Exam: Continuous Optimisation 2015

Size: px
Start display at page:

Download "Exam: Continuous Optimisation 2015"

Transcription

1 Exam: Continuous Optimisation Let f : C R, C R n convex, be a convex function. Show that then the following holds: A local imizer of f on C is a global imizer on C. And a strict local imizer of f on C is a strict global imizer on C. Solution: for a local imizer x: Suppose x is not a global imiser. Then with some C we have f(x) > f(). Thus for < λ 1 we find with x λ := x + λ( x) using convexit of f: f(x λ ) f(x) + λ[f() f(x)] < f(x) So letting λ +, x cannot be a local imizer. for a strict local imizer x: Suppose it is not a strict global imiser. Then with some C, x we have f(x) f(). Thus for < λ 1 we find with x λ := x + λ( x) using convexit of f: f(x λ ) f(x) + λ[f() f(x)] f(x) So letting λ +, x cannot be a strict local imizer. 2. (a) Show that for d R n it holds: d T x x R n d =. (b) Let c, a i R n, i = 1,..., m (m 1). Show using the Farkas Lemma (lecture sheets, Th. 5.1) that precisel one of the following alternatives (I) or (II) is true: (I): c T x <, a T i x, i = 1,..., m has a solution x R n. (II): there exist µ 1,..., µ m such that: c + m µ ia i = Solution: (a) : d T x x R n ±d T e j j d T e j = j d = : d = d T x = x R n d T x x R n (b) Considering a m+1 = c and b = e m+1 R m+1 we have that (I) is equivalent to: (i): a T i x b i, i = 1,..., (m + 1) has a solution x. B Farkas Lemma, precisel one of either (i) or the following statement, 1

2 (ii), is true: (ii): R m+1 + such that = m+1 ia i, > b T. This is equivalent to: R m+1 + such that = m+1 c + m ia i, > m+1, which in turn is equivalent to (II). 3. Given is the problem (P ) x R 2 ( 2x 1 x 2 ) s.t. x 1, and (x 1 1) 2 (x 2 1) (a) (b) (c) (d) Is (P ) a convex problem? Sketch the feasible set and the level set of f given b f(x) = f(x) with x =. Is LICQ (constraint qualification) satisfied at x? Show that the point x = is a KKT-point of (P ). Detere the corresponding Lagrangean multipliers. Show that x is a local imizer. What is the order of this imizer? Is it a global imizer? Consider now the program (objective f and constraint function g 2 interchanged): ( P ) x R 2 (x 1 1) 2 (x 2 1) s.t. x 1, and 2x 1 x 2. Explain (without an further calculations) wh x = is also a local imizer of ( P ). Solution: (a) (P) is not a convex program since g 2 is not convex: 2 g 2 (x) = ( 2 2) is negative definite. Above is a sketch of the problem. The feasible set is coloured blue and the level curve is coloured red. 2

3 LICQ holds at x = : ( ) 1 g 1 (x) =, g 2 (x) = ( ) 2 2 are linearl independent Give a complete sketch. (b) The KKT condition for x = (g 1 and g 2 active) read: ( ) ( ) ( ) µ 1 + µ 2 = 1 2 With (unique) solution µ 1 = 1, µ 2 = 1/2. (c) Since the assumptions of Th 5.13 are satisfied, x = is a local imizer of order p = 1. It is not a global imizer since f(x) = and e.g. for feasible x = (, x 2 ), x 2 2 we have f(, x 2 ) for x 2. (d) The KKT condition at x = for (P) directl ields a corresponding KKT condition for ( P ) at x (feasible for ( P )!!) which again satisfies the assumption of Theorem 5.13 for ( P ). 4. Consider the (nonlinear) program: (P ) x f(x) s.t. x F := {x R n g j (x), j J with f, g j C 1, f, g : R n R, J = {1,..., m. Let d k be a strictl feasible descent direction for x k F. Show that for t >, small enough, it holds: f(x k + td k ) < f(x k ) and x k + td k F Solution: B using Talor around x k we find for j J xk (use g j (x k ) T d k < ; g j (x k ) = ): g j (x k +td k ) = g j (x k )+t g j (x k ) T d k +o(t) = t g j (x k ) T d k +o(t) < for t > small enough. B continuit also for j / J xk we have g j (x k + td k ) < for t > small enough. So x k + td k F. In view of f(x k ) T d k < we also find f(x k + td k ) = f(x k ) + t f(x k ) T d k + o(t) < f(x k ) for t > small enough. 3

4 5. For a given nonempt set A R n we define its conic hull, conic(a) b { m conic(a) := µ i x i : x i A, µ i for all i, m N. (a) (b) (c) Show that conic(a) is a convex cone. Show that if A B R n, with B being a convex cone, then conic(a) B. Show that conic(a) is full dimensional if and onl if there does not exist R n \ { such that, x = for all x A. [1 point] Solution: (a) B Theorem 7.2, equivalentl we want to show that for all u, v conic(a) and λ 1, λ 2 > we have λ 1 u + λ 2 v conic(a). Considering an arbitrar u, v conic(a) and λ 1, λ 2 > we have Therefore u = µ i x i, v = for some x 1,..., x m, 1,..., p A, λ 1 u + λ 2 v = µ 1,..., µ m, ν 1,..., ν p, p, m N. λ 1 µ {{ i x i + p ν i i, p λ 2 ν {{ i i conic(a). { k (b) For k N, let L k := µi x i : x i A, µ i for all i. We will prove b induction that L k B for all k N, and thus B k N Lk = conic(a). We start b proving the case of k = 1. If L 1 then = µx for some µ and x A. We thus have x B, and as B is a cone we have = µx B. We now suppose the statement is true for k, and show it is also true for k + 1. If L k+1 then = k+1 µi x i where x i A and µ i for all i. Letting z 1 = k 2µi x i L k B and z 2 = 2µ k+1 x k+1 L 1 B, the set B being convex implies that B 1 2 z z2 =. 4

5 Alternativel: { m conic(a) = µ i x i : x i A, µ i for all i, m N { m = { µ i x i : x i A, µ i for all i, m N, λ = = { { λ θ i x i : x i A, θ i for all i, m N, 1 = = { R ++ conv(a) = R + conv(a). As B is convex, we have conv(a) B. As B is a cone we then get B R + conv(a) = conic(a). (c) We will prove the equivalent statement that conic(a) is not full dimensional if and onl if there exists R n \ { such that, x = for all x A. ( ) Suppose conic(a) is not full-dimensional. Then b definition there exists R n \ { such that, x = for all x conic A. We triviall have A conic(a) and thus, x = for all x A. ( ) Suppose there exists R n \ { such that, x = for all x A. Then for all z conic(a) we have z = m µi x i for some x i A and µ i for all i, m N, and thus, z = m µi, x i =. Therefore, b definition 7.8.3, we have that conic(a) is not fulldimensional. µ i > θ i, λ > 6. In this question we will consider the proper cone K R n+2 defined as x K = : R n, x, z R, 2 x, z. z (a) (b) (c) Consider a ra R = {c 1 a 1 R + with fixed a, c R n. We wish to find the distance between the origin and the closest point in this ra. Formulate this problem as a conic optimisation problem over K. Give an explicit characterisation of K. [Justification for our answer must be provided] What is the dual problem to our formulation in part (a)? [If ou were not able to answer parts (a) and (b) then instead find the dual to: c + a R n +. ] [1 point] 5

6 Solution: (a) This problem is equivalent to the following problems 1 c 1 a 2 1, 2 c 1 a 2 2, 1, 2 c 1 a K max c 1 a 2 K 1 The correct answer is either of the last two formulations, or equivalent. (b) We have that K = L n R +, and thus K = L n R + = L n R + = K. (c) Considering max c 1 a 2 K 1 6

7 the dual problem is x,,z x c, z x a, = 1 z 1 x, = 1, z x K z This can be simplified to max x,,z c, z = a, which in turn is equivalent to x = 1, z, 2 x max c, a,, 2 1. Alternative question: The problem is equivalent to max c ( a) R n +. The dual to this is x c, x a, x = 1, x R n +, which is equivalent to max x c, x a, x = 1, x R n + 7. Consider the following optimisation problem: x 2x x 1 x 2 4x 2 2x x 1 + 3x 2 2 2x 1 x 2 = 3 (A) x R 2. Give the standard positive semidefinite approximation for this problem, the solution of which would provide a lower bound to the optimal value of problem (A). 7

8 Solution: This problem is equivalent to ( ) 5/2, xx T 4x x 5/2 2 2 ( ) 2 1, xx T + x = 3 ( ) 1 x T x xx T PSD 3 x R 3, which can be relaxed to x,x ( ) 5/2, X 4x 5/2 2 2 ( ) 2 1, X + x = 3 ( ) 1 x T PSD 3 x X x R 3 8. (Automatic additional points) [4 points] Question: Total Points: A cop of the lecture-sheets ma be used during the exaation. Good luck! 8

Practice Exam 1: Continuous Optimisation

Practice Exam 1: Continuous Optimisation Practice Exam : Continuous Optimisation. Let f : R m R be a convex function and let A R m n, b R m be given. Show that the function g(x) := f(ax + b) is a convex function of x on R n. Suppose that f is

More information

SECTION C: CONTINUOUS OPTIMISATION LECTURE 11: THE METHOD OF LAGRANGE MULTIPLIERS

SECTION C: CONTINUOUS OPTIMISATION LECTURE 11: THE METHOD OF LAGRANGE MULTIPLIERS SECTION C: CONTINUOUS OPTIMISATION LECTURE : THE METHOD OF LAGRANGE MULTIPLIERS HONOUR SCHOOL OF MATHEMATICS OXFORD UNIVERSITY HILARY TERM 005 DR RAPHAEL HAUSER. Examples. In this lecture we will take

More information

Second Order Optimality Conditions for Constrained Nonlinear Programming

Second Order Optimality Conditions for Constrained Nonlinear Programming Second Order Optimality Conditions for Constrained Nonlinear Programming Lecture 10, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

More information

The Karush-Kuhn-Tucker (KKT) conditions

The Karush-Kuhn-Tucker (KKT) conditions The Karush-Kuhn-Tucker (KKT) conditions In this section, we will give a set of sufficient (and at most times necessary) conditions for a x to be the solution of a given convex optimization problem. These

More information

Constrained Optimization Theory

Constrained Optimization Theory Constrained Optimization Theory Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August

More information

SECTION C: CONTINUOUS OPTIMISATION LECTURE 9: FIRST ORDER OPTIMALITY CONDITIONS FOR CONSTRAINED NONLINEAR PROGRAMMING

SECTION C: CONTINUOUS OPTIMISATION LECTURE 9: FIRST ORDER OPTIMALITY CONDITIONS FOR CONSTRAINED NONLINEAR PROGRAMMING Nf SECTION C: CONTINUOUS OPTIMISATION LECTURE 9: FIRST ORDER OPTIMALITY CONDITIONS FOR CONSTRAINED NONLINEAR PROGRAMMING f(x R m g HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 5, DR RAPHAEL

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

More First-Order Optimization Algorithms

More First-Order Optimization Algorithms More First-Order Optimization Algorithms Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 3, 8, 3 The SDM

More information

Convex Optimization. Convex Analysis - Functions

Convex Optimization. Convex Analysis - Functions Convex Optimization Convex Analsis - Functions p. 1 A function f : K R n R is convex, if K is a convex set and x, K,x, λ (,1) we have f(λx+(1 λ)) λf(x)+(1 λ)f(). (x, f(x)) (,f()) x - strictl convex,

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

Continuous Optimisation, Chpt 9: Semidefinite Problems

Continuous Optimisation, Chpt 9: Semidefinite Problems Continuous Optimisation, Chpt 9: Semidefinite Problems Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2016co.html version: 21/11/16 Monday

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS GERD WACHSMUTH Abstract. Kyparisis proved in 1985 that a strict version of the Mangasarian- Fromovitz constraint qualification (MFCQ) is equivalent to

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Computational Optimization. Constrained Optimization Part 2

Computational Optimization. Constrained Optimization Part 2 Computational Optimization Constrained Optimization Part Optimality Conditions Unconstrained Case X* is global min Conve f X* is local min SOSC f ( *) = SONC Easiest Problem Linear equality constraints

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

TMA947/MAN280 APPLIED OPTIMIZATION

TMA947/MAN280 APPLIED OPTIMIZATION Chalmers/GU Mathematics EXAM TMA947/MAN280 APPLIED OPTIMIZATION Date: 06 08 31 Time: House V, morning Aids: Text memory-less calculator Number of questions: 7; passed on one question requires 2 points

More information

Lecture: Introduction to LP, SDP and SOCP

Lecture: Introduction to LP, SDP and SOCP Lecture: Introduction to LP, SDP and SOCP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html wenzw@pku.edu.cn Acknowledgement:

More information

Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation

Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version:

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Continuous Optimisation, Chpt 9: Semidefinite Optimisation

Continuous Optimisation, Chpt 9: Semidefinite Optimisation Continuous Optimisation, Chpt 9: Semidefinite Optimisation Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version: 28/11/17 Monday

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS A Dissertation Submitted For The Award of the Degree of Master of Philosophy in Mathematics Neelam Patel School of Mathematics

More information

Assignment 1: From the Definition of Convexity to Helley Theorem

Assignment 1: From the Definition of Convexity to Helley Theorem Assignment 1: From the Definition of Convexity to Helley Theorem Exercise 1 Mark in the following list the sets which are convex: 1. {x R 2 : x 1 + i 2 x 2 1, i = 1,..., 10} 2. {x R 2 : x 2 1 + 2ix 1x

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

Linear programming: Theory

Linear programming: Theory Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analsis and Economic Theor Winter 2018 Topic 28: Linear programming: Theor 28.1 The saddlepoint theorem for linear programming The

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Constraint qualifications for nonlinear programming

Constraint qualifications for nonlinear programming Constraint qualifications for nonlinear programming Consider the standard nonlinear program min f (x) s.t. g i (x) 0 i = 1,..., m, h j (x) = 0 1 = 1,..., p, (NLP) with continuously differentiable functions

More information

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy Math 4 Spring 08 problem set. (a) Consider these two first order equations. (I) d d = + d (II) d = Below are four direction fields. Match the differential equations above to their direction fields. Provide

More information

Continuous Optimisation, Chpt 7: Proper Cones

Continuous Optimisation, Chpt 7: Proper Cones Continuous Optimisation, Chpt 7: Proper Cones Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version: 10/11/17 Monday 13th November

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 6 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 6 Fall 2009 UC Berkele Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 6 Fall 2009 Solution 6.1 (a) p = 1 (b) The Lagrangian is L(x,, λ) = e x + λx 2

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

A set C R n is convex if and only if δ C is convex if and only if. f : R n R is strictly convex if and only if f is convex and the inequality (1.

A set C R n is convex if and only if δ C is convex if and only if. f : R n R is strictly convex if and only if f is convex and the inequality (1. ONVEX OPTIMIZATION SUMMARY ANDREW TULLOH 1. Eistence Definition. For R n, define δ as 0 δ () = / (1.1) Note minimizes f over if and onl if minimizes f + δ over R n. Definition. (ii) (i) dom f = R n f()

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

March 5, 2012 MATH 408 FINAL EXAM SAMPLE

March 5, 2012 MATH 408 FINAL EXAM SAMPLE March 5, 202 MATH 408 FINAL EXAM SAMPLE Partial Solutions to Sample Questions (in progress) See the sample questions for the midterm exam, but also consider the following questions. Obviously, a final

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

Lecture 6 - Convex Sets

Lecture 6 - Convex Sets Lecture 6 - Convex Sets Definition A set C R n is called convex if for any x, y C and λ [0, 1], the point λx + (1 λ)y belongs to C. The above definition is equivalent to saying that for any x, y C, the

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Lecture 17: Primal-dual interior-point methods part II

Lecture 17: Primal-dual interior-point methods part II 10-725/36-725: Convex Optimization Spring 2015 Lecture 17: Primal-dual interior-point methods part II Lecturer: Javier Pena Scribes: Pinchao Zhang, Wei Ma Note: LaTeX template courtesy of UC Berkeley EECS

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

A. Derivation of regularized ERM duality

A. Derivation of regularized ERM duality A. Derivation of regularized ERM dualit For completeness, in this section we derive the dual 5 to the problem of computing proximal operator for the ERM objective 3. We can rewrite the primal problem as

More information

Lectures on Parametric Optimization: An Introduction

Lectures on Parametric Optimization: An Introduction -2 Lectures on Parametric Optimization: An Introduction Georg Still University of Twente, The Netherlands version: March 29, 2018 Contents Chapter 1. Introduction and notation 3 1.1. Introduction 3 1.2.

More information

IE 5531 Midterm #2 Solutions

IE 5531 Midterm #2 Solutions IE 5531 Midterm #2 s Prof. John Gunnar Carlsson November 9, 2011 Before you begin: This exam has 9 pages and a total of 5 problems. Make sure that all pages are present. To obtain credit for a problem,

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Exam in TMA4180 Optimization Theory

Exam in TMA4180 Optimization Theory Norwegian University of Science and Technology Department of Mathematical Sciences Page 1 of 11 Contact during exam: Anne Kværnø: 966384 Exam in TMA418 Optimization Theory Wednesday May 9, 13 Tid: 9. 13.

More information

Mathematical programs with complementarity constraints in Banach spaces

Mathematical programs with complementarity constraints in Banach spaces Mathematical programs with complementarity constraints in Banach spaces Gerd Wachsmuth July 21, 2014 We consider optimization problems in Banach spaces involving a complementarity constraint defined by

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Approximate Farkas Lemmas in Convex Optimization

Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

More information

Nonlinear Optimization

Nonlinear Optimization Nonlinear Optimization Etienne de Klerk (UvT)/Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos Course WI3031 (Week 4) February-March, A.D. 2005 Optimization Group 1 Outline

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. xx xxxx 2017 xx:xx xx.

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. xx xxxx 2017 xx:xx xx. Two hours To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER CONVEX OPTIMIZATION - SOLUTIONS xx xxxx 27 xx:xx xx.xx Answer THREE of the FOUR questions. If

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem 1 Conve Analsis Main references: Vandenberghe UCLA): EECS236C - Optimiation methods for large scale sstems, http://www.seas.ucla.edu/ vandenbe/ee236c.html Parikh and Bod, Proimal algorithms, slides and

More information

SWFR ENG 4TE3 (6TE3) COMP SCI 4TE3 (6TE3) Continuous Optimization Algorithm. Convex Optimization. Computing and Software McMaster University

SWFR ENG 4TE3 (6TE3) COMP SCI 4TE3 (6TE3) Continuous Optimization Algorithm. Convex Optimization. Computing and Software McMaster University SWFR ENG 4TE3 (6TE3) COMP SCI 4TE3 (6TE3) Continuous Optimization Algorithm Convex Optimization Computing and Software McMaster University General NLO problem (NLO : Non Linear Optimization) (N LO) min

More information

Inequality Constraints

Inequality Constraints Chapter 2 Inequality Constraints 2.1 Optimality Conditions Early in multivariate calculus we learn the significance of differentiability in finding minimizers. In this section we begin our study of the

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

10-725/ Optimization Midterm Exam

10-725/ Optimization Midterm Exam 10-725/36-725 Optimization Midterm Exam November 6, 2012 NAME: ANDREW ID: Instructions: This exam is 1hr 20mins long Except for a single two-sided sheet of notes, no other material or discussion is permitted

More information

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Peter J.C. Dickinson p.j.c.dickinson@utwente.nl http://dickinson.website version: 12/02/18 Monday 5th February 2018 Peter J.C. Dickinson

More information

OPTIMISATION /09 EXAM PREPARATION GUIDELINES

OPTIMISATION /09 EXAM PREPARATION GUIDELINES General: OPTIMISATION 2 2008/09 EXAM PREPARATION GUIDELINES This points out some important directions for your revision. The exam is fully based on what was taught in class: lecture notes, handouts and

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

The Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions Chapter 6 The Karush-Kuhn-Tucker conditions 6.1 Introduction In this chapter we derive the first order necessary condition known as Karush-Kuhn-Tucker (KKT) conditions. To this aim we introduce the alternative

More information

Apolynomialtimeinteriorpointmethodforproblemswith nonconvex constraints

Apolynomialtimeinteriorpointmethodforproblemswith nonconvex constraints Apolynomialtimeinteriorpointmethodforproblemswith nonconvex constraints Oliver Hinder, Yinyu Ye Department of Management Science and Engineering Stanford University June 28, 2018 The problem I Consider

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2009 Copyright 2009 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

Lecture 3 Introduction to optimality conditions

Lecture 3 Introduction to optimality conditions TMA947 / MMG621 Nonlinear optimisation Lecture 3 Introduction to optimality conditions Emil Gustavsson October 31, 2013 Local and global optimality We consider an optimization problem which is that to

More information

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES General: OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES This points out some important directions for your revision. The exam is fully based on what was taught in class: lecture notes, handouts and homework.

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

SF2822 Applied nonlinear optimization, final exam Wednesday June

SF2822 Applied nonlinear optimization, final exam Wednesday June SF2822 Applied nonlinear optimization, final exam Wednesday June 3 205 4.00 9.00 Examiner: Anders Forsgren, tel. 08-790 7 27. Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima

Lecture 1: Introduction. Outline. B9824 Foundations of Optimization. Fall Administrative matters. 2. Introduction. 3. Existence of optima B9824 Foundations of Optimization Lecture 1: Introduction Fall 2010 Copyright 2010 Ciamac Moallemi Outline 1. Administrative matters 2. Introduction 3. Existence of optima 4. Local theory of unconstrained

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

We are now going to move on to a discussion of Inequality constraints. Our canonical problem now looks as ( ) = 0 ( ) 0

We are now going to move on to a discussion of Inequality constraints. Our canonical problem now looks as ( ) = 0 ( ) 0 4 Lecture 4 4.1 Constrained Optimization with Inequality Constraints We are now going to move on to a discussion of Inequality constraints. Our canonical problem now looks as Problem 11 (Constrained Optimization

More information

A Note on KKT Points of Homogeneous Programs 1

A Note on KKT Points of Homogeneous Programs 1 A Note on KKT Points of Homogeneous Programs 1 Y. B. Zhao 2 and D. Li 3 Abstract. Homogeneous programming is an important class of optimization problems. The purpose of this note is to give a truly equivalent

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Unconstrained Optimization

Unconstrained Optimization 1 / 36 Unconstrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University February 2, 2015 2 / 36 3 / 36 4 / 36 5 / 36 1. preliminaries 1.1 local approximation

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Introduction Gauss-elimination Orthogonal projection Linear Inequalities Integer Solutions Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Peter J.C. Dickinson p.j.c.dickinson@utwente.nl

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

The moment-lp and moment-sos approaches

The moment-lp and moment-sos approaches The moment-lp and moment-sos approaches LAAS-CNRS and Institute of Mathematics, Toulouse, France CIRM, November 2013 Semidefinite Programming Why polynomial optimization? LP- and SDP- CERTIFICATES of POSITIVITY

More information

Solving generalized semi-infinite programs by reduction to simpler problems.

Solving generalized semi-infinite programs by reduction to simpler problems. Solving generalized semi-infinite programs by reduction to simpler problems. G. Still, University of Twente January 20, 2004 Abstract. The paper intends to give a unifying treatment of different approaches

More information

Finite Dimensional Optimization Part III: Convex Optimization 1

Finite Dimensional Optimization Part III: Convex Optimization 1 John Nachbar Washington University March 21, 2017 Finite Dimensional Optimization Part III: Convex Optimization 1 1 Saddle points and KKT. These notes cover another important approach to optimization,

More information

Some new facts about sequential quadratic programming methods employing second derivatives

Some new facts about sequential quadratic programming methods employing second derivatives To appear in Optimization Methods and Software Vol. 00, No. 00, Month 20XX, 1 24 Some new facts about sequential quadratic programming methods employing second derivatives A.F. Izmailov a and M.V. Solodov

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information