CST EM : Examples. Chang-Kyun PARK (Ph. D. St.) Thin Films & Devices (TFD) Lab.

Size: px
Start display at page:

Download "CST EM : Examples. Chang-Kyun PARK (Ph. D. St.) Thin Films & Devices (TFD) Lab."

Transcription

1 CST Advanced Training Daedeok Convention Town ( ) CST EM : Examples TM EM Studio TM Chang-Kyun PARK (Ph. D. St.) ckpark@ihanyang.ac.kr Thin Films & Devices (TFD) Lab. Dept. of Electrical Engineering, Hanyang Ansan Campus, KOREA

2 OUTLINEUTLINE CST EM Studio TM v.2.0 Introduction Example E-static Electrometer RJ 45 LAN connector Variable capacitor Floating Potential Field Emitter Tapered-type gated FEA M-static Rotary Encoder LF Eddy current sensor J-static Circuit Breaker Tracking Electron gun

3 TFD Lab. Hanyang University Professor: Jin-Seok Park

4 TFD Lab. TFD Lab. Thin films and devices lab. for electronic displays and communications

5 CST EM Studio

6 MAFIA MAFIA (Maxwell s Equations by the Finite Integration Algorithm) MAFIA is an interactive program package for the computation of electromagnetic fields. It is based directly on the fundamental equations of electromagnetic fields, Maxwell s equations. MAFIA is a modular program, it is divided in preprocessor, postprocessor and solvers for different special cases of Maxwell s equations MAFIA includes an optimizer, it runs interactively as well as in batch or semi interactive using predefined command sequences. It has a powerful command language for automation and optimizing purposes and an advanced interactive graphical output with thousands of display options CST MAFIA

7 MAFIA Module MAFIA Module CST MAFIA

8 MAFIA The Following modules are available (I) M : Preprocessor, includes solid modeler, CAD import, 3D graphics P : Postprocessor, includes 3D graphics and calculation of deduced quantities like far field and impedance S : Static field module, solves electrostatics, magnetostatics, heat flow problems, stationary current flow problems and electro-quasistatic problems T3 : Time domain module, simulates time dependent wave propagation, most general and versatile in application. Uses Cartesian coordinates TS3 : Time domain module, simulates charged particle movement in time dependent fields including the interaction of particles and fields. Uses Cartesian coordinates only TS2 : Time domain module, simulates charged particle movement in time dependent fields including the interaction of particles and fields in cylinder symmetrical structures CST MAFIA

9 MAFIA The Following modules are available (II) E : Frequency domain eigenmode module, finds modes in resonators and waveguides W3 : Frequency domain module, covers the whole frequency range H3 : Thermodynamic module, solving thermodynamic problems in time domain in either Cartesian or polar coordinate system T2 : Time domain module, simulates time dependent wave propagation within cylinder symmetrical structures. Not yet available under GUI OO : Optimizer with many built in strategies. Optimizing capabilities not yet completely available under GUI A3 : Time domain acoustic solver. Not yet available under GUI CST MAFIA

10 The Simulation Method Background of the Simulation Method CST EM STUDIO is a general-purpose electromagnetic simulator based on the Finite Integration Technique (FIT), first purposed by Weiland in 1976/1977. Finite Integration + PBA (Statics to THz) Maxwell Grid Equations t = 0 t a iω t 0 E-static Frequency Domain (j>0) Implicit M-static J-static Tracking EMS Eigenvalue Problem (j=0) MWS MAFIA Explicit Time Domain PIC CST EM Studio

11 CST EM Studio Example: E-staticE

12 S-static 1: Electrometer Introduction This Example deals with the simulation of a simple electrometer device, which can be used for voltage measurements. The model used for the electrometer consists of three parts: the electrometer s scale, the ground, and the pointer. Results of interest: the capacitance and the torque for different angles of the pointer Pointer (PEC, 1,000V) PEC Scale (Dielectric, ε=10) The main dimensions of the electrometer device (unit: cm) Ground (PEC, 0V) CST EM Studio

13 S-static 1: Electrometer Summary Mesh generation Solver Meshcells Parameter sweep Total solver time Electrostatic 294,528 Angle From 20 to 70 (11steps) 48min, 10sec Meshcells: 294,528 CST EM Studio

14 S-static 1: Electrometer Potential E-Field CST EM Studio

15 S-static 1: Electrometer Torque vs angle CST EM Studio

16 S-static 2: RJ 45 Connector Introduction This example shows the calculation of the capacitance matrix of a RJ45 connection. The model consists of the connector and the corresponding socket, each containing eight wires for the signal transmission. The wires of the socket are fixed to a substrate plate, every other of them additionally connected to a metallic ground plane. This provides some kind of shielding effect for the transmission of the wire signals. Results of interest: capacitance Matrix CST EM Studio

17 S-static 2: RJ 45 Connector Define Potential Potential 2 (PCB PEC, 1V) Potential 3 (PCB PEC, 1V) Potential 4 (PCB PEC, 1V) Potential 1 (PCB PEC, 0V) Potential 5 (PCB PEC, 1V) CST EM Studio

18 S-static 2: RJ 45 Connector Potential E-Field CST EM Studio

19 S-static 2: RJ 45 Connector Capacitance Matrix CST EM Studio

20 S-static 3: Variable Capacitor Introduction The variable capacitor example demonstrates the parameter sweep feature in combination with the capacitance calculation. Epsilon (Dielectric, ε=100) Plate (PCB PEC, 1V) Parameter Sweep Plate (PCB PEC, 0V) CST EM Studio

21 S-static 3: Variable Capacitor Capacitance Vs Alpha CST EM Studio

22 S-static 4: Floating Potential Introduction This examples demonstrates how to consider floating potentials in an electrostatic calculation. It consists of four metallic plates and two plates of high dielectric material (relative permittivity 10000). On the two larger metallic plates a potential is defined, the other two metallic plates carry a charge of 0C. Plate (PCB PEC, 1V) PEC Floating Potential High dielectric material (relative permittivity 10000) Applied charge value: 0C Plate (PCB PEC, -1V) CST EM Studio

23 S-static 4: Floating Potential Result: Electric Field Distributions 1V 0.469V 0.467V -1V V V CST EM Studio

24 S-static 4: Floating Potential Result: Electric Field Distributions CST EM Studio

25 S-static 4: Floating Potential Only PEC Conditions CST EM Studio

26 S-static 4: Floating Potential Result: Potential Distributions 1V 0.469V 0V -1V V 0V CST EM Studio

27 S-static 4: Floating Potential Result: Electric Field Distributions CST EM Studio

28 S-static 5: Field emitter X-cut Plane Anode (50V) Gate (30V) Insulator, SiO 2 10μm CNT Cathode (0V) Isolated Electrode Ballast layer, a-si

29 S-static 5: Field emitter Material Property Unit: μm CNT (PEC) Diameter: Height: 1 Tip radius: Height: 2 Diameter: Base: a-si

30 S-static 5: Field emitter Potential Anode (50V) Unit: μm Gate (30V) Cathode (0V)

31 S-static 5: Field emitter Floating Potential Unit: μm CNT Isolated Electrode

32 S-static 5: Field emitter Results: Potential Distribution Tip Region: 27V Isolated Electrode: 26V

33 S-static 5: Field emitter Results: Electric Field Distribution

34 S-static 5: Field emitter Results: 1D Plot

35 S-static 6: Tapered-type Gated-FEA Geometry Gate (50V) Parameter Sweep Insulator, SiO 2 Monitoring Point CNT-Floating Potential (0C) Cathode (0V) Inter-dielectric Ballast layer, a-si

36 S-static 6: Tapered-type Gated-FEA Parameter Sweep (Pierce Electrode angle: 90 o ~12.5 o ) Result: Potential Distributions 68 o 45 o 90 o

37 S-static 6: Tapered-type Gated-FEA Parameter Sweep (Pierce Electrode angle: 90 o ~12.5 o ) Result: Electric Field Distributions 68 o 45 o 90 o

38 S-static 7: ICP-Reactor ICP Reactor

39 S-static 7: ICP-Reactor Simulation of ICP Reactor under DC Bias Conditions Modeling of ICP Reactor Simulation System summary OS: MS Windows XP V.5.1 SP1 Model: Intel Zeon (SE7505VB2) 2 CPU Process: Genuine Intel ~2790Mhz Memory: 1,024.00MB Graphic Adapter: Quadro4 980XGL Simulation summary Tool: CST EM Studio TM v 1.3 (CST GmbH) Simulation field: Electrostatic Solver Number of nodes: 1,074,480 Mesh generation time: 130 s Solver time: 13 s

40 S-static 7: ICP-Reactor Conditions Simulation Results Under 300 V Conditions Potential distribution Electric Field distribution

41 S-static 7: ICP-Reactor Conditions Simulation Results Under -450 V Conditions Potential distribution Electric Field distribution

42 CST EM Studio Example: M-staticM

43 M-static 1: Rotary Encoder Introduction In this tutorial a rotary encoder consisting of two iron yokes, a permanent magnet and two hall sensors is analyzed. Both yokes form a magnetic circuit, which is driven by a cylindrical permanent magnet. Two hall sensors are placed in the air gap between the yokes to measure the flux density in the gap. By twisting the yokes the B-field changes linear with the rotation angle. Upper Yoke (Iron 1000) Magnet Hall Sensor 0.2 T z Bottom Yoke (Iron 1000) CST EM Studio

44 M-static 1: Rotary Encoder B-Field CST EM Studio

45 M-static 1: Rotary Encoder Parameter Sweep Field Watch Position CST EM Studio

46 CST EM Studio Example: LF (Low Frequency) Solver

47 LF: Eddy Current Sensor Introduction In this example and eddy current sensor is modeled to simulate non-destructive material test. You will analyze an eddy current sensor driven by a low frequency coil generating eddy currents in an aluminum probe plate. The structure depicted above consists of the sensor, represented by an excitation current coil embedded in iron material. Below this sensor the probe plate is given as a lossy aluminum material, allowing the flow of eddy current. Inside this plate a material defect is modeled as a gap, which should be detected by the changing voltage at the coil. CST EM Studio

48 LF: Eddy Current Sensor B-Field (0 o ) Eddy Current (90 o ) CST EM Studio

49 CST EM Studio Example: Stationary Currents Solver

50 SC: Circuit Breaker Introduction In this example, you will analyze a circuit breaker consisting of two contact springs connected by a bridge. One matter of concern is the current flow from one contact over the bridge to the other contact. Therefore two current port are defined for the stationary current solver. After the solver run the fields are visualized and then used as a source field for a subsequent carried out magnetostatic calculation. Cupper (J-port, 0.05V) Cupper (J-port, -0.05V) Contact pad (PEC) Bridge (PEC) CST EM Studio

51 SC: Circuit Breaker Current Density Loss Power (P): e+001 [W] R = V 2 /P=0.1*0.1/P = e-4 I = P/V = V/R = [A] CST EM Studio

52 SC: Circuit Breaker H-Field CST EM Studio

53 CST EM Studio Example: Tracking Solver

54 Tracking 1: Electron Gun Introduction This example demonstrated how a particle tracking can be performed. Two types of field results were used here, an electrostaic field is used to accelerate electrons being emitted from a cathode and a magnetostatic field which is caused by a helmholz coil in order to focus the electron beam. Anode (PEC, 1000V) Cathode (PEC, 0V) Focus coil (0.4A) CST EM Studio

55 Tracking 1: Electron Gun Particle Source Particle Tracking Emission Site (electron) CST EM Studio

Tracking. Particle In Cell. Wakefield

Tracking. Particle In Cell. Wakefield CST PARTICLE STUDIO STUDIO SOLVERS & APPLICATIONS 1 www.cst.com Mar-09 CST PARTICLE STUDIO Solvers Tracking Simulation of DC Particle Guns, Collectors, Magnets Tracking in static E/H fields (incl. space

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

Design and numerical simulation of thermionic electron gun

Design and numerical simulation of thermionic electron gun Design and numerical simulation of thermionic electron gun M.Hoseinzade 1;1), A.Sadighzadeh 1) Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI,

More information

Limitations of the Leap-Frog Scheme

Limitations of the Leap-Frog Scheme Limitations of the Leap-Frog Scheme 1. Structures with high quality factor (resonators, filter,...): ω Ws frequency stored energy The quality factor Q is defined as Q= = Pv losses long decay time of resonant

More information

Plasma Modeling with COMSOL Multiphysics

Plasma Modeling with COMSOL Multiphysics Plasma Modeling with COMSOL Multiphysics Copyright 2014 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1

ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1 INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ELECTROMAGNETIC SIMULATION CODES FOR DESIGNING CAVITIES -1 Puneet Jain IIT ROORKEE SRFSAT Workshop, IUAC N. Delhi September 21, 2017 2 OUTLINE 1. Overview of Electromagnetic

More information

1-1: Introduction to the Opera-3d software

1-1: Introduction to the Opera-3d software Power Conversion & Electromechanical Devices Medical Physics & Science Applications Transportation Power Systems 1-1: Introduction to the Opera-3d software OPERA-3d What is OPERA-3d? Structure of the package

More information

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Index 1. Introduction 2. Some plasma sources 3. Related issues 4. Summary -2 Why is

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

fusion production of elements in stars, 345

fusion production of elements in stars, 345 I N D E X AC circuits capacitive reactance, 278 circuit frequency, 267 from wall socket, 269 fundamentals of, 267 impedance in general, 283 peak to peak voltage, 268 phase shift in RC circuit, 280-281

More information

Medical Physics & Science Applications

Medical Physics & Science Applications Power Conversion & Electromechanical Devices Medical Physics & Science Applications Transportation Power Systems 1-5: Introduction to the Finite Element Method Introduction Finite Element Method is used

More information

1 Solution of Electrostatics Problems with COM- SOL

1 Solution of Electrostatics Problems with COM- SOL 1 Solution of Electrostatics Problems with COM- SOL This section gives examples demonstrating how Comsol can be used to solve some simple electrostatics problems. 1.1 Laplace s Equation We start with a

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

Using Full Wave Solvers for Practical Analysis of Capacitor Mounting Structures

Using Full Wave Solvers for Practical Analysis of Capacitor Mounting Structures Using Full Wave Solvers for Practical Analysis of Capacitor Mounting Structures Scott McMorrow, Steve Weir, Teraspeed Consulting Group LLC Fabrizio Zanella, CST of America 1 Outline o MLCC Basics o MLCC

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

Possibilities of Using COMSOL Software in Physics

Possibilities of Using COMSOL Software in Physics ALEKSANDRAS STULGINSKIS UNIVERSITY Possibilities of Using COMSOL Software in Physics Jolita Sakaliūnienė 1 Overview Requirement of study quality Student motivation COMSOL software Composition of COMSOL

More information

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System Journal of Magnetics 18(3), 250-254 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.3.250 Analysis and Experiments of the Linear Electrical Generator in Wave

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Capacitance (Chapter 18): Physics (A-level) Every capacitor has two leads, each connected to a metal plate, where in between there is an insulating

More information

Surface Magnetic Non-Destructive Testing

Surface Magnetic Non-Destructive Testing Surface Magnetic Non-Destructive Testing Evangelos Hristoforou 1,*, Konstantinos Kosmas 1 and Eleftherios Kayafas 2 1 School of Mining and Metallurgy Engineering, National Technical University of Athens,

More information

CBSE 12th Physics 2016 Unsolved Paper Delhi Board ARYAN INSTITUTE

CBSE 12th Physics 2016 Unsolved Paper Delhi Board ARYAN INSTITUTE CBSE 12th Physics 2016 Unsolved Paper Delhi Board CBSE 12th Physics 2016 Unsolved Paper Delhi Board TIME - 3HR. QUESTIONS - 26 THE MARKS ARE MENTIONED ON EACH QUESTION SECTION-A Q.1. A point charge +Q

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 6: Field and Particle Physics You should be able to demonstrate and show your understanding of: 6.1: Fields (Charge and Field) Field: A potential gradient Field Strength: Indicates

More information

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Coupling Impedance of Ferrite Devices Description of Simulation Approach Coupling Impedance of Ferrite Devices Description of Simulation Approach 09 May 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Uwe Niedermayer 1 Content Coupling Impedance

More information

Modeling of Electromagnetic Heating of Multi-coil Inductors in Railway Traction Systems

Modeling of Electromagnetic Heating of Multi-coil Inductors in Railway Traction Systems Master's Degree Thesis ISRN: BTH-AMT-EX--2015/D09--SE Modeling of Electromagnetic Heating of Multi-coil Inductors in Railway Traction Systems Iman Baktash Department of Mechanical Engineering Blekinge

More information

Key-Holes Magnetron Design and Multiphysics Simulation

Key-Holes Magnetron Design and Multiphysics Simulation Key-Holes Magnetron Design and Multiphysics Simulation A. Leggieri* 1, F. Di Paolo 1, and D. Passi 1 1 Department of Electronic Engineering, University of Rome Tor Vergata, Italy *A. Leggieri: Department

More information

Physics 1308 Exam 2 Summer 2015

Physics 1308 Exam 2 Summer 2015 Physics 1308 Exam 2 Summer 2015 E2-01 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in

More information

Computational Electromagnetics Definitions, applications and research

Computational Electromagnetics Definitions, applications and research Computational Electromagnetics Definitions, applications and research Luis E. Tobón Pontificia Universidad Javeriana Seminario de investigación Departamento de Electrónica y Ciencias de la Computación

More information

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons. Magnetism Electricity Magnetism Magnetic fields are produced by the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. -> permanent magnets Magnetic

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM THIRD EDITION ELECTRICITY AND MAGNETISM EDWARD M. PURCELL DAVID J. MORIN Harvard University, Massachusetts Щ CAMBRIDGE Ell UNIVERSITY PRESS Preface to the third edition of Volume 2 XIII CONTENTS Preface

More information

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism You may solve ALL FOUR problems if you choose. The points of the best three problems will be counted towards your final score

More information

Electromagnetics and Electric Machines Stefan Holst, CD-adapco

Electromagnetics and Electric Machines Stefan Holst, CD-adapco Electromagnetics and Electric Machines Stefan Holst, CD-adapco Overview Electric machines intro Designing electric machines with SPEED Links to STAR-CCM+ for thermal modeling Electromagnetics in STAR-CCM+

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Magnetic Field Analysis

Magnetic Field Analysis NISA - EMAG EMAG is the electromagnetic module of the family of general purpose finite element based program NISA. It can determine electric and magnetic field distributions in a wide class of electromagnetic

More information

Electrostatic Discharge (ESD) Breakdown between a Recording Head and a Disk with an Asperity

Electrostatic Discharge (ESD) Breakdown between a Recording Head and a Disk with an Asperity Electrostatic Discharge (ESD) Breakdown between a Recording Head and a Disk with an Asperity Al Wallash and Hong Zhu Hitachi Global Storage Technologies San Jose, CA Outline Background Purpose Experimental

More information

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Dan Sievenpiper, Jiyeon Lee, and Dia a Bisharat January 11, 2016 1 Outline Arbitrary Anisotropic Surface Patterning Surface wave

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors

Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors Jerome P. Lynch Department of Civil and Environmental Engineering Department of Electrical Engineering and

More information

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix Nikola Dordevic and Yannick Salamin 30.10.2017 1 Content Revision Wave Propagation Losses Wave Propagation

More information

SCALING OF HOLLOW CATHODE MAGNETRONS FOR METAL DEPOSITION a)

SCALING OF HOLLOW CATHODE MAGNETRONS FOR METAL DEPOSITION a) SCALING OF HOLLOW CATHODE MAGNETRONS FOR METAL DEPOSITION a) Gabriel Font b) Novellus Systems, Inc. San Jose, CA, 95134 USA and Mark J. Kushner Dept. of Electrical and Computer Engineering Urbana, IL,

More information

Femtet What s New. Murata Software Co., Ltd. All Rights Reserved, Copyright c Murata Manufacturing Co., Ltd.

Femtet What s New. Murata Software Co., Ltd. All Rights Reserved, Copyright c Murata Manufacturing Co., Ltd. Femtet 2018.0 What s New Murata Software Co., Ltd. 1 Functionality Analysis Meshing General Functionality Modeling Results Display Item All Solvers Mechanical Stress/Thermal Analysis Mechanical Stress

More information

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism 1 ENGN6521 / ENGN4521: Embedded Wireless Radio Spectrum use for Communications 2 ENGN6521 / ENGN4521: Embedded Wireless 3 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism I Gauss

More information

NEPTUNE -code: KAUVG11ONC Prerequisites:... Knowledge description:

NEPTUNE -code: KAUVG11ONC Prerequisites:... Knowledge description: Subject name: Electrical Machines Credits: 9 Requirement : Course director: Dr. Vajda István Position: Assessment and verification procedures: NEPTUNE -code: KAUVG11ONC Prerequisites:... Number of hours:

More information

FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN

FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN Edited by S. RATNAJEEVAN H. HOOLE Professor of Engineering Harvey Mudd College Claremont, CA, USA and Senior Fellow, 1993/94 Department of Electrical Engineering

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 00 0 Department of Electrical and Electronics Engineering TUTORIAL QUESTION BANK Course Name : HIGH VOLTAGE ENGINEERING Course Code

More information

PHYSICS QUESTION PAPER CLASS-XII

PHYSICS QUESTION PAPER CLASS-XII PHYSICS QUESTION PAPER CLASS-XII Time : 3.00 Hours] [Maximum Marks : 100 Instructions : There are four sections and total 60 questions in this question paper. ( 1) (2) All symbols used in this question

More information

QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I - INTRODUCTION SYLLABUS

QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I - INTRODUCTION SYLLABUS QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEM NAME OF THE SUBJECT NAME OF THE FACULTY : II / IV : EE6404 MEASUREMENTS AND INSTRUMENTATION : K.M.S.MUTHUKUMARA RAJAGURU, AP/EEE

More information

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J. TECHCON 98 Las Vegas, Nevada September 9-11, 1998 MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL Ron L. Kinder and Mark J. Kushner Department of

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

EM Simulations using the PEEC Method - Case Studies in Power Electronics

EM Simulations using the PEEC Method - Case Studies in Power Electronics EM Simulations using the PEEC Method - Case Studies in Power Electronics Andreas Müsing Swiss Federal Institute of Technology (ETH) Zürich Power Electronic Systems www.pes.ee.ethz.ch 1 Outline Motivation:

More information

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions Last Name: First Name: Physics 102 Spring 2006: Final Exam Multiple-Choice Questions For questions 1 and 2, refer to the graph below, depicting the potential on the x-axis as a function of x V x 60 40

More information

NIU Ph.D. Candidacy Examination Fall 2017 (8/22/2017) Electricity and Magnetism

NIU Ph.D. Candidacy Examination Fall 2017 (8/22/2017) Electricity and Magnetism NIU Ph.D. Candidacy Examination Fall 2017 (8/22/2017) Electricity and Magnetism You may solve ALL FOUR problems if you choose. The points of the best three problems will be counted towards your final score

More information

Analysis of a Cylinder-Wire-Cylinder Electrode Configuration during Corona Discharge

Analysis of a Cylinder-Wire-Cylinder Electrode Configuration during Corona Discharge Analysis of a Cylinder-Wire-Cylinder Electrode Configuration during Corona Discharge K. KANTOUNA G.P. FOTIS K.N. KIOUSIS L. EKONOMOU G.E. CHATZARAKIS kkantouna@hotmail.com gfotis@gmail.com konstantinosq@gmail.com

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS ElectronBeam Deflection Tube D 6 Instruction sheet / LF 9 8 7 6 7 6 Fluorescent screen Lower deflection plate Boss with mm plug for connecting deflection plates Electron gun mm sockets

More information

VERSION 4.4. Introduction to AC/DC Module

VERSION 4.4. Introduction to AC/DC Module VERSION 4.4 Introduction to AC/DC Module Introduction to the AC/DC Module 1998 2013 COMSOL Protected by U.S. Patents 7,519,518; 7,596,474; 7,623,991; and 8,457,932. Patents pending. This Documentation

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII Chapter 1(Electric charges & Fields) DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT 2016-17 SUBJECT- PHYSICS (042) CLASS -XII 1. Why do the electric field lines never cross each other? [2014] 2. If the total

More information

Ansoft HFSS 3D Boundary Manager Sources

Ansoft HFSS 3D Boundary Manager Sources Lumped Gap Defining s Voltage and Current When you select Source, you may choose from the following source types: Incident wave Voltage drop Current Magnetic bias These sources are available only for driven

More information

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES* 25th IEEE International Conference on Plasma Science Raleigh, North Carolina June 1-4, 1998 SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(,n) MODES* Ron L. Kinder and Mark J.

More information

PHYSICS Course Structure Units Topics Marks Electrostatics Current Electricity III Magnetic Effect of Current & Magnetism

PHYSICS Course Structure Units Topics Marks Electrostatics Current Electricity III Magnetic Effect of Current & Magnetism PHYSICS Course Structure Units Topics Marks I Chapter 1 Chapter 2 II Chapter 3 III Chapter 4 Chapter 5 IV Chapter 6 Chapter 7 V Chapter 8 VI Chapter 9 Electrostatics Electric Charges and Fields Electrostatic

More information

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials?

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials? Conventional Paper I-03.(a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials? (ii) Give one example each of a dielectric and a ferroelectric material

More information

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Intro to Sensors Overview Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Sensors? American National Standards Institute A device

More information

Magnetic field of single coils/ Biot-Savart s law with Cobra4

Magnetic field of single coils/ Biot-Savart s law with Cobra4 Magnetic field of single coils/ TEP Related topics Wire loop, Biot-Savart s law, Hall effect, magnetic field, induction, magnetic flux density. Principle The magnetic field along the axis of wire loops

More information

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 Metamaterial Near field Configuration in Periodic Structures New Material Material and Metamaterial Material Metamaterial

More information

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR Keith G. Balmain University of Toronto Department of Electrical and Computer Engineering 10 King s College Rd Toronto, Ontario M5S 3G4, Canada

More information

65 th GEC, October 22-26, 2012

65 th GEC, October 22-26, 2012 65 th GEC, October 22-26, 2012 2D Fluid/Analytical Simulation of Multi-Frequency Capacitively-Coupled Plasma Reactors (CCPs) E. Kawamura, M.A. Lieberman, D.B. Graves and A.J. Lichtenberg A fast 2D hybrid

More information

Authors: D.S.Roveri 1, H.H.Bertan 1, M.A.R.Alves 1, J.F.Mologni 2, E.S.Braga 1

Authors: D.S.Roveri 1, H.H.Bertan 1, M.A.R.Alves 1, J.F.Mologni 2, E.S.Braga 1 Use of Ansoft Maxwell software platform for investigation of electrostatic properties of a hemisphere on a post geometry aimed to model field emission devices Authors: D.S.Roveri 1, H.H.Bertan 1, M.A.R.Alves

More information

EM Thermal Co-Simulation

EM Thermal Co-Simulation CST STUDIO SUITE 2008 Application and Feature Tutorial EM Thermal Co-Simulation Workflow -Material Settings -Boundaries -Losses Examples 1 ube / v1.0 / 14. Sep 2007 Steps for EM-Thermal Co- Simulation

More information

Electricity and Magnetism Module 6 Student Guide

Electricity and Magnetism Module 6 Student Guide Concepts of this Module Electricity and Magnetism Module 6 Student Guide Interactions of permanent magnets with other magnets, conductors, insulators, and electric charges. Magnetic fields of permanent

More information

For more sample papers visit :

For more sample papers visit : For more sample papers visit : www.4ono.com PHYSCS Paper 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time)

More information

7.Piezoelectric, Accelerometer and Laser Sensors

7.Piezoelectric, Accelerometer and Laser Sensors 7.Piezoelectric, Accelerometer and Laser Sensors 7.1 Piezoelectric sensors: (Silva p.253) Piezoelectric materials such as lead-zirconate-titanate (PZT) can generate electrical charge and potential difference

More information

Effective medium modeling and experimental characterization of multilayer dielectric with periodic inclusion

Effective medium modeling and experimental characterization of multilayer dielectric with periodic inclusion Graduate Theses and Dissertations Graduate College 2015 Effective medium modeling and experimental characterization of multilayer dielectric with periodic inclusion Teng Zhao Iowa State University Follow

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

ECE421: Electronics for Instrumentation MEP382: Design of Applied Measurement Systems Lecture #2: Transduction Mechanisms

ECE421: Electronics for Instrumentation MEP382: Design of Applied Measurement Systems Lecture #2: Transduction Mechanisms ECE421: Electronics for Instrumentation MEP382: Design of Applied Measurement Systems Lecture #2: Transduction Mechanisms Mostafa Soliman, Ph.D. April 28 th 2014 Slides are borrowed from Dr. Moahmed Elshiekh

More information

A high intensity p-linac and the FAIR Project

A high intensity p-linac and the FAIR Project A high intensity p-linac and the FAIR Project Oliver Kester Institut für Angewandte Physik, Goethe-Universität Frankfurt and GSI Helmholtzzentrum für Schwerionenforschung Facility for Antiproton and Ion

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

Electrical Characterization of 3D Through-Silicon-Vias

Electrical Characterization of 3D Through-Silicon-Vias Electrical Characterization of 3D Through-Silicon-Vias F. Liu, X. u, K. A. Jenkins, E. A. Cartier, Y. Liu, P. Song, and S. J. Koester IBM T. J. Watson Research Center Yorktown Heights, NY 1598, USA Phone:

More information

Physics 1308 Exam 2 Summer Instructions

Physics 1308 Exam 2 Summer Instructions Name: Date: Instructions All Students at SMU are under the jurisdiction of the Honor Code, which you have already signed a pledge to uphold upon entering the University. For this particular exam, you may

More information

Electromechanical Sensors and Actuators Fall Term

Electromechanical Sensors and Actuators Fall Term Electromechanical Sensors and Actuators Dr. Qing-Ming Wang Professor of Mechanical Engineering and Materials Science University of Pittsburgh 2017 Fall Term Lecture 1 Introduction and Transducer Models

More information

A Fixed Surface Potential Probe with the Swing Capacitive Electrometer Compared to the Vibrating Kelvin Probe

A Fixed Surface Potential Probe with the Swing Capacitive Electrometer Compared to the Vibrating Kelvin Probe Proc. 2017 Annual Meeting of the Electrostatics of America 1 A Fixed Surface Potential Probe with the Swing Capacitive Electrometer Compared to the Vibrating Kelvin Probe Michael Reznikov Dept. of Integrated

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Chapter 17 Electric Potential

Chapter 17 Electric Potential Chapter 17 Electric Potential Units of Chapter 17 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Equipotential Lines The Electron Volt, a Unit

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-1 Transduction Based on Changes in the Energy Stored in an Electrical Field Electric Field and Forces Suppose a charged fixed q 1 in a space, an exploring charge q is moving toward the fixed

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Name Section Multiple Choice 1. (8 Pts) 2. (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Notes: 1. In the multiple choice questions, each question may have more than one

More information

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM)

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) M. Cobianchi *1,Dr. M. Rousseau *1 and S. Xavier* 1 1 B&W Group Ltd, Worthing, West Sussex, England. *Corresponding

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material K. Z. Gomes *1, T. A. G. Tolosa 1, E. V. S. Pouzada 1 1 Mauá Institute of Technology, São Caetano do

More information

APPLICATIONS OF VIBRATION TRANSDUCERS

APPLICATIONS OF VIBRATION TRANSDUCERS APPLICATIONS OF VIBRATION TRANSDUCERS 1) Measurements on Structures or Machinery Casings: Accelerometers and Velocity Sensors Used in gas turbines, axial compressors, small and mid-size pumps. These sensors

More information

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Lecture 5: Photoinjector Technology J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04 Technologies Magnetostatic devices Computational modeling Map generation RF cavities 2 cell devices Multicell

More information

INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL ELECTRICAL AND ELECTRONICS ENGINEERING Course code : 067(07-08) Course title : High voltage engineering Course structure Lectures Tutorials Practical credits

More information

Diodes for Power Electronic Applications

Diodes for Power Electronic Applications Lecture Notes Diodes for Power Electronic Applications William P. Robbins Professor, Dept. of Electrical and Computer Engineering University of Minnesota OUTLINE PN junction power diode construction Breakdown

More information

Sensors and Transducers. mywbut.com

Sensors and Transducers. mywbut.com Sensors and Transducers 1 Objectives At the end of this chapter, the students should be able to: describe the principle of operation of various sensors and transducers; namely.. Resistive Position Transducers.

More information

ELECTROMAGNETISM SUMMARY. Maxwell s equations Transmission lines Transmission line transformers Skin depth

ELECTROMAGNETISM SUMMARY. Maxwell s equations Transmission lines Transmission line transformers Skin depth ELECTROMAGNETISM SUMMARY Maxwell s equations Transmission lines Transmission line transformers Skin depth 1 ENGN4545/ENGN6545: Radiofrequency Engineering L#4 Magnetostatics: The static magnetic field Gauss

More information