Empirical Processes: Glivenko Cantelli Theorems

Size: px
Start display at page:

Download "Empirical Processes: Glivenko Cantelli Theorems"

Transcription

1 Empirical Processes: Gliveko Catelli Theorems Mouliath Baerjee Jue 6, 200 Gliveko Catelli classes of fuctios The reader is referred to Chapter.6 of Weller s Torgo otes, Chapter??? of VDVW ad Chapter 8.3 of Kosorok. First, a theorem usig bracketig etropy. Let (F, ) be a subset of a ormed space of real fuctios f : X R. Give real fuctios l ad u o X (but ot ecessarily i F), the bracket [l, u] is defied as the set of all fuctios f F satisfyig l f u. The fuctios l, u are assumed to have fiite orms. A ɛ-bracket is a bracket with u l ɛ. The bracketig umber N [] (ɛ, F ) is the miimum umber of ɛ-brackets with which F ca be covered ad the bracketig etropy is the log of this umber. Theorem. Let F be a class of measurable fuctios with N [] (ɛ, F ) < for all ɛ > 0. The F is P -Gliveko-Catelli, i.e. P P F a.s 0. Brief sketch: For ay ɛ > 0 choose fiitely may ɛ-brackets {l i, u i } m (which ca be arraged, by assumptio) ad argue, by fidig a boud o (P P )f (for each f) i terms of the [l i, u i ] that cotais it, that: sup (P P )f f F { } max (P P ) u i max (P P ) l i i m i m ad coclude, usig the strog law for radom variables, that the right side of the above display is almost surely less tha 2 ɛ evetually. + ɛ, GC theorem for a cotiuous distributio fuctio o the lie: Let F be a cotiuous cdf ad P the correspodig measure. By uiform cotiuity of F o the lie, for every ɛ > 0,

2 we ca fid = t 0 < t < t 2 <... < t k < t k+ =, with k a positive iteger, such that the uio of the brackets [(x t i ), (x t i+ )] for i = 0,,..., k cotais {(x t : t R} ad satisfy F (t i+ ) F (t i ) ɛ. The above theorem ow applies directly. Note that the cotiuity of the distributio fuctio F was used crucially. The GC theorem o the lie holds for arbitrary distributio fuctios though. This more geeral result will be see to be a corollary of a subsequet GC theorem. The ext lemma provides a settig which guaratees a fiite bracketig umber for appropriate classes of fuctios ad fids a ready applicatio i iferece i parametric statistical models. Lemma. Suppose that F = {f(, t) : t T }, where T is a compact subset of a metric space (D, d) ad the fuctios f : X T R are cotiuous i t for P almost x X. Assume that the evelope fuctio F defied by F (x) = sup t T f(x, t) satisfies P F <. The N [ ] (ɛ, F, L (P )) <, for each ɛ > 0. The proof is give i Chapter.6 of Weller s Torgo otes. We skip it but show ext how the above result is helpful for deducig cosistecy i parametric statistical models. Cosistecy i parametric models: Let {p(x, θ) : θ Θ} with Θ R d be a class of parametric desities ad cosider X, X 2,..., geerated from some p(x, θ 0 ). Also assume that Θ is compact ad that p(x, θ) is cotiuous i θ for P θ0 -almost x. Defie M(θ) = E θ0 l(x, θ) where l(x, θ) = log p(x, θ). Fially assume that sup θ Θ l(x, θ) B(x) for some B with E θ0 B(X ) <. The, ote that M(θ) if fiite for all θ ad moreover, cotiuous o Θ. If P 0 deotes the measure correspodig to θ 0, M(θ) = P θ0 l(, θ). The MLE of θ is give by ˆθ = argmax θ M (θ) where M (θ) = P l(, θ). Uder the assumptio that the model is idetifiable (i.e. the probability distributios correspodig to differet θ s are differet), it is easily see that M(θ) is uiquely miimized at θ 0. Fially, ote that θ 0 is a well-separated maximizer i the sese that for ay η > 0, sup θ Θ Bη(θ 0 ) c M(θ) < M(θ 0), with B η (θ 0 ) beig the ope ball of radius η cetered at θ 0. Let ψ(η) = M(θ 0 ) sup θ Θ Bη(θ0 ) c M(θ). The ψ(η) > 0. Our goal is to show that ˆθ P θ0 θ 0. So, give ɛ > 0, cosider P (ˆθ B ɛ (θ 0 ) c. Now, ˆθ B ɛ (θ 0 ) c M(ˆθ ) sup θ Θ B η(θ 0 ) c M(θ) M(ˆθ ) M(θ 0 ) ψ(ɛ) M(ˆθ ) M(θ 0 ) + M (θ 0 ) M (ˆθ ) ψ(ɛ) 2

3 Thus, 2 sup M (θ) M(θ) ψ(ɛ). θ Θ P (ˆθ B ɛ (θ 0 ) c ) P (sup M (θ) M(θ) ψ(ɛ)/2) P (sup (P P θ0 ) l(, θ) ψ(ɛ)/2), θ Θ θ Θ ad this goes to 0, owig to the fact that (sup θ Θ (P P θ0 ) l(, θ) ) a.s. 0 (sice uder our assumptios o the parametric model, we ca coclude from Lemma. that N [ ] (η,{l(, θ) : θ Θ}, L (P θ0 )) < for every η > 0 ad the ivoke Theorem.). We ext state (ad partly prove) a result that provides ecessary ad sufficiet coditios for a class of fuctios F to be Gliveko-Catelli i terms of coverig umbers. Theorem.2 Let F be a P -measurable class of measurable fuctios bouded i L (P ). The F is P -Gliveko Catelli if ad oly if: (a) P F <, (b) E log N(ɛ, F M, L 2 (P )) lim = 0, for all M < ad ɛ > 0. Here F M = {f (F M) : f F}. Discussio: We will oly cosider the if part of the proof. This will be provided later. First, we ote that L 2 ca be replaced by ay L r, r. At least for the if part, this will be obvious from the proof. Secodly, for the if part, the secod coditio ca be replaced by the weaker coditio that log N(ɛ, F M, L 2 (P ))/ P 0. Thirdly, sice N(ɛ, F M, L 2 (P )) N(ɛ, F, L 2 (P )) for all M > 0, coditio (b) i the theorem ca be replaced by the alterative coditio that E (log N(ɛ, F, L 2 (P )/) 0 (or a coditio ivolvig covergece i probability for the if part). Fially, if F has a measurable ad itegrable evelope, F, the P F is fiite almost surely (simple strog law) ad it is readily argued that: ɛ > 0, (log N(ɛ, F, L (P ))) = o p () ɛ > 0, (log N(ɛ F P,, F, L (P ))) = o p (). To see this quickly, use the characterizatio of i-probability covergece i terms of almost sure covergece alog subsequeces. It turs out that there is a large class of fuctios, called VC classes of fuctios, for which the quatity log N(ɛ F P,, F, L (P )) is bouded, uiformly i ad ω; i fact, for such a class F of fuctios, for: sup Q N(ɛ F Q,r, F, L r (Q)) K ( ɛ r ) M, 3

4 for a iteger M that depeds solely o F, a costat K that depeds oly o F, ad the supremum is take over all probability measures for which F Q,r > 0. Thus, a VC class of fuctios with itegrable evelope F is easily Gliveko-Catelli for ay probability measure o the correspodig sample space. The fortuate thig is that fuctios formed by combiig VC classes of fuctios via various mathematical operatios ofte satisfy similar etropy bouds as i the above display, so that such (more) complex classes cotiue to remai Gliveko-Catelli uder itegrability hypotheses. As a special case, cosider F = {f t (x) =,t] (x) : t R d }. Thus f t (x) is simply the idicator of the ifiite rectagle to the south-west of the poit t. For all probability measures Q o d-dimesioal Euclidea space: N(ɛ, F, L (Q)) M d ( K ɛ ) d, which immediately implies the classical Gliveko-Catelli theorem i R d. Proof of Theorem.2: We prove the if part. By P -measurability of the class F ad Corollary. of the symmetrizatio otes applied with Φ beig the idetity, E P P F 2 E ɛ i f(x i ) F = 2 E X E ɛ ɛ i f(x i ) F 2 E X E ɛ ɛ i f(x i ) + 2 P (F (F > M)). Give ay ɛ > 0, a appropriate choice of M esures that the secod term is o larger tha ɛ. It suffices to show that for this choice of M, the first term is evetually smaller tha ɛ. To this ed, first fix X, X 2,..., X. A ɛ-et G (assumed to be of miimal size) over F M i L 2 (P ) is also a ɛ-et i L (P ). It follows that: E ɛ ɛ i f(x i ) E ɛ ɛ i f(x i ) + ɛ. G Before goig further, ote that each g G ca be assumed to be uiformly bouded (i absolute value) by M. This ca be achieved sice each f i F M is bouded (i absolute value) by M. So, 4

5 give a arbitrary ɛ-et G, perturb each g to a g which coicides with g wheever g M ad o the complemet of this set equals (g) M. These perturbed fuctios cotiue to costitute a ɛ-et over F M. Cosider the first term o the right of the above display. Sice the L orm is bouded (up to a costat) by the ψ Orlicz orm, which is bouded upto a costat by the ψ 2 Orlicz orm, we ca use Lemma. i the chaiig otes to boud the first term, up to a costat, by: B = + log N(ɛ, F M, L 2 (P )) max ɛ i f(x i ). f G ψ2 X As a cosequece of Hoeffdig s iequality (see the first page of the symmetrizatio otes): ɛ i f(x i ) 6 (P f 2 ) /2 6 M, ψ2 X ad thus B 6 M + log N(ɛ,, L 2 (P )) by Coditio (b) of the theorem. Coclude that: E ɛ ɛ i f(x i ) P 0. 0, Sice the above radom variable is bouded, coclude that: E X E ɛ ɛ i f(x i ) 0. It follows that E ( P P F 0. Our goal is however to show almost sure covergece. This is deduced by a submartigale argumet, a simplified versio of which is preseted at the ed of these otes. The idea here is to show that P P F is a reverse submartigale with respect to a (decreasig) filtratio that coverges to the symmetric sigma-field ad therefore has a almost sure limit. This almost sure limit, beig measurable with respect to the symmetric sigma field, must be a o-egative costat almost surely. The fact that the expectatio coverges to 0 the forces this costat to be 0. The full udiluted versio of the argumet is preseted i Lemma of VDVW. Uiform ad uiversal GC classes: If F is P -Gliveko-Catelli for all probability measures 5

6 P o (X, A), it is called a uiversal Gliveko-Catell class. For example, VC classes of fuctios (that appear i the discussio precedig the proof of Theorem.2) are uiversal GC-classes provided they are uiformly bouded (so that there is a itegrable evelope for every probability measure P ). A stroger GC property ca be formulated i terms of the uiformity of the covergece of the empirical measure to the true measure over all probability measures o (X, A). Say that F is a strog uiform GC class if, for all ɛ > 0, sup P rp P P(X,A) Note that the almost sure covergece of P P ( ) sup P m P F > ɛ m 0. to 0 for a fixed P is equivalet to the coditio: For every ɛ > 0, ( ) P rp sup P m P F > ɛ 0. m Uiform Gliveko Catelli classes are sometimes useful i statistical applicatios, for example i situatios where the paret distributio from which a statistical model is geerated is allowed to vary with the sample size, or situatios where there are two idices m, that go to ifiity, with beig the sample size, ad m a idex that labels the statistical model. Cosistecy argumets for such situatios ca be costructed via the otio of uiform GC classes of fuctios. A compellig applicatio is preseted i the paper by Se, Baerjee ad Michailidis (200) (available o Baerjee s webpage) where the problem is oe of estimatig the miimum effective dose i a dose respose settig (the largest dose beyod which the respose is positive) ad is the umber of distict doses with each dose admiistered to a distict set of m idividuals. Cosistecy of a least squares estimate of the miimum effective dose is established as m, ad the otio of uiform GC classes is heavily used. Sectio 2.8. of VDVW deals with these ideas; see Theorem 2.8. which ca be used to deduce that V C classes of fuctios are uiformly Gliveko-Catelli uder appropriate itegrability restrictios. GC preservatio: Preservatio of GC properties are importat from the perspective of applicatios. Ofte, i a statistical applicatio, it becomes ecessary to show the GC property for a class of fuctios with complex fuctioal forms to which tailor-made GC theorems are difficult to apply. However, if such classes ca be built up from simple GC classes of fuctios via simple 6

7 mathematical operatios, the GC property ofte traslates to the complex classes of iterest. Sectio.6 of Weller s otes has a discussio of preservatio properties as does Sectio 9.3 of Kosorok. Some discussio from Kosorok: A example: Suppose that X = R ad that X P. (i) For 0 < M < ad a R, let f(x, t) = x t ad F = F a,m = {f(x, t) : t a M}. Show that if E( X ) <, N [ ] (ɛ, F, L (P )) <. Derivatio: Chop the iterval [a M, a + M] ito a evely spaced (fiite) grid of poits {s i } icludig the ed-poits such that successive poits o the grid are separated by a distace o larger tha ɛ < ɛ. Costruct a set of brackets {l j, u j } where l j (x) = x s j (x s j )+ x s j+ (x s j+ ) ad u j (x) = x s j x s j+. Each l j, u j has fiite orm sice E P ( X ) <. A simple picture should ow covice you that u j l j is o-egative ad o larger tha ɛ poitwise ad hece i the L (P ) orm. Every poit t i [a M, a + M] lies i some [s j, s j+ ] ad the fuctio f(x, t) the belogs to the bracket [l j, u j ], showig that N [ ] (ɛ, F, L (P )) <. (ii) Same as before but let f(x, t) = x t x a. Show that N [ ] (ɛ, F, L (P )) < but without the assumptio that E P ( X ) <. Derivatio: Take the l j, u j s costructed above ad defie ũ j = u j x a ad ũ j = l j x a. Cosider { l j, ũ j }. It is easy to show, usig the fact that x t x t t t that each ũ j ad each l j is bouded ad therefore itegrable, irrespective of whether E( X ) <. If t [s j, s j+ ], f(x, t) lies i the bracket [ l j, ũ j ]. 7

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Mathematical Methods for Physics ad Egieerig Lecture otes Sergei V. Shabaov Departmet of Mathematics, Uiversity of Florida, Gaiesville, FL 326 USA CHAPTER The theory of covergece. Numerical sequeces..

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

Sieve Estimators: Consistency and Rates of Convergence

Sieve Estimators: Consistency and Rates of Convergence EECS 598: Statistical Learig Theory, Witer 2014 Topic 6 Sieve Estimators: Cosistecy ad Rates of Covergece Lecturer: Clayto Scott Scribe: Julia Katz-Samuels, Brado Oselio, Pi-Yu Che Disclaimer: These otes

More information

Measure and Measurable Functions

Measure and Measurable Functions 3 Measure ad Measurable Fuctios 3.1 Measure o a Arbitrary σ-algebra Recall from Chapter 2 that the set M of all Lebesgue measurable sets has the followig properties: R M, E M implies E c M, E M for N implies

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems McGill Uiversity Math 354: Hoors Aalysis 3 Fall 212 Assigmet 3 Solutios to selected problems Problem 1. Lipschitz fuctios. Let Lip K be the set of all fuctios cotiuous fuctios o [, 1] satisfyig a Lipschitz

More information

FUNDAMENTALS OF REAL ANALYSIS by

FUNDAMENTALS OF REAL ANALYSIS by FUNDAMENTALS OF REAL ANALYSIS by Doğa Çömez Backgroud: All of Math 450/1 material. Namely: basic set theory, relatios ad PMI, structure of N, Z, Q ad R, basic properties of (cotiuous ad differetiable)

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover. Compactess Defiitio 1. A cover or a coverig of a topological space X is a family C of subsets of X whose uio is X. A subcover of a cover C is a subfamily of C which is a cover of X. A ope cover of X is

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Chapter 7 Isoperimetric problem

Chapter 7 Isoperimetric problem Chapter 7 Isoperimetric problem Recall that the isoperimetric problem (see the itroductio its coectio with ido s proble) is oe of the most classical problem of a shape optimizatio. It ca be formulated

More information

Glivenko-Cantelli Classes

Glivenko-Cantelli Classes CS28B/Stat24B (Sprig 2008 Statistical Learig Theory Lecture: 4 Gliveko-Catelli Classes Lecturer: Peter Bartlett Scribe: Michelle Besi Itroductio This lecture will cover Gliveko-Catelli (GC classes ad itroduce

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

The Wasserstein distances

The Wasserstein distances The Wasserstei distaces March 20, 2011 This documet presets the proof of the mai results we proved o Wasserstei distaces themselves (ad ot o curves i the Wasserstei space). I particular, triagle iequality

More information

Beurling Integers: Part 2

Beurling Integers: Part 2 Beurlig Itegers: Part 2 Isomorphisms Devi Platt July 11, 2015 1 Prime Factorizatio Sequeces I the last article we itroduced the Beurlig geeralized itegers, which ca be represeted as a sequece of real umbers

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Lecture 3 The Lebesgue Integral

Lecture 3 The Lebesgue Integral Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness Notes #3 Sequeces Limit Theorems Mootoe ad Subsequeces Bolzao-WeierstraßTheorem Limsup & Limif of Sequeces Cauchy Sequeces ad Completeess This sectio of otes focuses o some of the basics of sequeces of

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

TERMWISE DERIVATIVES OF COMPLEX FUNCTIONS

TERMWISE DERIVATIVES OF COMPLEX FUNCTIONS TERMWISE DERIVATIVES OF COMPLEX FUNCTIONS This writeup proves a result that has as oe cosequece that ay complex power series ca be differetiated term-by-term withi its disk of covergece The result has

More information

Council for Innovative Research

Council for Innovative Research ABSTRACT ON ABEL CONVERGENT SERIES OF FUNCTIONS ERDAL GÜL AND MEHMET ALBAYRAK Yildiz Techical Uiversity, Departmet of Mathematics, 34210 Eseler, Istabul egul34@gmail.com mehmetalbayrak12@gmail.com I this

More information

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation omework 2 1 Let X ad Y be ilbert spaces over C The a sesquiliear form h o X Y is a mappig h : X Y C such that for all x 1, x 2, x X, y 1, y 2, y Y ad all scalars α, β C we have (a) h(x 1 + x 2, y) h(x

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Rates of Convergence by Moduli of Continuity

Rates of Convergence by Moduli of Continuity Rates of Covergece by Moduli of Cotiuity Joh Duchi: Notes for Statistics 300b March, 017 1 Itroductio I this ote, we give a presetatio showig the importace, ad relatioship betwee, the modulis of cotiuity

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

b i u x i U a i j u x i u x j

b i u x i U a i j u x i u x j M ath 5 2 7 Fall 2 0 0 9 L ecture 1 9 N ov. 1 6, 2 0 0 9 ) S ecod- Order Elliptic Equatios: Weak S olutios 1. Defiitios. I this ad the followig two lectures we will study the boudary value problem Here

More information

Metric Space Properties

Metric Space Properties Metric Space Properties Math 40 Fial Project Preseted by: Michael Brow, Alex Cordova, ad Alyssa Sachez We have already poited out ad will recogize throughout this book the importace of compact sets. All

More information

Point Estimation: properties of estimators 1 FINITE-SAMPLE PROPERTIES. finite-sample properties (CB 7.3) large-sample properties (CB 10.

Point Estimation: properties of estimators 1 FINITE-SAMPLE PROPERTIES. finite-sample properties (CB 7.3) large-sample properties (CB 10. Poit Estimatio: properties of estimators fiite-sample properties CB 7.3) large-sample properties CB 10.1) 1 FINITE-SAMPLE PROPERTIES How a estimator performs for fiite umber of observatios. Estimator:

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory ST525: Advaced Statistical Theory Departmet of Statistics & Applied Probability Tuesday, September 7, 2 ST525: Advaced Statistical Theory Lecture : The law of large umbers The Law of Large Numbers The

More information

y X F n (y), To see this, let y Y and apply property (ii) to find a sequence {y n } X such that y n y and lim sup F n (y n ) F (y).

y X F n (y), To see this, let y Y and apply property (ii) to find a sequence {y n } X such that y n y and lim sup F n (y n ) F (y). Modica Mortola Fuctioal 2 Γ-Covergece Let X, d) be a metric space ad cosider a sequece {F } of fuctioals F : X [, ]. We say that {F } Γ-coverges to a fuctioal F : X [, ] if the followig properties hold:

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probability for mathematicias INDEPENDENCE TAU 2013 28 Cotets 3 Ifiite idepedet sequeces 28 3a Idepedet evets........................ 28 3b Idepedet radom variables.................. 33 3 Ifiite idepedet

More information

Introduction to Functional Analysis

Introduction to Functional Analysis MIT OpeCourseWare http://ocw.mit.edu 18.10 Itroductio to Fuctioal Aalysis Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE OTES FOR 18.10,

More information

Information Theory and Statistics Lecture 4: Lempel-Ziv code

Information Theory and Statistics Lecture 4: Lempel-Ziv code Iformatio Theory ad Statistics Lecture 4: Lempel-Ziv code Łukasz Dębowski ldebowsk@ipipa.waw.pl Ph. D. Programme 203/204 Etropy rate is the limitig compressio rate Theorem For a statioary process (X i)

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

TENSOR PRODUCTS AND PARTIAL TRACES

TENSOR PRODUCTS AND PARTIAL TRACES Lecture 2 TENSOR PRODUCTS AND PARTIAL TRACES Stéphae ATTAL Abstract This lecture cocers special aspects of Operator Theory which are of much use i Quatum Mechaics, i particular i the theory of Quatum Ope

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Math 220A Fall 2007 Homework #2. Will Garner A

Math 220A Fall 2007 Homework #2. Will Garner A Math 0A Fall 007 Homewor # Will Garer Pg 3 #: Show that {cis : a o-egative iteger} is dese i T = {z œ : z = }. For which values of q is {cis(q): a o-egative iteger} dese i T? To show that {cis : a o-egative

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales.

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales. A alterative proof of a theorem of Aldous cocerig covergece i distributio for martigales. Maurizio Pratelli Dipartimeto di Matematica, Uiversità di Pisa. Via Buoarroti 2. I-56127 Pisa, Italy e-mail: pratelli@dm.uipi.it

More information

A NOTE ON LEBESGUE SPACES

A NOTE ON LEBESGUE SPACES Volume 6, 1981 Pages 363 369 http://topology.aubur.edu/tp/ A NOTE ON LEBESGUE SPACES by Sam B. Nadler, Jr. ad Thelma West Topology Proceedigs Web: http://topology.aubur.edu/tp/ Mail: Topology Proceedigs

More information

1 The Haar functions and the Brownian motion

1 The Haar functions and the Brownian motion 1 The Haar fuctios ad the Browia motio 1.1 The Haar fuctios ad their completeess The Haar fuctios The basic Haar fuctio is 1 if x < 1/2, ψx) = 1 if 1/2 x < 1, otherwise. 1.1) It has mea zero 1 ψx)dx =,

More information

5 Many points of continuity

5 Many points of continuity Tel Aviv Uiversity, 2013 Measure ad category 40 5 May poits of cotiuity 5a Discotiuous derivatives.............. 40 5b Baire class 1 (classical)............... 42 5c Baire class 1 (moder)...............

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

On the behavior at infinity of an integrable function

On the behavior at infinity of an integrable function O the behavior at ifiity of a itegrable fuctio Emmauel Lesige To cite this versio: Emmauel Lesige. O the behavior at ifiity of a itegrable fuctio. The America Mathematical Mothly, 200, 7 (2), pp.75-8.

More information

Advanced Analysis. Min Yan Department of Mathematics Hong Kong University of Science and Technology

Advanced Analysis. Min Yan Department of Mathematics Hong Kong University of Science and Technology Advaced Aalysis Mi Ya Departmet of Mathematics Hog Kog Uiversity of Sciece ad Techology September 3, 009 Cotets Limit ad Cotiuity 7 Limit of Sequece 8 Defiitio 8 Property 3 3 Ifiity ad Ifiitesimal 8 4

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Notes on Snell Envelops and Examples

Notes on Snell Envelops and Examples Notes o Sell Evelops ad Examples Example (Secretary Problem): Coside a pool of N cadidates whose qualificatios are represeted by ukow umbers {a > a 2 > > a N } from best to last. They are iterviewed sequetially

More information

Estimation of the essential supremum of a regression function

Estimation of the essential supremum of a regression function Estimatio of the essetial supremum of a regressio fuctio Michael ohler, Adam rzyżak 2, ad Harro Walk 3 Fachbereich Mathematik, Techische Uiversität Darmstadt, Schlossgartestr. 7, 64289 Darmstadt, Germay,

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

Properties of Fuzzy Length on Fuzzy Set

Properties of Fuzzy Length on Fuzzy Set Ope Access Library Joural 206, Volume 3, e3068 ISSN Olie: 2333-972 ISSN Prit: 2333-9705 Properties of Fuzzy Legth o Fuzzy Set Jehad R Kider, Jaafar Imra Mousa Departmet of Mathematics ad Computer Applicatios,

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A. Radom Walks o Discrete ad Cotiuous Circles by Jeffrey S. Rosethal School of Mathematics, Uiversity of Miesota, Mieapolis, MN, U.S.A. 55455 (Appeared i Joural of Applied Probability 30 (1993), 780 789.)

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B)

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B) Real Numbers The least upper boud - Let B be ay subset of R B is bouded above if there is a k R such that x k for all x B - A real umber, k R is a uique least upper boud of B, ie k = LUB(B), if () k is

More information

Introduction to Probability. Ariel Yadin. Lecture 7

Introduction to Probability. Ariel Yadin. Lecture 7 Itroductio to Probability Ariel Yadi Lecture 7 1. Idepedece Revisited 1.1. Some remiders. Let (Ω, F, P) be a probability space. Give a collectio of subsets K F, recall that the σ-algebra geerated by K,

More information

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula Joural of Multivariate Aalysis 102 (2011) 1315 1319 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Superefficiet estimatio of the margials

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture 3 Tolstikhi Ilya Abstract I this lecture we will prove the VC-boud, which provides a high-probability excess risk boud for the ERM algorithm whe

More information