March 5, 2012 MATH 408 FINAL EXAM SAMPLE

Size: px
Start display at page:

Download "March 5, 2012 MATH 408 FINAL EXAM SAMPLE"

Transcription

1 March 5, 202 MATH 408 FINAL EXAM SAMPLE Partial Solutions to Sample Questions (in progress) See the sample questions for the midterm exam, but also consider the following questions. Obviously, a final exam would not contain questions of this depth and scope for each question. That is, the final will contain some easy and some hard questions. The questions listed below are all on the hard side with some very hard.. (a) Is the function f(x, x 2 ) = e (x +x 2 ) 2 coercive? Is it convex? Justify your answers. Solution: It is not coercive, just consider the line {(t, ) t IR}. It is convex since the function φ(u) = e u2 is convex (φ (u) = 2e u2 ( + 2u 2 ) > 0), and f is just the composition of φ with the linear function (x, x 2 ) x + x 2. (b) For what values of the parameters α, β IR is the function f(x, x 2 ) = x 2 + 2αx x 2 + βx 2 2 a convex function. For what values is it coercive? Justify your answers. [ ] 2 2α Solution: det 2 f(x) = det = 4(β α 2α 2β 2 ). Therefore, 2 f(x) is positive definite if and only if β > α 2 and, by continuity, is positive semidefinite if β = α 2 ; otherwise, 2 f(x) is indefinite. Consequently, f is convex if and only if β α 2 and is strictly convex if and only if β > α 2. Finally, a quadratic function is coercive if and only if 2 f(x) is positive definite which in tis case occurs when β > α 2. (c) Compute and classify all critical points of the function f(x, x 2, x 3 ) = 2(ax ) 2 + (x x 2 2) 2 + (ax 2 + x 3 ) 2, where a > 0 is a given positive real number. Solution: Critical points are x 2a/(2a 2 + ) x 2 = x 3 0 0, /a / a, and a /a / a. a By considering 2 f(x) at each of these points we find that the first one is a saddle point and the last two are local solutions. By plugging the last two into f we see that they yield the same function value zero. Since f is everywhere non-negative, these last two points are global solutions. 2. Consider the function f(x) = 2 xt Qx + c T x, where Q IR n n is symmetric and c IR m. (a) Under what condition on the matrix Q IR n n is f convex? Justify your answer.

2 Solution: There are many ways to analyze this question. Below we establish the convexity condition from first principals. First observe that since α 2 = α α( α) we have (( λ)x + λy) T Q(( λ)x + λy) = ( λ) 2 x T Qx + 2λ( λ)x T Qy + λ 2 y T Qy Therefore, for all 0 λ and x, y IR n, = (( λ) ( λ)λ)x T Qx + 2λ( λ)x T Qy + (λ λ( λ))y T Qy = ( λ)x T Qx + λy T Qy λ( λ) [ x T Qx 2x T Qy + y T Qy ] = ( λ)x T Qx + λy T Qy λ( λ)(x y) T Q(x y). f(( λ)x + λy) = 2 (( λ)x + λy)t Q(( λ)x + λy) + c T (( λ)x + λy) [ ] [ ] = ( λ) 2 xt Qx + c T x + λ 2 yt Qy + c T λ( λ) y (x y) T Q(x y) 2 λ( λ) = ( λ)f(x) + λf(y) (x y) T Q(x y). 2 Consequently, f is convex if and only if (x y) T Q(x y) 0 for all x, y IR n, or equivalently, Q is positive semi-definite. (b) If Q is symmetric and positive definite, show that there is a nonsingular matrix L such that Q = LL T. Solution: This is easily shown either by an eigenvalue decomposition of a Cholesky factorization. (c) With Q and L as defined in the part (b), show that Solution: Just multiply it out: f(x) = 2 LT x + L c ct Q c. 2 LT x + L c ct Q c = [ (L T x) T (L T x) + 2(L c) T (L T x) + (L c) T (L c) ] 2 2 ct Q c = [ x T LL T x + 2c T x + c T L T L c ] 2 2 ct Q c = 2 xt Qx + c T x. (d) If f is convex, under what conditions is x IR n f(x) =? Solution: If Q has a negative eigenvalue, then the imum value is obviously so we can assume that Q is positive semi-definite. If Q is positive definite, then f is coercive so the value cannot be, so we can assume that Q has a non-trivial null-space. Since we are assug that Q is positive semi-definite, f is convex, so a necessary and sufficient condition for f to have a global solution is that there exist an x such that 0 = f(x) = Qx + c, or equivalently, c RanQ. Therefore, f = can only possibly occur is c / RanQ. In this case, we may write c = c +c 2 with c RanQ and c 2 (RanQ) = NulQ with c 2 0. Note that f(tc 2 ) = t c 2 2 and letting t sends f to. Putting all of this together we get that f = if and only if either Q has a negative eigenvalue or Q is positive semi-definite and c / NulQ.

3 (e) Assume that Q is symmetric and positive definite and let S be a subspace of IR n. Show that x solves the problem x S f(x) if and only if f( x) S. Solution: In lecture this was shown to be true for an arbitary convex function. 3. Let A IR m n and b IR m and consider the function (a) Show that Ran(A T A) = Ran(A T ). Solution: Done in class a couple of times. f(x) = 2 Ax b 2 2. (b) Show that for every b IR m there exists a solution to the equation A T Ax = A T b. Solution: Obvious from (i). (c) Show that there always exists a solution to the problem LS and describe the set of solutions to this problem. Solution: Obvious from (ii). x IR n 2 Ax b 2 2, (d) Under what conditions on A is the solution to the problem LS unique. Solution: Nul(A) = {0}. (e) Using the condition from part (iv) derive a formula for the unique solution to LS. Solution: d = (A T A) A T b. (f) If A T A is invertible, show that the matrix P = A(A T A) A T is the orthogonal projection onto Ran(A), that is, show that i. P 2 = P ii. P T = P iii. Ran(P ) = Ran(A). Solution: A and B are obvious. For C, clearly Ran(P ) Ran(A). On the other hand, if y Ran(A) then there is an x such that Ax = y. Consequently, P y = P Ax = A(A T A) A T Ax = Ax = y so Ran(A) Ran(P ). 4. (a) Matrix secant questions. i. Let u, v IR n with u 0 v. Show that the matrix uv T IR n n is rank. Solution: Since Ran(uv T ) = Span[u], uv T ha rank. ii. Let B IR n n and s, y IR n such that y Bs. For what values of u, v IR n is it true that the matrix B + = B + uv T satisfies B + s = y? Justify your answer. Solution: y = B + s = Bs + uv T s so v T s 0 since y Bs. But then u = y Bs v T s. iii. Let H IR n n be symmetric and s, y IR n. Under what conditions do there exist vectors u, v IR n such that the matrix H + = H + uv T is also symmetric and satisfies H + s = y? Justify your answer. Solution: From the previous problem we must have v T s 0 and for symmetry we must have u is a multiple of v. So v = y Hs and we must have (y Hs) T s 0 or equivalently y T s s T Hs.

4 iv. Let M IR n n be symmetric and positive definite and let s, y IR n be such that s T y > 0. The BFGS applied to M is M + = M + yyt s T y MssT M s T Ms. Show that M + can be rewritten in the form M + = M + UD U T, where U IR n 2 and D IR 2 2 is an invertible diagonal matrix, by deriving formulas for both U and D. Solution: U = [y, Ms] and D = diag(s T y, s T Ms). (b) (This problem is over the top. But parts might be trimmed down for a suitable final exam question.) Let F : IR n IR m be continuously differentiable, and let be any norm on IR m. In this problem we consider the function f(x) = F (x) and properties of the the associated Gauss- Newton direction for imizing f. Recall that x IR n is a first-order stationary point for f if 0 f ( x; d) for all d IR n. i. Given x, d IR n and t > 0 show that ii. Why is it true that F (x + td) F (x) + tf (x)d F (x + td) (F (x) + tf (x)d). Hint: What is the definition of F (x)? iii. Use parts i and ii to show that F (x + td) (F (x) + tf (x)d) lim = 0? t 0 t f (x; d) = lim t 0 F (x) + tf (x)d F (x) t iv. Use part iii and the convexity of the norm to show that f (x; d) F (x) + F (x)d F (x). Hint: F (x) + tf (x)d = ( t)f (x) + t(f (x) + F (x)d) v. Use parts iii and iv to show that 0 f (x; d) for all d if and only if F (x) F (x) + F (x)d for all d. vi. If x is not a first-order stationary point for f and d solves. GN F (x) + F (x)d, d IR n show that d is a descent direction for f at x by showning that vii. Show that the problem f (x; d) F (x) + F (x)d F (x) < 0. d IR n F (x) + F (x)d can be written as a linear program. viii. Suppose at a given point x IR n one solves the problem GN in Part vi above to obtain a direction d for which F (x) + F (x) d < F (x). Show that the following backtracking line search procedure is finitely terating in the sense that the solution t is not zero.

5 Line Search: Let 0 < c < and 0 < γ < and set t := γ s s.t. s {0,, 2, 3,...} and F (x + γ s d) ( γ s c) F (x) + cγ s F (x) + F (x) d. Hint: ( γ s c) F (x) + cγ s F (x) + F (x) d = F (x) + cγ s [ F (x) + F (x) d F (x) ]. Then use Part vi. 5. (a) Locate all of the KKT points for the following problem. Are these points local solutions? Are they global solutions? imize x 2 + x2 2 4x 4x 2 subject to x 2 x 2 x + x 2 2 (b) Let Q IR n n be symmetric and positive definite, g IR n, b IR m, and A IR m n with Nul(A T ) = {0}. i. Show that the matrix AQ A T is nonsingular. Solution: Since Q is positive definite w T Qw = 0 iff w = 0, so y T AQ A T y = 0 iff A T y = 0 iff y = 0 since Nul(A T ) = {0}. Therefore, AQ A T is symmetric and positive definite and so nonsingular. ii. Show that solves the problem x = Q A T (AQ A T ) b [I Q A T (AQ A T ) A]Q c imize 2 xt Qx + c T x subject to Ax = b Hint: Use the Lagrangian L(x, y) = f(x) + y T (b Ax) and show that the Lagrange multiplier ȳ must satisfy x = Q ( c + A T ȳ). Then multiply this expression through by A and solve for ȳ. Solution: First note that 0 = Nul(A T ) = Ran(A) so Ran(A) = IR m. In particular, this implies that this optimization problem is feasible for possible values of b. The KKT conditions are 0 = L( x, ȳ) = Q x + c A T ȳ, or equivalently, x = Q (A T ȳ c). Plugging this into Ax = b, we get b = A x = AQ (A T ȳ c) = AQ A T ȳ AQ c. Multiplying through by (AQ A T ) and re-arranging gives ȳ = (AQ A T ) (AQ c + b). Plugging this back into x = Q (A T ȳ c) gives the result. (c) Let Q IR n n be symmetric and positive definite, and let c IR n. Consider the optimization problem 0 x 2 xt Qx + c T x. i. What is the Lagrangian function for this problem? ii. Show that the Lagrangian dual is the problem max y c 2 yt Q y = y c. 2 yt Q y.

6 iii. Show that if x, ȳ IR n satisfy ȳ = Q x, then x solves the primal problem if and only if ȳ solves the dual problem, and the optimal values in the primal and dual coincide. (d) (A harder duality problem) Let Q IR n n be symmetric and positive definite. optimization problem P imize 2 xt Qx + c T x subject to x. i. Show that this problem is equivalent to the problem ˆP imize 2 xt Qx subject to e x e, where e is the vector of all ones. ii. What is the Lagrangian for ˆP? iii. Show that the Lagrangian dual for ˆP is the problem Consider the D max 2 (y c)t Q (y c) y = 2 (y c)t Q (y c) + y. This is also the Lagrangian dual for cp. iv. Show that if x, ȳ IR n satisfy ȳ = Q x + c, then x solves P if and only if ȳ solves D, and the optimal values in P and D coincide.

March 8, 2010 MATH 408 FINAL EXAM SAMPLE

March 8, 2010 MATH 408 FINAL EXAM SAMPLE March 8, 200 MATH 408 FINAL EXAM SAMPLE EXAM OUTLINE The final exam for this course takes place in the regular course classroom (MEB 238) on Monday, March 2, 8:30-0:20 am. You may bring two-sided 8 page

More information

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions May 9, 24 MATH 48 MIDTERM EXAM OUTLINE This exam will consist of two parts and each part will have multipart questions. Each of the 6 questions is worth 5 points for a total of points. The two part of

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

MATH 4211/6211 Optimization Constrained Optimization

MATH 4211/6211 Optimization Constrained Optimization MATH 4211/6211 Optimization Constrained Optimization Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Constrained optimization

More information

Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017

Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017 Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017 Chapter 1 - Mathematical Preliminaries 1.1 Let S R n. (a) Suppose that T is an open set satisfying T S. Prove that

More information

There are six more problems on the next two pages

There are six more problems on the next two pages Math 435 bg & bu: Topics in linear algebra Summer 25 Final exam Wed., 8/3/5. Justify all your work to receive full credit. Name:. Let A 3 2 5 Find a permutation matrix P, a lower triangular matrix L with

More information

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a UCM Final Exam, 05/8/014 Solutions 1 Given the parameter a R, consider the following linear system x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 points Discuss the system depending on the

More information

Exam in TMA4180 Optimization Theory

Exam in TMA4180 Optimization Theory Norwegian University of Science and Technology Department of Mathematical Sciences Page 1 of 11 Contact during exam: Anne Kværnø: 966384 Exam in TMA418 Optimization Theory Wednesday May 9, 13 Tid: 9. 13.

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

10-725/ Optimization Midterm Exam

10-725/ Optimization Midterm Exam 10-725/36-725 Optimization Midterm Exam November 6, 2012 NAME: ANDREW ID: Instructions: This exam is 1hr 20mins long Except for a single two-sided sheet of notes, no other material or discussion is permitted

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Lecture 14: Optimality Conditions for Conic Problems

Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

Optimization of Quadratic Functions

Optimization of Quadratic Functions 36 CHAPER 4 Optimization of Quadratic Functions In this chapter we study the problem (4) minimize x R n x Hx + g x + β, where H R n n is symmetric, g R n, and β R. It has already been observed that we

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Nonlinear Programming Algorithms Handout

Nonlinear Programming Algorithms Handout Nonlinear Programming Algorithms Handout Michael C. Ferris Computer Sciences Department University of Wisconsin Madison, Wisconsin 5376 September 9 1 Eigenvalues The eigenvalues of a matrix A C n n are

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as Reading [SB], Ch. 16.1-16.3, p. 375-393 1 Quadratic Forms A quadratic function f : R R has the form f(x) = a x. Generalization of this notion to two variables is the quadratic form Q(x 1, x ) = a 11 x

More information

C&O367: Nonlinear Optimization (Winter 2013) Assignment 4 H. Wolkowicz

C&O367: Nonlinear Optimization (Winter 2013) Assignment 4 H. Wolkowicz C&O367: Nonlinear Optimization (Winter 013) Assignment 4 H. Wolkowicz Posted Mon, Feb. 8 Due: Thursday, Feb. 8 10:00AM (before class), 1 Matrices 1.1 Positive Definite Matrices 1. Let A S n, i.e., let

More information

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Peter J.C. Dickinson p.j.c.dickinson@utwente.nl http://dickinson.website version: 12/02/18 Monday 5th February 2018 Peter J.C. Dickinson

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Introduction to Nonlinear Stochastic Programming

Introduction to Nonlinear Stochastic Programming School of Mathematics T H E U N I V E R S I T Y O H F R G E D I N B U Introduction to Nonlinear Stochastic Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio SPS

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

1. Search Directions In this chapter we again focus on the unconstrained optimization problem. lim sup ν

1. Search Directions In this chapter we again focus on the unconstrained optimization problem. lim sup ν 1 Search Directions In this chapter we again focus on the unconstrained optimization problem P min f(x), x R n where f : R n R is assumed to be twice continuously differentiable, and consider the selection

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Math 118, Fall 2014 Final Exam

Math 118, Fall 2014 Final Exam Math 8, Fall 4 Final Exam True or false Please circle your choice; no explanation is necessary True There is a linear transformation T such that T e ) = e and T e ) = e Solution Since T is linear, if T

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

MA 527 first midterm review problems Hopefully final version as of October 2nd

MA 527 first midterm review problems Hopefully final version as of October 2nd MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes

More information

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Math 164-1: Optimization Instructor: Alpár R. Mészáros Math 164-1: Optimization Instructor: Alpár R. Mészáros First Midterm, April 20, 2016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By writing

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

You should be able to...

You should be able to... Lecture Outline Gradient Projection Algorithm Constant Step Length, Varying Step Length, Diminishing Step Length Complexity Issues Gradient Projection With Exploration Projection Solving QPs: active set

More information

Global Optimization of Polynomials

Global Optimization of Polynomials Semidefinite Programming Lecture 9 OR 637 Spring 2008 April 9, 2008 Scribe: Dennis Leventhal Global Optimization of Polynomials Recall we were considering the problem min z R n p(z) where p(z) is a degree

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised)

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised) Computational Optimization Convexity and Unconstrained Optimization 1/9/08 and /1(revised) Convex Sets A set S is convex if the line segment joining any two points in the set is also in the set, i.e.,

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

Module 02 CPS Background: Linear Systems Preliminaries

Module 02 CPS Background: Linear Systems Preliminaries Module 02 CPS Background: Linear Systems Preliminaries Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html August

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor.

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor. ECE580 Exam 1 October 4, 2012 1 Name: Solution Score: /100 You must show ALL of your work for full credit. This exam is closed-book. Calculators may NOT be used. Please leave fractions as fractions, etc.

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Quasi-Newton methods for minimization

Quasi-Newton methods for minimization Quasi-Newton methods for minimization Lectures for PHD course on Numerical optimization Enrico Bertolazzi DIMS Universitá di Trento November 21 December 14, 2011 Quasi-Newton methods for minimization 1

More information

Math 5311 Constrained Optimization Notes

Math 5311 Constrained Optimization Notes ath 5311 Constrained Optimization otes February 5, 2009 1 Equality-constrained optimization Real-world optimization problems frequently have constraints on their variables. Constraints may be equality

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

Econ Slides from Lecture 8

Econ Slides from Lecture 8 Econ 205 Sobel Econ 205 - Slides from Lecture 8 Joel Sobel September 1, 2010 Computational Facts 1. det AB = det BA = det A det B 2. If D is a diagonal matrix, then det D is equal to the product of its

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Introduction Gauss-elimination Orthogonal projection Linear Inequalities Integer Solutions Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Peter J.C. Dickinson p.j.c.dickinson@utwente.nl

More information

Linear Algebra Lecture Notes-II

Linear Algebra Lecture Notes-II Linear Algebra Lecture Notes-II Vikas Bist Department of Mathematics Panjab University, Chandigarh-64 email: bistvikas@gmail.com Last revised on March 5, 8 This text is based on the lectures delivered

More information

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy. April 15, 2009 CHAPTER 4: HIGHER ORDER DERIVATIVES In this chapter D denotes an open subset of R n. 1. Introduction Definition 1.1. Given a function f : D R we define the second partial derivatives as

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Lecture 6 Positive Definite Matrices

Lecture 6 Positive Definite Matrices Linear Algebra Lecture 6 Positive Definite Matrices Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/6/8 Lecture 6: Positive Definite Matrices

More information

Further Mathematical Methods (Linear Algebra)

Further Mathematical Methods (Linear Algebra) Further Mathematical Methods (Linear Algebra) Solutions For The Examination Question (a) To be an inner product on the real vector space V a function x y which maps vectors x y V to R must be such that:

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

Homework 5. Convex Optimization /36-725

Homework 5. Convex Optimization /36-725 Homework 5 Convex Optimization 10-725/36-725 Due Tuesday November 22 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

WI1403-LR Linear Algebra. Delft University of Technology

WI1403-LR Linear Algebra. Delft University of Technology WI1403-LR Linear Algebra Delft University of Technology Year 2013 2014 Michele Facchinelli Version 10 Last modified on February 1, 2017 Preface This summary was written for the course WI1403-LR Linear

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Karush-Kuhn-Tucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Algebra Workshops 10 and 11

Algebra Workshops 10 and 11 Algebra Workshops 1 and 11 Suggestion: For Workshop 1 please do questions 2,3 and 14. For the other questions, it s best to wait till the material is covered in lectures. Bilinear and Quadratic Forms on

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Announcements Monday, November 26

Announcements Monday, November 26 Announcements Monday, November 26 Please fill out your CIOS survey! WeBWorK 6.6, 7.1, 7.2 are due on Wednesday. No quiz on Friday! But this is the only recitation on chapter 7. My office is Skiles 244

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Optimization. Yuh-Jye Lee. March 28, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 40

Optimization. Yuh-Jye Lee. March 28, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 40 Optimization Yuh-Jye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 28, 2017 1 / 40 The Key Idea of Newton s Method Let f : R n R be a twice differentiable function

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

Practice Exam 1: Continuous Optimisation

Practice Exam 1: Continuous Optimisation Practice Exam : Continuous Optimisation. Let f : R m R be a convex function and let A R m n, b R m be given. Show that the function g(x) := f(ax + b) is a convex function of x on R n. Suppose that f is

More information

Further Mathematical Methods (Linear Algebra)

Further Mathematical Methods (Linear Algebra) Further Mathematical Methods (Linear Algebra) Solutions For The 2 Examination Question (a) For a non-empty subset W of V to be a subspace of V we require that for all vectors x y W and all scalars α R:

More information