Announcements Monday, November 26

Size: px
Start display at page:

Download "Announcements Monday, November 26"

Transcription

1 Announcements Monday, November 26 Please fill out your CIOS survey! WeBWorK 6.6, 7.1, 7.2 are due on Wednesday. No quiz on Friday! But this is the only recitation on chapter 7. My office is Skiles 244 and Rabinoffice hours are: Mondays, 12 1pm; Wednesdays, 1 3pm.

2 Orthogonal Projections Review Recall: Let W be a subspace of R n. The orthogonal complement W is the set of vectors orthogonal to everything in W. The orthogonal decomposition of a vector x with respect to W is the unique way of writing x = x W + x W for x W in W and x W in W. The vector x W is the orthogonal projection of x onto W. It is the closest vector to x in W. To compute x W, write W as Col A and solve A T Av = A T x; then x W = Av. x W x W x W W

3 Projection as a Transformation Change in Perspective: let us consider orthogonal projection as a transformation. Definition Let W be a subspace of R n. Define a transformation T : R n R n by T (x) = x W. This transformation is also called orthogonal projection with respect to W. Theorem Let W be a subspace of R n and let T : R n R n be the orthogonal projection with respect to W. Then: 1. T is a linear transformation. 2. For every x in R n, T (x) is the closest vector to x in W. 3. For every x in W, we have T (x) = x. 4. For every x in W, we have T (x) = T T = T. 6. The range of T is W and the null space of T is W.

4 Projection Matrix Method 1 Let W be a subspace of R n and let T : R n R n be the orthogonal projection with respect to W. Since T is a linear transformation, it has a matrix. How do you compute it? The same as any other linear transformation: compute T (e 1), T (e 2),..., T (e n).

5 Projection Matrix Example Problem: Let L = Span {( 3 2)} and let T : R 2 R 2 be the orthogonal projection onto L. Compute the matrix A for T. It s easy to compute orthogonal projection onto a line: T (e 1) = (e 1) L = u e1 u u u = 3 ( ) T (e 2) = (e 2) L = u e2 u u u = 2 ( ) = A = 1 ( )

6 Projection Matrix Another Example Problem: Let x 1 W = x 2 in R 3 x1 x 2 + x 3 = 0 x 3 and let T : R 3 R 3 be orthogonal projection onto W. Compute the matrix B for T. In the slides for the last lecture we computed W = Col A for 1 1 A = To compute T (e i ) we have to solve the matrix equation A T Av = A T e i. We have ( ) ( ) A T 2 1 A = A T e 1 2 i = the ith column of A T =

7 Projection Matrix Another Example, Continued Problem: Let x 1 W = x 2 in R 3 x1 x 2 + x 3 = 0 x 3 and let T : R 3 R 3 be orthogonal projection onto W. Compute the matrix B for T. ( 2 1 ) 1 RREF ( 1 0 ) 1/ /3 ( ( ) RREF ( 1 0 ) 2/ /3 = T (e 1 ) = 1 ( ) 1 3 A = = T (e 2 ) = 1 ( ) 2 3 A = = T (e 2 ) = 1 ( ) 1 3 A = = B = ) RREF ( 1 0 ) 1/ /3

8 Projection Matrix Method 2 Theorem Let {v 1, v 2,..., v m} be a linearly independent set in R n, and let A = v 1 v 2 v m. Then the m m matrix A T A is invertible. Proof: We ll show Nul(A T A) = {0}. Suppose A T Av = 0. Then Av is in Nul(A T ) = Col(A). But Av is in Col(A) as well, so Av = 0, and hence v = 0 because the columns of A are linearly independent.

9 Projection Matrix Method 2 Theorem Let {v 1, v 2,..., v m} be a linearly independent set in R n, and let A = v 1 v 2 v m. Then the m m matrix A T A is invertible. Let W be a subspace of R n and let T : R n R n be the orthogonal projection with respect to W. Let {v 1, v 2,..., v m} be a basis for W and let A be the matrix with columns v 1, v 2,..., v m. To compute T (x) = x W you solve A T Av = Ax; then x W = Av. v = (A T A) 1 (A T x) = T (x) = Av = [ A(A T A) 1 A T ] x. If the columns of A are a basis for W then the matrix for T is A(A T A) 1 A T.

10 Projection Matrix Example Problem: Let L = Span {( 3 2)} and let T : R 2 R 2 be the orthogonal projection onto L. Compute the matrix A for T. The set {( 3 2)} is a basis for L, so A = u(u T u) 1 u T = 1 u u uut = 1 13 ( ) 3 ( ) = 2 13 ( ) Matrix of Projection onto a Line If L = Span{u} is a line in R n, then the matrix for projection onto L is 1 u u uut.

11 Projection Matrix Another Example Problem: Let x 1 W = x 2 in R 3 x1 x 2 + x 3 = 0 x 3 and let T : R 3 R 3 be orthogonal projection onto W. Compute the matrix B for T. In the slides for the last lecture we computed W = Col A for 1 1 A = The columns are linearly independent, so they form a basis for W. Hence ( ) 1 B = A(A T A) 1 A T 2 1 = A A T = 1 ( ) A A T 1 2 =

12 Poll Let W be a subspace of R n. Poll Let A be the matrix for proj W. What is/are the eigenvalue(s) of A? A. 0 B. 1 C. 1 D. 0, 1 E. 1, 1 F. 0, 1 G. 1, 0, 1 The 1-eigenspace is W. The 0-eigenspace is W. We have dim W + dim W = n, so that gives n linearly independent eigenvectors already. So the answer is D.

13 Projection Matrix Facts Theorem Let W be an m-dimensional subspace of R n, let T : R n W be the projection, and let A be the matrix for T. Then: 1. Col A = W, which is the 1-eigenspace. 2. Nul A = W, which is the 0-eigenspace. 3. A 2 = A. 4. A is similar to the diagonal matrix with m ones and n m zeros on the diagonal. Proof of 4: Let v 1, v 2,..., v m be a basis for W, and let v m+1, v m+2,..., v n be a basis for W. These are (linearly independent) eigenvectors with eigenvalues 1 and 0, respectively, and they form a basis for R n because there are n of them. Example: If W is a plane in R 3, then A is similar to projection onto the xy-plane:

14 A Projection Matrix is Diagonalizable Let W be an m-dimensional subspace of R n, let T : R n R n be the orthogonal projection onto W, and let A be the matrix for T. Here s how to diagonalize A: Find a basis {v 1, v 2,..., v m} for W. Find a basis {v m+1, v m+2,..., v n} for W. Then m ones, n m zeros A = v 1 v 2 v n v 1 v 2 v n Remark: If you already have a basis for W, then it s faster to compute A(A T A) 1 A T.

15 A Projection Matrix is Diagonalizable Example Problem: Let x 1 W = x 2 in R 3 x1 x 2 + x 3 = 0 x 3 and let T : R 3 R 3 be orthogonal projection onto W. Compute the matrix B for T. As we have seen several times, a basis for W is 1 1 1, By definition, W is the orthogonal complement of the line spanned by (1, 1, 1), so W = Span{(1, 1, 1)}. Hence B = =

16 Reflections Let W be a subspace of R n and let x be a vector in R n. Definition The reflection of x over W is the vector ref W (x) = x 2x W. In other words, to find ref W (x) one starts at x, then moves to x x W = x W, then continues in the same direction one more time, to end on the opposite side of W. Since x W = x x W we have x x W x W W x W ref W (x) ref W (x) = x 2(x x W ) = 2x W x. If T is the orthogonal projection, then ref W (x) = 2T (x) x.

17 Reflections Properties Theorem Let W be an m-dimensional subspace of R n, and let A be the matrix for ref W. Then 1. ref W ref W is the identity transformation and A 2 is the identity matrix. 2. ref W and A are invertible; they are their own inverses. 3. The 1-eigenspace of A is W and the 1-eigenspace of A is W. 4. A is similar to the diagonal matrix with m ones and n m negative ones on the diagonal. 5. If B is the matrix for the orthogonal projection onto W, then A = 2B I n. Example: Let The matrix for ref W A = x 1 W = x 2 in R 3 x 1 x 2 + x 3 = 0. x 3 is I 3 =

18 Summary Today we considered orthogonal projection as a transformation. Orthogonal projection is a linear transformation. We gave three methods to compute its matrix. Four if you count the special case when W is a line. The matrix for projection onto W has eigenvalues 1 and 0 with eigenspaces W and W. A projection matrix is diagonalizable. Reflection is 2 projection minus the identity.

Announcements Monday, November 26

Announcements Monday, November 26 Announcements Monday, November 26 Please fill out your CIOS survey! WeBWorK 6.6, 7.1, 7.2 are due on Wednesday. No quiz on Friday! But this is the only recitation on chapter 7. My office is Skiles 244

More information

Announcements Monday, November 20

Announcements Monday, November 20 Announcements Monday, November 20 You already have your midterms! Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be awarded depends on many factors, and

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

Announcements Monday, November 19

Announcements Monday, November 19 Announcements Monday, November 19 You should already have the link to view your graded midterm online. Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be

More information

Announcements Monday, November 19

Announcements Monday, November 19 Announcements Monday, November 19 You should already have the link to view your graded midterm online. Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 16 That is one week from this Friday The exam covers 45, 51, 52 53, 61, 62, 64, 65 (through today s material) WeBWorK 61, 62

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4 Linear Systems Math Spring 8 c 8 Ron Buckmire Fowler 9 MWF 9: am - :5 am http://faculty.oxy.edu/ron/math//8/ Class 7 TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5. Summary

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 6 That is one week from this Friday The exam covers 45, 5, 52 53, 6, 62, 64, 65 (through today s material) WeBWorK 6, 62 are

More information

Announcements Wednesday, November 15

Announcements Wednesday, November 15 Announcements Wednesday, November 15 The third midterm is on this Friday, November 17. The exam covers 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5. About half the problems will be conceptual, and the other half computational.

More information

Announcements Wednesday, November 15

Announcements Wednesday, November 15 3π 4 Announcements Wednesday, November 15 Reviews today: Recitation Style Solve and discuss Practice problems in groups Preparing for the exam tips and strategies It is not mandatory Eduardo at Culc 141,

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter 6 ( ), 7.1 Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

Announcements Monday, November 06

Announcements Monday, November 06 Announcements Monday, November 06 This week s quiz: covers Sections 5 and 52 Midterm 3, on November 7th (next Friday) Exam covers: Sections 3,32,5,52,53 and 55 Section 53 Diagonalization Motivation: Difference

More information

March 27 Math 3260 sec. 56 Spring 2018

March 27 Math 3260 sec. 56 Spring 2018 March 27 Math 3260 sec. 56 Spring 2018 Section 4.6: Rank Definition: The row space, denoted Row A, of an m n matrix A is the subspace of R n spanned by the rows of A. We now have three vector spaces associated

More information

Announcements Wednesday, October 04

Announcements Wednesday, October 04 Announcements Wednesday, October 04 Please fill out the mid-semester survey under Quizzes on Canvas. WeBWorK 1.8, 1.9 are due today at 11:59pm. The quiz on Friday covers 1.7, 1.8, and 1.9. My office is

More information

Announcements Monday, November 13

Announcements Monday, November 13 Announcements Monday, November 13 The third midterm is on this Friday, November 17. The exam covers 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5. About half the problems will be conceptual, and the other half computational.

More information

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

More information

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 Name Circle the name of your instructor below: Fathi Jankowski Kordek Strenner Yan Please read all instructions carefully before beginning Each problem is worth

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 Answer the questions in the spaces provided on the question sheets. You must show your work to get credit for your answers. There will

More information

For each problem, place the letter choice of your answer in the spaces provided on this page.

For each problem, place the letter choice of your answer in the spaces provided on this page. Math 6 Final Exam Spring 6 Your name Directions: For each problem, place the letter choice of our answer in the spaces provided on this page...... 6. 7. 8. 9....... 6. 7. 8. 9....... B signing here, I

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Announcements Monday, November 13

Announcements Monday, November 13 Announcements Monday, November 13 The third midterm is on this Friday, November 17 The exam covers 31, 32, 51, 52, 53, and 55 About half the problems will be conceptual, and the other half computational

More information

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST me me ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number

More information

MATH 1553 PRACTICE FINAL EXAMINATION

MATH 1553 PRACTICE FINAL EXAMINATION MATH 553 PRACTICE FINAL EXAMINATION Name Section 2 3 4 5 6 7 8 9 0 Total Please read all instructions carefully before beginning. The final exam is cumulative, covering all sections and topics on the master

More information

Announcements Wednesday, September 27

Announcements Wednesday, September 27 Announcements Wednesday, September 27 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due

More information

Section 6.4. The Gram Schmidt Process

Section 6.4. The Gram Schmidt Process Section 6.4 The Gram Schmidt Process Motivation The procedures in 6 start with an orthogonal basis {u, u,..., u m}. Find the B-coordinates of a vector x using dot products: x = m i= x u i u i u i u i Find

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Exam 2 Exam date: 10/31/17 Time Limit: 80 Minutes Name: Student ID: GSI or Section: This exam contains 7 pages (including this cover page) and 7 problems. Problems are printed

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Orthogonal Complements

Orthogonal Complements Orthogonal Complements Definition Let W be a subspace of R n. If a vector z is orthogonal to every vector in W, then z is said to be orthogonal to W. The set of all such vectors z is called the orthogonal

More information

Announcements Monday, October 02

Announcements Monday, October 02 Announcements Monday, October 02 Please fill out the mid-semester survey under Quizzes on Canvas WeBWorK 18, 19 are due Wednesday at 11:59pm The quiz on Friday covers 17, 18, and 19 My office is Skiles

More information

Chapter 6. Orthogonality and Least Squares

Chapter 6. Orthogonality and Least Squares Chapter 6 Orthogonality and Least Squares Section 6.1 Inner Product, Length, and Orthogonality Orientation Recall: This course is about learning to: Solve the matrix equation Ax = b Solve the matrix equation

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Announcements Monday, September 25

Announcements Monday, September 25 Announcements Monday, September 25 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due Friday

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

Announcements September 19

Announcements September 19 Announcements September 19 Please complete the mid-semester CIOS survey this week The first midterm will take place during recitation a week from Friday, September 3 It covers Chapter 1, sections 1 5 and

More information

Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

More information

Solving a system by back-substitution, checking consistency of a system (no rows of the form

Solving a system by back-substitution, checking consistency of a system (no rows of the form MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary

More information

Eigenvalues, Eigenvectors, and Diagonalization

Eigenvalues, Eigenvectors, and Diagonalization Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

More information

Section 6.5. Least Squares Problems

Section 6.5. Least Squares Problems Section 6.5 Least Squares Problems Motivation We now are in a position to solve the motivating problem of this third part of the course: Problem Suppose that Ax = b does not have a solution. What is the

More information

Check that your exam contains 30 multiple-choice questions, numbered sequentially.

Check that your exam contains 30 multiple-choice questions, numbered sequentially. MATH EXAM SPRING VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result

More information

Answer Keys For Math 225 Final Review Problem

Answer Keys For Math 225 Final Review Problem Answer Keys For Math Final Review Problem () For each of the following maps T, Determine whether T is a linear transformation. If T is a linear transformation, determine whether T is -, onto and/or bijective.

More information

I. Multiple Choice Questions (Answer any eight)

I. Multiple Choice Questions (Answer any eight) Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

More information

6. Orthogonality and Least-Squares

6. Orthogonality and Least-Squares Linear Algebra 6. Orthogonality and Least-Squares CSIE NCU 1 6. Orthogonality and Least-Squares 6.1 Inner product, length, and orthogonality. 2 6.2 Orthogonal sets... 8 6.3 Orthogonal projections... 13

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process Worksheet for Lecture Name: Section.4 Gram-Schmidt Process Goal For a subspace W = Span{v,..., v n }, we want to find an orthonormal basis of W. Example Let W = Span{x, x } with x = and x =. Give an orthogonal

More information

Vector space and subspace

Vector space and subspace Vector space and subspace Math 112, week 8 Goals: Vector space, subspace, span. Null space, column space. Linearly independent, bases. Suggested Textbook Readings: Sections 4.1, 4.2, 4.3 Week 8: Vector

More information

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018 Lecture 13: Orthogonal projections and least squares (Section 3.2-3.3) Thang Huynh, UC San Diego 2/9/2018 Orthogonal projection onto subspaces Theorem. Let W be a subspace of R n. Then, each x in R n can

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th. Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

1. Let A = (a) 2 (b) 3 (c) 0 (d) 4 (e) 1

1. Let A = (a) 2 (b) 3 (c) 0 (d) 4 (e) 1 . Let A =. The rank of A is (a) (b) (c) (d) (e). Let P = {a +a t+a t } where {a,a,a } range over all real numbers, and let T : P P be a linear transformation dedifined by T (a + a t + a t )=a +9a t If

More information

Name: Final Exam MATH 3320

Name: Final Exam MATH 3320 Name: Final Exam MATH 3320 Directions: Make sure to show all necessary work to receive full credit. If you need extra space please use the back of the sheet with appropriate labeling. (1) State the following

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS MATH Q MIDTERM EXAM I PRACTICE PROBLEMS Date and place: Thursday, November, 8, in-class exam Section : : :5pm at MONT Section : 9: :5pm at MONT 5 Material: Sections,, 7 Lecture 9 8, Quiz, Worksheet 9 8,

More information

Orthogonal Projection. Hung-yi Lee

Orthogonal Projection. Hung-yi Lee Orthogonal Projection Hung-yi Lee Reference Textbook: Chapter 7.3, 7.4 Orthogonal Projection What is Orthogonal Complement What is Orthogonal Projection How to do Orthogonal Projection Application of Orthogonal

More information

MTH 2032 SemesterII

MTH 2032 SemesterII MTH 202 SemesterII 2010-11 Linear Algebra Worked Examples Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2011 ii Contents Table of Contents

More information

FINAL EXAM Ma (Eakin) Fall 2015 December 16, 2015

FINAL EXAM Ma (Eakin) Fall 2015 December 16, 2015 FINAL EXAM Ma-00 Eakin Fall 05 December 6, 05 Please make sure that your name and GUID are on every page. This exam is designed to be done with pencil-and-paper calculations. You may use your calculator

More information

Section 6.1. Inner Product, Length, and Orthogonality

Section 6.1. Inner Product, Length, and Orthogonality Section 6. Inner Product, Length, and Orthogonality Orientation Almost solve the equation Ax = b Problem: In the real world, data is imperfect. x v u But due to measurement error, the measured x is not

More information

Math 20F Practice Final Solutions. Jor-el Briones

Math 20F Practice Final Solutions. Jor-el Briones Math 2F Practice Final Solutions Jor-el Briones Jor-el Briones / Math 2F Practice Problems for Final Page 2 of 6 NOTE: For the solutions to these problems, I skip all the row reduction calculations. Please

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Announcements Wednesday, September 20

Announcements Wednesday, September 20 Announcements Wednesday, September 20 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5.

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Announcements Monday, September 17

Announcements Monday, September 17 Announcements Monday, September 17 WeBWorK 3.3, 3.4 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 21. Midterms happen during recitation. The exam covers through 3.4. About

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Announcements Wednesday, September 05

Announcements Wednesday, September 05 Announcements Wednesday, September 05 WeBWorK 2.2, 2.3 due today at 11:59pm. The quiz on Friday coers through 2.3 (last week s material). My office is Skiles 244 and Rabinoffice hours are: Mondays, 12

More information

MAT188H1S LINEAR ALGEBRA: Course Information as of February 2, Calendar Description:

MAT188H1S LINEAR ALGEBRA: Course Information as of February 2, Calendar Description: MAT188H1S LINEAR ALGEBRA: Course Information as of February 2, 2019 2018-2019 Calendar Description: This course covers systems of linear equations and Gaussian elimination, applications; vectors in R n,

More information

MATH 115A: SAMPLE FINAL SOLUTIONS

MATH 115A: SAMPLE FINAL SOLUTIONS MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication

More information

Jordan Normal Form and Singular Decomposition

Jordan Normal Form and Singular Decomposition University of Debrecen Diagonalization and eigenvalues Diagonalization We have seen that if A is an n n square matrix, then A is diagonalizable if and only if for all λ eigenvalues of A we have dim(u λ

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

Mon Mar matrix eigenspaces. Announcements: Warm-up Exercise:

Mon Mar matrix eigenspaces. Announcements: Warm-up Exercise: Math 227-4 Week notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an in-depth

More information

Schur s Triangularization Theorem. Math 422

Schur s Triangularization Theorem. Math 422 Schur s Triangularization Theorem Math 4 The characteristic polynomial p (t) of a square complex matrix A splits as a product of linear factors of the form (t λ) m Of course, finding these factors is a

More information

Summer Session Practice Final Exam

Summer Session Practice Final Exam Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.

More information

The Jordan Normal Form and its Applications

The Jordan Normal Form and its Applications The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens

More information

NATIONAL UNIVERSITY OF SINGAPORE MA1101R

NATIONAL UNIVERSITY OF SINGAPORE MA1101R Student Number: NATIONAL UNIVERSITY OF SINGAPORE - Linear Algebra I (Semester 2 : AY25/26) Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES. Write down your matriculation/student number clearly in the

More information

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections Section 6. 6. Orthogonal Sets Orthogonal Projections Main Ideas in these sections: Orthogonal set = A set of mutually orthogonal vectors. OG LI. Orthogonal Projection of y onto u or onto an OG set {u u

More information

Homework 5. (due Wednesday 8 th Nov midnight)

Homework 5. (due Wednesday 8 th Nov midnight) Homework (due Wednesday 8 th Nov midnight) Use this definition for Column Space of a Matrix Column Space of a matrix A is the set ColA of all linear combinations of the columns of A. In other words, if

More information

LINEAR ALGEBRA QUESTION BANK

LINEAR ALGEBRA QUESTION BANK LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,

More information

Section Instructors: by now you should be scheduled into one of the following Sections:

Section Instructors: by now you should be scheduled into one of the following Sections: MAT188H1F LINEAR ALGEBRA: Syllabus for Fall 2018 as of October 26, 2018 2018-2019 Calendar Description: This course covers systems of linear equations and Gaussian elimination, applications; vectors in

More information