ, R 2 j j 2 b + δ; τ, R 2 j j 2 b; τ,. Proof of Lemma 2. Recall tat 3

14 R b; τ, { τ t Yi X i X i K b } dt τ X X i K i b Y i τ. + { t Yi X i X i K b } dt Cosider te classes of fuctios { x F j x, y x j K b y ; b, R d, }, j,..., d. Sice K < ad X j is bouded, Lemma 22-ii i Nola ad Pollard 987 esures tat F j is Euclidea wit a square itegrable evelope C X j. Te te remark below Defiitio 8 i Nola ad Pollard 987, Propositio ad iequality p. 39 i Eimal ad Maso 25 imply tat { } X X ji K i b Y i X E X ji K i b Y i O P. b, R d, Te te expressio of R b; τ, give above sows tat R b; τ, R b; τ, O P. b,τ, R d,, Te proof of te result for R 2 follows te same steps ta te proof of Teorem i Eimal ad Maso 25, usig K < ad Assumptio K2. Te proof of te result for R 2 follows te same steps, usig K < ad X j X j2 X b + δ Y K δ X b Y K to boud te summads i R 2 ad to compute teir variace X j X j2 X δ X K b + wδ Y dw δ C X K b + wδ Y dw 6.2. Proof of Teorem. Let βτ; be ay miimizer of Rb; τ,. Lemma sows, sice β τ arg mi b R b; τ R βτ; ; τ R βτ; τ if b Rb; τ, mi R βτ; τ + R βτ; ; τ R βτ; ; τ, O max L, s+, 4 b

15 uiformly i ad τ. Sice R βτ; τ, te Taylor formula wit itegral remaider gives R βτ; ; τ R βτ; τ βτ; βτ R 2 βτ + w βτ; βτ ; τ dw βτ; β τ. Sice R 2 b; τ f x b x xx fxdx, Assumptio Q ad X esures tat te miimal eigevalue of R 2 βτ + w βτ; βτ ; τ dw is larger ta C > for all τ τ, τ ad,. Hece substitutig i te iequalities above gives βτ; βτ max L, s+ /2 O.,τ, τ,τ We ow sow tat βτ; is uique, tat is Rb; τ, as a uique miimizer, provided tat is small eoug. Cosider te compact set C C ɛ { } b R d ; b j β j τ ɛ, β j τ + ɛ, j,..., p, ɛ > recallig tat β j icreases wit τ uder Q. Takig ɛ small eoug esures via Q ad X tat te miimal eigevalue of te defiite positive R 2 b; τ is larger ta a C > for all b C, τ τ, τ. Hece Lemma esures tat te maps b C Rb; τ,, τ τ, τ ad,, are all strictly covex provided is small eoug. Sice sows tat all te cadidate miimizers β τ;, τ τ, τ ad,, are i C for is small eoug, te strict covexity of te correspodig Rb; τ, esures tat all tese βτ; are uiquely defied. We ow improve. Sice Lemma gives tat R βτ; ; τ, adr βτ; τ, τ,,, τ,,, R β τ; ; τ R βτ; τ L s+ R β τ; ; τ, R βτ; ; τ L s+ O. 5

16 Now te Taylor formula, te expressio of R 2, Assumptio Q ad give R βτ; ; τ R βτ; τ R 2 βτ + w βτ; βτ ; τ dw βτ; βτ R 2 βτ; τ + O L βτ; βτ s β τ; βτ R 2 βτ; τ + O L max L, s+ s /2 βτ; βτ uiformly i τ,,,. Sice te LHS is O L s+, tis gives uiformly i τ,,, ad provided tat is small eoug, ad βτ; βτ + O L s+ is prove. Te proof of 5 similarly uses te expasios { } βτ; βτ + R 2 βτ; τ O L s+ R βτ; τ, R βτ; ; τ, R βτ; τ, { R 2 βτ; τ + O C} βτ; βτ, ad, usig s s +, ad w 2 w s dw/2 /ss + s + 2 R z s+ Kzdz βτ; τ, + o f s x βτ x fxdx, s +! so tat 5 olds Proof of Teorem 2. Lemmas ad 2 give sice τ,,, τ,,, b,τ, R d,, + o P. Sice τ,,, β R τ; ; τ R βτ; τ β R τ; ; τ R b; τ R b; τ, + R βτ; ; τ, R βτ; ; τ R βτ; τ b,τ, R d,, R b; τ, R b; τ, R 2 βτ + w βτ; βτ ; τ dw βτ; βτ 6

17 ad because te miimal eigevalue of R2 βτ + w b βτ ; τ dw is larger ta C > for all b ad τ τ, τ uder Assumptios Q ad X, tis gives tat τ, τ,τ, β τ; βτ o P, ad by Teorem, τ, τ,τ, β τ; βτ; o P. 2 Note te former sows tat it is possible to fid a compact B suc tat { βτ; }, τ, τ, τ, B wit a probability tedig to. Because Lemmas ad 2 imply tat all te fuctios b B R b; τ, are strictly covex wit a probability tedig to, it follows tat all te βτ;, τ, τ, τ, are uiquely defied wit a probability goig to. Sice R β τ; ; τ,, Lemmas 2, ad Teorem, we ave uiformly i τ, τ, τ,, R βτ; ; τ, R β τ; ; τ, R β τ; ; τ, R 2 β τ; + w βτ; β τ; ; τ, dw β τ; βτ; R 2 l /2 βτ; ; τ, + O P βτ; β τ; + O L β τ; βτ; s βτ; βτ;, 3 were te eigevalues of R 2 β τ; ; τ, are bouded away from ad ifiity wit a probability tedig to. Sice R βτ; ; τ,, Lemma 2 sows tat R βτ; ; τ, O P / uiformly. Hece applyig 3 ad 2 give, sice o/ l, 3/2 βτ; βτ; OP τ, τ,τ, l /2 ad, reapplyig 3, Applyig 3 agai gives βτ; β τ; τ, τ,τ, β τ; βτ; O P R 2 l /2 β τ; ; τ, + O P 3/2 + s /2 R βτ; ; τ, R2 βτ; ; τ, R l /2 βτ; ; τ, + O P 3/2 + s /2 7

18 uiformly wit respect to τ, τ, τ,. Tis gives te first Baadur represetatio 6 i Teorem 2. Te Baadur represetatio 7 te follows from Lemmas ad Proof of Teorem 3. We ave, sice E R βτ; ; τ,, var R β τ; ; τ, { X var X K β τ; Y E } X τ E XX K βτ; Y 2 τ X XX K β τ; Y 2 X 2τE XX K βτ; Y + τ 2 E XX. Asuumptios D ad K give, itegratig by parts ad usig Teorem, X E K βτ; Y X x x K βτ; y x fy x dy K βτ; y F y x dy F x βτ; x + F x βτ; z x F x β τ; x Kz dz F x βτ x + O s+ + O s+ τ + O s+, sice x βτ F τ x ad arguig as i Lemma.For te term ivolvig K 2, defie Kz 2KzK z d dz K z 2, wic is suc tat Kz dz lim z + K z 2. 8

19 Arguig as above ow gives X E K βτ; Y 2 X x x K βτ; y F y x dy τ + O s+ + F x βτ; z x F x βτ; x Kz dz τ f x βτ; x + O s zkz dz + O s+ τ f x βτ x + O +s s + O s zkz dz + O s+ τ f x βτ x zkz dz + O +s. Substitutig gives te variace expasio sice K z K z, zkz dz 2 zkzk zdz zd K z zd K z + K z 2 dz + + K z K z 2 dz K z dz 2 Te variace expasio ad 5 te gives AMSE λ +s βτ; g + o were g Sice g s+2, + K z K z dz. τ τ λ K z K D z dz τd D τλ + 2s+2 λ Bτ 2. K z K z dz τ τ λ D τd D solvig g gives te desired opt ad te correspodig AMSE expasio. τλ +2s + 2 2s+ λ Bτ 2, 7. WORK IN PROGRESS Defie for λ R d β λ τ; λ βτ;, Bλ β λ τ; β λ τ;. 9

20 Cosider a badwidt b. Let D D τ τ X i X i, D R 2 β τ; b ; τ, b, D D D, Dλ λ Dλ. Let H {,,..., K } were k k. A first data-drive badwidt is, for ad, Te proposed optimal badwidt is ĥ arg mi H Q ; were Q ; B 2 λ 4 Dλ ĥ ĥ+ + K y dy. leadig to te fully data-drive estimator β λ τ β λ τ; ĥ. 7.. Proof i progress. Set β λ τ; λ β τ;, B λ β λ τ; β λ τ; ad Q ; B 2 λ 4 D λ τ arg mi Q ;. H + K y dy, Assumptio B: Te badwidts, K ad K satisfy l /2 C, K o adk/ l. > is suc tat wit lim L > L > suc tat l l l +. Tere are some ukow s > /2 ad B: B λ / L s + s, L s+ B λ ad is uiquely defied asymptotically wit /2s++ ; B2: lim if 2s/2s++ mi H; / ɛ {Q ; Q ; } > for all ɛ >. Routie modificatios of Arcoes 996 give l βλ τ; β λ τ λ D τ R /4 βτ; τ, + O P, 2

21 see also He ad Sao 996, Remark 3.4. Hece 7 gives β λ τ; β /2 λ τ; B λ τ; λ were +O P l /3 3/4 + l/2 3/2 + /2 λ λ D τ R βτ; ; τ, R βτ; τ, λ D τ s /2+ + B λ /2 { X X i K i βτ; Y i I Y i X iβτ }. We ave E λ ad X E K β τ; Y I Y X βτ 2 X x + x βτ + + x βτ x K βτ; y x βτ βτ;/ x βτ βτ;/ + f x βτ x { x K βτ; y 2 fy x dy 2 fy x dy K u 2 f x β τ; u x du K u 2 f x βτ; u x du K u 2 du + + } 2 K u du uiformly i, ad x uder Assumptios B ad X. Hece, uiformly i,, { + } 2 var λ K u 2 du + K u du λ D τe XX f X βτ X D τλ. Te arguig as i Eimal ad Maso 25 gives λ τ, max O P. l /, 2

22 It follows tat, uiformly wit respect to H, β λ τ; β l / λ τ; B λ τ; + o P O P 3/4 +O P l /3 + l/2 3/2. /2 Observe ow tat te coditios o, ad K i Assumptio B esure tat { } { l / max H max l } { max exp l H H\{ } O exp l l l K l max H\{ } 3/4 l /3 / l/2 3/2 { 3/4 /2 } l /3 mi H\{ } max H\{ } l /3 l l l o K o, } 3/4 3/2 2 l /3 /2 l /6 O, 3/4 /2 /2 /2. l Tis gives uiformly wit respect to H B λ τ; β λ τ; β /2 λ τ; B λ τ; + o P + o P. Sice ad D λ D λ + o P, it follows tat max H max H B 2 λ τ; + / Q ; + / O Observe ow tat, sice /K o/ l ad usig B, Q ; Q ; Q ; + / o P. 4 C Q ; mi H {L 2 2s+2 C } C + o. Tis implies i particular tat Q ; Q ; + o P. Cosider ow some ɛ,. Uder B, we ave for all ɛ C Q ; L2 2s+2 C C ad 4 gives mi Q ; mi Q ; + o P Q ;. H; ɛ H; ɛ 22

23 It follows tat, uder B, B2 ad sice Q ; Q ; + o P, mi Q ; > mi Q ; H; ɛ H; / <ε wit a probability tedig to. Cosider ow + ɛ. Set κ 4D λ τ + K y dy so tat Q; Bλ 2 ; τ κ /. We ave for tose suc tat Q; κ/2 / Q ; Q ;. κ If Q; < κ/2 /, te B 2 λ ; τ 3κ/2 / so tat B gives 3κ/2L 2 /2s++ implyig tat Q; CQ ;. Hece 4 gives mi Q ; + op mi Q ; + o P Q ;, H; ɛ H; ɛ wic togeter wit Q ; Q ; + o P ad B2 gives mi Q ; > mi Q ;. H; +ɛ H; / <ε Hece ĥ/ + o P wic also sows tat ĥ+ + o P. We ow tur to βτ β τ; ĥ, ĥ ĥ+. 7 gives, for η ĥ+ / + were + β λ τ β λ τ; + / + + /2 E λ η l /2 +O P + /2 E λ η λ D τ R β τ; η + { λ D τ X i 3/2 + ; τ, η + X K i β τ; η + s /2+ + η + + /2 s+ R β τ; + Yi ; τ, + X K i β τ; + + } Yi. 23

24 We first study te icremets of E λ. Assumptio B gives for all η, η 2 /2, 2, { E X + K β τ; η + Y X η + K β τ; η 2 + } 2 Y η 2 + X x η {K u K u + x β τ; η + η β τ; η 2 + η 2 } 2 f x β τ; η + η + u x du x η 2 βτ;η + η βτ;η 2 + /η 2 Cη Ku + v dv 2 du C η 2 β τ; η + η β τ; η C η2 β τ; η + β τ; η2 + + η2 η β τ; η2 + 2 C η2 η 2. Hece va der Vaart ad Weller Corollary 2.2.5, 996 gives tat for ay ɛ > 2 E /2 E λ η 2 E λ η η,η 2 /2,2; η 2 η ɛ Cɛ /2. Tis gives E λ η O P ĥ + + /2 o P, ad, sice + l / /2, β λ τ β λ τ; + op + + /2 o P. /2 l /2 + O P + 3/2 + s / /2 s+ Tis gives te desired result. REFERENCES AMEMIYA, T. 982: Two stage least absolute deviatios estimators, Ecoometrica, 5, AZZALINI, A. 98: A ote i te estimatio of a distributio ad quatiles by a kerel metod, Biometrika, 68, HOROWITZ, J. L. 998: Bootstrap metods for media regressio models, Ecoometrica, 66, KOENKER, R. 25: Quatile Regressio. Cambridge Uiversity Press, Cambridge. KOENKER, R., AND G. BASSETT 978: Regressio quatiles, Ecoometrica, 46, LIO, Y. L., AND W. J. PADGETT 99: A ote o te asymptotically optimal badwidt for Nadaraya s quatile estimator, Statistics & Probability Letters,, NADARAYA, E. A. 964: Some ew estimates for distributio fuctio, Teory of Probability ad its Applicatios, 9, RALESCU, S. S. 996: A Baadur-Kiefer law for te Nadaraya empiric-quatile processes, Teory of Probability ad its Applicatios, 4, REISS, R.-D. 98: Noparametric estimatio of smoot distributio fuctios, Scadiavia Joural of Statistics, 8,

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION Jauary 3 07 LECTURE LEAST SQUARES CROSS-VALIDATION FOR ERNEL DENSITY ESTIMATION Noparametric kerel estimatio is extremely sesitive to te coice of badwidt as larger values of result i averagig over more

More information

4 Conditional Distribution Estimation

4 Conditional Distribution Estimation 4 Coditioal Distributio Estimatio 4. Estimators Te coditioal distributio (CDF) of y i give X i = x is F (y j x) = P (y i y j X i = x) = E ( (y i y) j X i = x) : Tis is te coditioal mea of te radom variable

More information

Nonparametric regression: minimax upper and lower bounds

Nonparametric regression: minimax upper and lower bounds Capter 4 Noparametric regressio: miimax upper ad lower bouds 4. Itroductio We cosider oe of te two te most classical o-parametric problems i tis example: estimatig a regressio fuctio o a subset of te real

More information

Notes On Nonparametric Density Estimation. James L. Powell Department of Economics University of California, Berkeley

Notes On Nonparametric Density Estimation. James L. Powell Department of Economics University of California, Berkeley Notes O Noparametric Desity Estimatio James L Powell Departmet of Ecoomics Uiversity of Califoria, Berkeley Uivariate Desity Estimatio via Numerical Derivatives Cosider te problem of estimatig te desity

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Lecture 9: Regression: Regressogram and Kernel Regression

Lecture 9: Regression: Regressogram and Kernel Regression STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 9: Regressio: Regressogram ad erel Regressio Istructor: Ye-Ci Ce Referece: Capter 5 of All of oparametric statistics 9 Itroductio Let X,

More information

Kernel density estimator

Kernel density estimator Jauary, 07 NONPARAMETRIC ERNEL DENSITY ESTIMATION I this lecture, we discuss kerel estimatio of probability desity fuctios PDF Noparametric desity estimatio is oe of the cetral problems i statistics I

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS 1

ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS 1 Teory of Stocastic Processes Vol2 28, o3-4, 2006, pp*-* SILVELYN ZWANZIG ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS Local liear metods are applied to a oparametric regressio

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Regression with an Evaporating Logarithmic Trend

Regression with an Evaporating Logarithmic Trend Regressio with a Evaporatig Logarithmic Tred Peter C. B. Phillips Cowles Foudatio, Yale Uiversity, Uiversity of Aucklad & Uiversity of York ad Yixiao Su Departmet of Ecoomics Yale Uiversity October 5,

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Semiparametric Mixtures of Nonparametric Regressions

Semiparametric Mixtures of Nonparametric Regressions Semiparametric Mixtures of Noparametric Regressios Sijia Xiag, Weixi Yao Proofs I tis sectio, te coditios required by Teorems, 2, 3 ad 4 are listed. Tey are ot te weakest sufficiet coditios, but could

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Rank tests and regression rank scores tests in measurement error models

Rank tests and regression rank scores tests in measurement error models Rak tests ad regressio rak scores tests i measuremet error models J. Jurečková ad A.K.Md.E. Saleh Charles Uiversity i Prague ad Carleto Uiversity i Ottawa Abstract The rak ad regressio rak score tests

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Uniformly Consistency of the Cauchy-Transformation Kernel Density Estimation Underlying Strong Mixing

Uniformly Consistency of the Cauchy-Transformation Kernel Density Estimation Underlying Strong Mixing Appl. Mat. If. Sci. 7, No. L, 5-9 (203) 5 Applied Matematics & Iformatio Scieces A Iteratioal Joural c 203 NSP Natural Scieces Publisig Cor. Uiformly Cosistecy of te Caucy-Trasformatio Kerel Desity Estimatio

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

DEGENERACY AND ALL THAT

DEGENERACY AND ALL THAT DEGENERACY AND ALL THAT Te Nature of Termodyamics, Statistical Mecaics ad Classical Mecaics Termodyamics Te study of te equilibrium bulk properties of matter witi te cotext of four laws or facts of experiece

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Lecture 15: Density estimation

Lecture 15: Density estimation Lecture 15: Desity estimatio Why do we estimate a desity? Suppose that X 1,...,X are i.i.d. radom variables from F ad that F is ukow but has a Lebesgue p.d.f. f. Estimatio of F ca be doe by estimatig f.

More information

Notes On Median and Quantile Regression. James L. Powell Department of Economics University of California, Berkeley

Notes On Median and Quantile Regression. James L. Powell Department of Economics University of California, Berkeley Notes O Media ad Quatile Regressio James L. Powell Departmet of Ecoomics Uiversity of Califoria, Berkeley Coditioal Media Restrictios ad Least Absolute Deviatios It is well-kow that the expected value

More information

Empirical Processes: Glivenko Cantelli Theorems

Empirical Processes: Glivenko Cantelli Theorems Empirical Processes: Gliveko Catelli Theorems Mouliath Baerjee Jue 6, 200 Gliveko Catelli classes of fuctios The reader is referred to Chapter.6 of Weller s Torgo otes, Chapter??? of VDVW ad Chapter 8.3

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Detailed proofs of Propositions 3.1 and 3.2

Detailed proofs of Propositions 3.1 and 3.2 Detailed proofs of Propositios 3. ad 3. Proof of Propositio 3. NB: itegratio sets are geerally omitted for itegrals defied over a uit hypercube [0, s with ay s d. We first give four lemmas. The proof of

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Study the bias (due to the nite dimensional approximation) and variance of the estimators

Study the bias (due to the nite dimensional approximation) and variance of the estimators 2 Series Methods 2. Geeral Approach A model has parameters (; ) where is ite-dimesioal ad is oparametric. (Sometimes, there is o :) We will focus o regressio. The fuctio is approximated by a series a ite

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM ALLOCATING SAPLE TO STRATA PROPORTIONAL TO AGGREGATE EASURE OF SIZE WIT BOT UPPER AND LOWER BOUNDS ON TE NUBER OF UNITS IN EAC STRATU Lawrece R. Erst ad Cristoper J. Guciardo Erst_L@bls.gov, Guciardo_C@bls.gov

More information

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula Joural of Multivariate Aalysis 102 (2011) 1315 1319 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Superefficiet estimatio of the margials

More information

A survey on penalized empirical risk minimization Sara A. van de Geer

A survey on penalized empirical risk minimization Sara A. van de Geer A survey o pealized empirical risk miimizatio Sara A. va de Geer We address the questio how to choose the pealty i empirical risk miimizatio. Roughly speakig, this pealty should be a good boud for the

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Rates of Convergence by Moduli of Continuity

Rates of Convergence by Moduli of Continuity Rates of Covergece by Moduli of Cotiuity Joh Duchi: Notes for Statistics 300b March, 017 1 Itroductio I this ote, we give a presetatio showig the importace, ad relatioship betwee, the modulis of cotiuity

More information

Brief Review of Functions of Several Variables

Brief Review of Functions of Several Variables Brief Review of Fuctios of Several Variables Differetiatio Differetiatio Recall, a fuctio f : R R is differetiable at x R if ( ) ( ) lim f x f x 0 exists df ( x) Whe this limit exists we call it or f(

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

s = and t = with C ij = A i B j F. (i) Note that cs = M and so ca i µ(a i ) I E (cs) = = c a i µ(a i ) = ci E (s). (ii) Note that s + t = M and so

s = and t = with C ij = A i B j F. (i) Note that cs = M and so ca i µ(a i ) I E (cs) = = c a i µ(a i ) = ci E (s). (ii) Note that s + t = M and so 3 From the otes we see that the parts of Theorem 4. that cocer us are: Let s ad t be two simple o-egative F-measurable fuctios o X, F, µ ad E, F F. The i I E cs ci E s for all c R, ii I E s + t I E s +

More information

CONCENTRATION INEQUALITIES

CONCENTRATION INEQUALITIES CONCENTRATION INEQUALITIES MAXIM RAGINSKY I te previous lecture, te followig result was stated witout proof. If X 1,..., X are idepedet Beroulliθ radom variables represetig te outcomes of a sequece of

More information

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data Appedix to: Hypothesis Testig for Multiple Mea ad Correlatio Curves with Fuctioal Data Ao Yua 1, Hog-Bi Fag 1, Haiou Li 1, Coli O. Wu, Mig T. Ta 1, 1 Departmet of Biostatistics, Bioiformatics ad Biomathematics,

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Lecture 7 Testing Nonlinear Inequality Restrictions 1

Lecture 7 Testing Nonlinear Inequality Restrictions 1 Eco 75 Lecture 7 Testig Noliear Iequality Restrictios I Lecture 6, we discussed te testig problems were te ull ypotesis is de ed by oliear equality restrictios: H : ( ) = versus H : ( ) 6= : () We sowed

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A. Radom Walks o Discrete ad Cotiuous Circles by Jeffrey S. Rosethal School of Mathematics, Uiversity of Miesota, Mieapolis, MN, U.S.A. 55455 (Appeared i Joural of Applied Probability 30 (1993), 780 789.)

More information

Lecture 27: Optimal Estimators and Functional Delta Method

Lecture 27: Optimal Estimators and Functional Delta Method Stat210B: Theoretical Statistics Lecture Date: April 19, 2007 Lecture 27: Optimal Estimators ad Fuctioal Delta Method Lecturer: Michael I. Jorda Scribe: Guilherme V. Rocha 1 Achievig Optimal Estimators

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

Statistical Inference Based on Extremum Estimators

Statistical Inference Based on Extremum Estimators T. Rotheberg Fall, 2007 Statistical Iferece Based o Extremum Estimators Itroductio Suppose 0, the true value of a p-dimesioal parameter, is kow to lie i some subset S R p : Ofte we choose to estimate 0

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s) that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Lecture 3 The Lebesgue Integral

Lecture 3 The Lebesgue Integral Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

b i u x i U a i j u x i u x j

b i u x i U a i j u x i u x j M ath 5 2 7 Fall 2 0 0 9 L ecture 1 9 N ov. 1 6, 2 0 0 9 ) S ecod- Order Elliptic Equatios: Weak S olutios 1. Defiitios. I this ad the followig two lectures we will study the boudary value problem Here

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

Estimation of the essential supremum of a regression function

Estimation of the essential supremum of a regression function Estimatio of the essetial supremum of a regressio fuctio Michael ohler, Adam rzyżak 2, ad Harro Walk 3 Fachbereich Mathematik, Techische Uiversität Darmstadt, Schlossgartestr. 7, 64289 Darmstadt, Germay,

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS. If g( is cotiuous i [a,b], te uder wat coditio te iterative (or iteratio metod = g( as a uique solutio i [a,b]? '( i [a,b].. Wat

More information

Efficient GMM LECTURE 12 GMM II

Efficient GMM LECTURE 12 GMM II DECEMBER 1 010 LECTURE 1 II Efficiet The estimator depeds o the choice of the weight matrix A. The efficiet estimator is the oe that has the smallest asymptotic variace amog all estimators defied by differet

More information

Web-based Supplementary Materials for A Modified Partial Likelihood Score Method for Cox Regression with Covariate Error Under the Internal

Web-based Supplementary Materials for A Modified Partial Likelihood Score Method for Cox Regression with Covariate Error Under the Internal Web-based Supplemetary Materials for A Modified Partial Likelihood Score Method for Cox Regressio with Covariate Error Uder the Iteral Validatio Desig by David M. Zucker, Xi Zhou, Xiaomei Liao, Yi Li,

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences Commuicatios of the Korea Statistical Society 29, Vol. 16, No. 5, 841 849 Precise Rates i Complete Momet Covergece for Negatively Associated Sequeces Dae-Hee Ryu 1,a a Departmet of Computer Sciece, ChugWoo

More information

Estimating the Population Mean using Stratified Double Ranked Set Sample

Estimating the Population Mean using Stratified Double Ranked Set Sample Estimatig te Populatio Mea usig Stratified Double Raked Set Sample Mamoud Syam * Kamarulzama Ibraim Amer Ibraim Al-Omari Qatar Uiversity Foudatio Program Departmet of Mat ad Computer P.O.Box (7) Doa State

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

Quantile regression with multilayer perceptrons.

Quantile regression with multilayer perceptrons. Quatile regressio with multilayer perceptros. S.-F. Dimby ad J. Rykiewicz Uiversite Paris 1 - SAMM 90 Rue de Tolbiac, 75013 Paris - Frace Abstract. We cosider oliear quatile regressio ivolvig multilayer

More information

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8)

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8) Elemets of Statistical Methods Lots of Data or Large Samples (Ch 8) Fritz Scholz Sprig Quarter 2010 February 26, 2010 x ad X We itroduced the sample mea x as the average of the observed sample values x

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information