Solving generalized semi-infinite programs by reduction to simpler problems.

Size: px
Start display at page:

Download "Solving generalized semi-infinite programs by reduction to simpler problems."

Transcription

1 Solving generalized semi-infinite programs by reduction to simpler problems. G. Still, University of Twente January 20, 2004 Abstract. The paper intends to give a unifying treatment of different approaches to solve generalized semi-infinite programs by transformation to simpler problems. In particular dual-, penalty-, discretization-, reduction- and KKT-methods are applied to obtain equivalent problems or relaxations of a simpler structure. The relaxations are viewed as a perturbation P of the original problem P, depending on a perturbation parameter > 0, and are analyzed by using parametric programg techniques. We give convergence results and results on the rate of convergence for the imal values and the optimal solutions of P when tends towards 0. We review earlier studies and present new ones. Keywords: Semi-infinite programg with variable index sets, penalty methods, parametric programg, discretization. Mathematical Subject Classification 2000: 90C34, 90C31 1 Introduction We consider semi-infinite problems with variable index sets, also called generalized semi-infinite problems, GSIP: f.x/ subject to x F := {x IR n g.x; y/ 0 y Y.x/} where the (variable) index set is given by Y.x/ := {y IR m v.x; y/ 0}. Throughout the paper we assume that the functions f : IR n IR, g : IR n IR m IR, v : IR n IR m IR q are (at least) continuously differentiable. For the special case that the index set Y = Y.x/ does not depend on the variable x, the program is a (common) semi-infinite problem (SIP). Note that in case of SIP the component functions v i ; i = 1; : : : ; q, do not depend on x. Since the 60-th by more than 2000 publications the theory and practice of SIP is well- developed (see e.g. [6], [10] for a survey). GSIP is only studied since about 1985, see e.g. [5], [7] and [13]. It is meanwhile known that the structure of GSIP is (possibly) more complicated than SIP. The structure depends strongly on the behavior of the 1

2 set-valued mapping Y.x/. If for example Y.x/ is not continuous then the feasible set F need not be closed. To avoid this structural problem we make some assumptions. A1: The feasible set F of GSIP is non-empty and is contained in a compact set X. (This condition can always be forced by adding constraints such as x M; = 1; : : : ; n, to the feasibility condition g 0.) A2: The set-valued mapping Y : X IR m is continuous. A3: There is a compact set Y 0 IR m such that Y.x/ Y 0 x X : Under A3 we can write Y.x/ = { y Y 0 v i.x; y/ 0; i I := {1; : : : ; q} } : These assumptions in particular imply that the feasible set F is non-empty and compact and, so, an optimal solution of GSIP always exists. Remark 1 We emphasize that some of the assumptions in this paper are related. For example, the compactness condition A3 for Y.x/ and the continuity of v imply the upper semicontinuity of the mapping Y.x/ and the MFCQ-condition in A5 ii leads to the lower semicontinuity of Y.x/ (i.e., both conditions entail the continuity of Y in A2). In all approaches to solve GSIP numerically, one tries to relax GSIP locally or globally to a simpler problem, e.g., to a SIP or a finite program (FP). This paper intends to give a unifying treatment of such approaches, comprising earlier results and providing new ones. Remark. GSIP includes the max problem, as treated in [12]: x max y Y.x/ g.x; y/ : Obviously, this problem can be formulated as the GSIP, x; s.t. g.x; y/ 0 y Y.x/ : In the present paper, to keep the exposition as clear as possible, we omit the case of additional equality constraints in the description of Y.x/ and in the feasibility condition, as well as the occurrence of several semi-infinite constraints, g.x; y/ 0 y Y.x/; = 1; : : : ; (as done in [9]). We emphasize that these generalizations are straightforward and only lead to technical complications which we wish to avoid. 2 Different approaches to relax GSIP In this section we briefly describe different possibilities to transform GSIP to simpler problems. The dual-, the Karush-Kuhn-Tucker- (KKT), the reduction-, and the penalty-method. 2

3 We first give a useful equivalent formulation of GSIP. To do so let us consider the finite program Q.x/ : max g.x; y/ s.t. v.x; y/ 0 ; (1) depending on the parameter x. Q.x/ is often called lower level problem. Let '.x/ denote the optimal value function of Q.x/ and S.x/ the corresponding set of optimal solutions. Obviously, via the value function '.x/ we can write F = {x X '.x/ 0} and GSIP becomes P : x X f.x/ s.t. '.x/ 0 : (2) Let in the sequel denote the imal value of P and S the set of solutions. Note that, as a imum function, ' is not smooth in general. We assume throughout that at each x S the activity condition '.x/ = 0 holds. Otherwise near x the problem would simply reduce to an unconstrained optimization problem. 2.1 Dual and KKT-approach. Under the following convexity assumptions the problem Q.x/ can be replaced by the Lagrangian dual: AD 1 : Let for any fixed x the functions g.x; y/ and v i.x; y/; i I; be convex in y, i.e., Q.x/ is a convex problem. AD 2 : (Slater condition.) For any x X there exists y Y 0 such that v.x; y/ < 0. We introduce the Lagrange function L.x; y; / = g.x; y/ T v.x; y/ and the Lagrangian primal and dual problems Q P.x/ : '.x/ := max Q D.x/ :.x/ := 0 0 L.x; y; / max L.x; y; / : It is well-known that Q P.x/ coincides with Q.x/ and we have, in addition, Lemma 1 Under AD 1 and AD 2 for all x X the problem Q D.x/ is solvable with '.x/ =.x/. Dual approach: (Under assumptions AD 1 and AD 2 ) The idea (due to [8],[9]) is based on the following observation. The condition.x/ 0 (or equivalently '.x/ 0) can be expressed as: there is some 0 such that L.x; y; / 0 y Y 0 : 3

4 So our problem P can equivalently be written as the SIP in the variables.x; /: 0;x f.x/ s.t. L.x; ; y/ 0 y Y 0 : KKT-approach: (Under assumptions AD 1 and AD 2 ) If in addition we assume g; v C 1 then the following approach leads to a finite problem. Under our assumptions AD 1 and AD 2 the point y is an optimal solution of Q.x/ if and only if the KKT-conditions are fulfilled with some multiplier : y L.x; y; / = 0 ; T v.x; y/ = 0; 0; v.x; y/ 0 : So the generalized semi-infinite problem P can globally be reduced to the finite program with complementarity constraints: x;y; f.x/ s.t. g.x; y/ 0 y g.x; y/ T y v.x; y/ = 0 T v.x; y/ = 0 ; v.x; y/ 0 In [14] GSIP has been solved numerically by using this idea and applying an interior point method to solve the complementarity condition. 2.2 Local reduction to a finite problem This approach has been described in [5] and [15]. We therefore, here, may omit any technical details. This approach is based on the parametric program Q.x/ (see (1)) and we assume that all functions f; g; v are C 2 -functions. For a feasible x F we define the set of active indices Y a.x/ = {y Y.x/ g.x; y/ = 0} : Note that by definition, any point y from Y a.x/ is a (global) maximizer of Q.x/. Given x IR n, the Mangasarian Fromovitz Constraint Qualification (MFCQ) is said to hold for Q.x/ at y Y.x/ if there is some IR m such that y v i.x; y/ < 0 i I 0.x; y/ := {i I v i.x; y/ = 0} : We say that the Linear Independence Constraint Qualification (LICQ) is satisfied if the gradients y v i.x; y/; i I 0.x; y/ are linearly independent. We now assume at x F, A1 red.x/: For all y Y a.x/ (i.e., maximizer of Q.x/) the following strong regularity conditions hold: linear independence constraint qualification (LICQ), strict complementary slackness (SC), and strong second order optimality conditions (see [15] for details). 4

5 A1 red.x/ implies that Y a.x/ = {y 1 ; : : : ; y p } is finite and for each y j Y a.x/ with (unique) Lagrange multipliers 0 j;i ; i I 0.x; y j /, the Karush-Kuhn-Tucker (KKT) condition y L y j.x; y j ; j / = y g.x; y j / j;i y v i.x; y j / = 0 (3) i I 0.x;y j / is valid with the Lagrange function L y j with respect to the maximizers y j of Q.x/. Moreover, there are C 1 -functions y j.x/; j = 1; : : : ; p, y j.x/ = y j, defined on a neighborhood U x of x such that '.x/ = max 1 j p G j.x/ where G j.x/ := g.x; y j.x// : (4) So x is a (local) solution of P if and only if x is a local solution of the so-called reduced finite problem P red.x/ : x U x f.x/ s.t. G j.x/ 0; j = 1; : : : ; p : One can show the relation G j.x/ = x L y j.x; y j ; j /. So locally near x the GSIP problem P is equivalent to P red.x/ which is a common finite optimization problem. Let now x be some (local) solution of P (and thus of P red.x/). We moreover assume A2 red.x/: (MFCQ for P): There exists IR n such that G j.x/ < 0; j = 1; : : : ; p. Then with some Lagrange multipliers j 0 necessarily the KKT-condition holds: f.x/ + p j=1 j G j.x/ = 0 : (5) Moreover, it is well-known that under MFCQ the set of multipliers K.x/ = { 0 such that (5) holds} is compact. Thus, the number max K.x/ is well-defined. To solve problem P via P red.x/ we consider locally near to a point ˆx the exact penalty problem (with > 0/: P. ˆx/ : f.x/ := f.x/ + max 1 j p. ˆx/ G + j.x/ where p. ˆx/ denotes the number of locally near ˆx implicitly defined functions y j.x/ (see (4)) and G + j.x/ := max{0; G j.x/}. Based on this problem we obtain the SQP-method with merit function f. (Conceptual form) step k: Let be given x k, the (locally near x k defined) functions G j.x/; j = 1; : : : ; p (p = p.x k /) and a positive definite matrix L k ( fixed, large enough). Compute a solution d k with corresponding multipliers k; j 0 of Q k : d f.x k /d dt L k d s.t. G j.x k / + G j.x k /d 0; j = 1; : : : ; p 5

6 Compute a solution t k of t>0 f.x k + td k / and put x k+1 = x k + t k d k. We refer to [6] for a discussion of this method for solving common SIP. The following theorem is the basic result for the SQP-method for GSIP. Theorem 1 a. Let x be a local solution of P (i.e., of P red.x/). Let A1 red.x/ and A2 red.x/ hold. Then for any > 0 := max K.x/, the point x is also a local imizer of P.x/. b. Let the condition A1 red.x k / be satisfied at x k (at all solutions of Q.x k /). Then for each > j k; j a solution d k 0 of Q k is a descent direction for f at x k. Proof. a. By our assumptions the function.u/ := x f.x/ s.t. G j.x/ u j ; j, satisfies the Lipschitz condition.u/.0/ B u (for any small u ). This is seen by applying Lemma 6b (Appendix) (with u z; x y; f g; G j v i ). The value for B is obtained from formula (19). So the result follows from Lemma 8. b. See e.g. in [4, Th12.12 ] for such a standard result. Remark. The SQP-method leads (under certain regularity conditions) to a superlinear convergent algorithm. 3 Penalty approaches In this section we describe two approaches that use penalty methods in order to solve the lower level problem Q.x/. The exact penalty method as described in [12] and the L 2 penalty method given in [9]. These approaches transform GSIP to a common SIP. Let for real valued h be defined h +.y/ = max{0; h.y/} and for h : IR s IR q, h +.z/ = max 1 j q h+ j.z/ and h+.z/ 2 2 = Consider the exact, respectivelyl 2, penalty method for Q.x/: q.h + j.z//2 : j=1 Q.x/ : Q.x/ : '.x/ := max {g.x; y/ v +.x; y/ } '.x/ := max {g.x; y/ v +.x; y/ 2 2} and the corresponding relaxations of P (cf. (2)): P : x X f.x/ s.t. '.x/ 0 P : x X f.x/ s.t. '.x/ 0 : Note that both problems are common SIP s (but P is in general non-smooth). It is shown below that for large enough the problems P and P are equivalent. Remark. We comment on the smoothness of the problems. Clearly the max-functions 6

7 ', ' and ' are not differentiable (in general). The function g.x; y/ v +.x; y/ 2 2 is in C 1 whereas the function g.x; y/ v +.x; y/ is not. So P represents a SIP of C 1 type whereas the problem P is only a Lipschitz SIP. Note that P can be written as a disjunctive semi-infinite problem (see [12]): P : f.x/ s.t. {g.x; y/ ; g.x; y/ v i.x; y/; i I} 0 y Y 0 : A4: For all x X the condition MFCQ is satisfied (for Q.x/) at all points y from the sets S.x/ of solutions of Q.x/. The next corollary gives a result of [12] but under weaker assumptions (MFCQ here, instead of LICQ in [12]). Corollary 1 Let A1-A4 hold. Then there exists some such that '.x/ = '.x/ for all x X,, i.e., on X the problems P and P are equivalent. In particular x is a (local) solution of P if and only if x is a (local) solution of P. Proof. Let us define the parametric problem '.x; u/ := max g.x; y/ s.t. v.x; y/ u with feasible set Y.x; u/. We first apply Lemma 6 b with z =.x; u/ for given x and parameter u, u small. This leads to the existence of " = ".x/ > 0 and B = B.x/ such that '.x; u/ '.x; 0/ B.x/ u 0 for u ".x/ with B.x/ b 1, uniformly bounded on X (cf. (17), (18) in the proof of Lemma 6 b) By compactness of X there exists " > 0 such that '.x; u/ '.x; 0/ b 1 u 0 for all x X; u " : Now define R := max x X;y Y0 v +.x; y/. Note that '.x; u/ is continuously depending on x; u for all x; u with Y.x; u/. (By definition '.x; u/ = if Y.x; u/ =.) So the value m := max {'.x; u/ '.x; 0/} x X; u R is well-defined. By construction, for all R u > " the bound '.x; u/ '.x; 0/ m u =" holds. So with L := max{b 1 ; m="} the assumptions of Lemma 8 are satisfied and for all L, it follows '.x/ = '.x/ for all x X. 4 General perturbations The functions ', ', introduced in Section 3 can be considered as a perturbation of the function '. In the next section we will even relax the problems further by smoothing 7

8 and discretization. All these relaxations can be seen as a perturbation P of the original problem P. Therefore in this section we discuss some general perturbation results used later on. Consider the perturbation of the original problem P (cf. (2), P : x X f.x/ s.t. '.x/ 0 ; (6) depending on the parameter 0 such that P 0 = P. Let, F and S denote respectively the optimal value, the feasible set and the optimal solution set of P. In particular F = F 0 ; S = S 0 ; = 0. We wish to know under which conditions the following holds, whichever solution x of P we take: If 0 then and d.x ; S / 0 : Here, d.x; S / = { x s s S} denotes the distance between x and S. We firstly impose the (imal) assumption to guarantee that ' ', secondly some constraint qualification. AP 1 : There exists a t 1 > 0 and a function : [0; t 1 ] IR + such that./ 0 for 0 and for all x X '.x/ '.x/./ for [0; t 1 ] : AP 2 : For some x S (i.e., '.x/ = 0) (at least one) there exist IR n, t 2 > 0 and a function : [0; t 2 ] IR + such that is strongly monotonically decreasing (for decreasing t) with.0/ = 0 and '.x + t/.t/ for all t [0; t 2 ] : Lemma 2 Let A1-A3 and AP 1, AP 2 be satisfied. Then for 0 and x being a solution of P (provided they exist) it follows and d.x ; S / 0. Proof. Assume to the contrary that d.x ; S / 0, i.e., for some subsequence x X d.x ; S / " > 0. By compactness of X, there will exist a convergent subsequence x ˆx. We now show ˆx S, yielding a contradiction. By AP 1 we find '.x / '.x / +. /. / 0 : Since ' is continuous (cf. Lemma 6 with z = x) we obtain '.x / '. ˆx/ 0. So ˆx F. With the point x S in AP 2 we deduce, if is sufficiently large, '.x + t / '.x + t / +. /.t / +. / 0 (7) 8

9 if t is chosen such that.t / =. / (i.e., t = 1.. //). Note that t 0 for 0. By (7) x + t F and f.x/ f. ˆx/ = f.x / + f. ˆx/ f.x / f.x + t / + f. ˆx/ f.x / f.x/ for 0, proving ˆx S. The condition d.x ; S / 0, together with the continuity of f directly implies f.x / =. In many cases the following perturbation concept can be applied which requires weaker assumptions than AP 2 above. Consider for 0 the special perturbation P : f.x/ s.t. x F := {x X '.x/ } ; (8) with optimal value, and define the lower level set f := {x X f.x/ + }. Note that since F F the relation holds and, by assumption A1, the set F is nonempty. AP 3 : There exists > 0 such that ' is continuous on F. (Since X is compact a solution of P exists for ). Remark. A1-A3 imply the condition AP 3 (see the proof of Lemma 6a). The following holds (see also [9, Prop. 5.1]). Lemma 3 Let AP 3 be satisfied and consider 0. Then 0 0 and if x F f it follows d.x ; S / 0. Proof. Suppose that for some subsequence x F f we have d.x ; S / " > 0. But (taking a subsequence, if necessary,) x x and the continuity of f and ' yield x S, which constitutes a contradiction. Let now x be an optimal solution of P. By F F clearly = f.x / must hold implying x F f. So d.x ; S / 0 and we can chose x S such that x x 0. Since f is uniformly continuous on the compact set F we deduce 0 = f.x / f.x / 0 for 0 : The results in Lemma 2 and Lemma 3 can be given in a quantitative form. To do so we have to strengthen the assumptions. APS 1 : AP 1 holds with./ = for some positive. APS 2 : (Constraint qualification near all x S.) There exist "; t; ; c 0 > 0 such that for each x S there exists =.x/ IR n satisfying.x/ c 0 and '.x + t/ '.x/ t for x x < "; t [0; t] : 9

10 Remark. Let A1 red.x/ and A2 red.x/ hold and let x be the unique optimal solution of P (S = {x}). Then (near x) it follows '.x/ = max j G j.x/ (see (4). So in view of A2 red.x/ and using G j C 1 we find '.x + t/ = max j G j.x + t/ = max j {G j.x/ + t G j.x/ + o.t/ } '.x/ + t max j G j.x/ + o.t/ '.x/ t with some > 0 if x x and t are small. Consequently APS 2 holds. AG: (Growth condition) With the imum value and r = 1 or r = 2 for some positive : f.x/ + d.x; S / r for all x F If S = {x} is a singleton then x is called a imizer of order r. Lemma 4 Let A1-A3, APS 1, APS 2 be satisfied and let 0. Then = O./. If moreover AG is satisfied then with the solutions x of P (provided they exist) it follows d.x ; S / = O. 1=r /. Proof. By Lemma 2 and taking " in APS 2 there exist 0 > 0, x S such that x x " 0. Choose ˆx := x + ( =.x /) (see APS 2 ). Then, for small, '. ˆx / '.x / '.x / +. / = 0 for := =. Moreover for any x S (by APS 1 and APS 2 ): '.x + / '.x + / + '.x/ + 0 So x + F F and also ˆx F. In view of f C 1 and c 0 (, see APS 2 ) we deduce f.x/ f. ˆx / = f.x / + O./ f.x + / + O./ f.x/ + O./ = + O./ : Thus = f.x/ f.x / + O./ = + O./ and = f.x / + O./ showing = O./. Under AG we moreover have d. ˆx ; S / r f. ˆx / f.x/ O./ or d. ˆx ; S / O. 1=r / and thus d.x ; S / d. ˆx ; S / + d. ˆx ; x / O. 1=r / With similar (but easier) arguments we also obtain the following result for the perturbation P (see Lemma 3): Let AP 3, APS 2 and AG hold. Then for 0 with solutions x of P 0 = O./ d.x ; S / = O. 1=r / (9) 10

11 5 Relaxation by smoothing and discretization In this section we convert the (non-smooth) semi-infinite problem P by a simple smoothing approach into a smooth SIP and apply a discretization procedure to relax P and P to a finite program (see [12], [9]). By applying the perturbation theory of Section 4 new convergence results are obtained. The idea is to view all relaxations as a perturbation of the original GSIP problem P. In what follows, for any d > 0, Y d Y 0 will denote a finite discretization of the index set Y 0 such that in the Haussdorf distance d.y d ; Y 0 / = max y Y0 yd Y d y y d the bound d.y d ; Y 0 / d holds. Recall (cf. Corollary 1) that for the function '.x/ = max '.x; y/ with '.x; y/ = g.x; y/ v +.x; y/ coincides with '.x/ on X. As done in [12, Section 3], we write '.x; y/ in the equivalent form Then by setting '.x; y/ = {g.x; y/ ; g.x; y/ v i.x; y/; i = 1; : : : ; q} : h 0.x; y/ := g.x; y/ ; h i.x; y/ := g.x; y/ v i.x; y/; i = 1; : : : ; q the nonsmooth function '.x; y/ is replaced by the smooth approximation (see Lemma 9) ) e ph i.x;y/ ; 1 < p < : (10) ' ; p.x; y/ = 1 p ln ( q i=0 We define two relaxations of '.x/, ' ; p.x/ := max ' ; p.x; y/ and ' ; p;d.x/ := max y Y d ' ; p.x; y/ ; (11) where the second is obtained simply by discretization of Y 0. This leads to the following relaxations of the original problem: P ; p : P ; p;d : x X f.x/ s.t. ' ; p.x/ 0 ; x X f.x/ s.t. ' ; p;d.x/ 0 : P ; p is a (smooth) SIP whereas P ; p;d represents a (smooth) FP. Let ; p ; ; p;d and F ; p ; F ; p;d denote the optimal values and the feasible sets of P ; p ; P ; p;d. It is not difficult to show that by our assumptions the function ' ; p.x/ is Lipschitz continuous on X w.r.t. y Y 0 : For given 0 < < ˆ there exists L 0 such that ' ; p.x; y 1 / ' ; p.x; y 2 / L 0 y 1 y 2 y 1 ; y 2 Y 0 ; x X; p 1; [; ˆ] : (12) The next lemma provides the basic result for the convergence analysis of the relaxations P ; p ; P ; p;d. 11

12 Lemma 5 Let L 0 ; < ˆ be as in (12), as in Corollary 1 and let A1-A4 hold. Then for all x X, p 1, d 0 and [; ˆ]: 0 '.x/ ' ; p.x/ ln.q+1/ p 0 ' ; p.x/ ' ; p;d.x/ L 0 d 0 '.x/ ' ; p;d.x/ ln.q+1/ p and ; p;d ; p = ; F = F F ; p F ; p;d : + L 0 d Proof. In view of Corollary 1, for we have = and '.x/ = '.x/ for all x X. From Lemma 9 we obtain (see (10)) 0 '.x; y/ ' ; p.x; y/ ln.q + 1/ p Taking the maximum with respect to y Y 0 yields (cf. (11)) 0 '.x/ ' ; p.x/ ln.q + 1/ p x X; y Y 0 : x X : The inequality ' ; p.x/ '.x/ implies F = F F ; p and ; p =. Using Lemma 11 with the Lipschitz constant L 0 in (12) we find 0 ' ; p.x/ ' ; p;d.x/ L 0 d x X : Consequently F ; p F ; p;d and ; p;d ; p. The inequalities so far combine to the last relation ln.q + 1/ 0 '.x/ ' ; p;d.x/ + L 0 d : p Applying Lemma 3 the preceding lemma leads to a convergence result for the relaxations P ; p and P ; p;d. Note that by using A1 and the relations for the feasible sets in Lemma 5 we see that the solutions of the relaxations exist. Theorem 2 Let the assumptions of Lemma 5 hold and suppose. p; d/. ; 0/. Then with solutions x ; p, x ; p;d of P ; p and P ; p;d the following holds for all [; ˆ] : d.x ; p ; S / 0 ; d.x ; p;d ; S / 0 and ; p ; ; p;d : Proof. We show the statement for x ; p;d (the result for x ; p is shown by choosing Y d = Y 0 i.e., d = 0). We set := ln.q + 1/ p + L 0 d and note that. p; d/. ; 0/ implies 0. By using Lemma 5 we deduce f.x ; p;d / = ; p;d. Since x ; p;d is feasible for P ; p;d it follows '.x ; p;d / = '.x ; p;d / ' ; p;d.x ; p;d / + 12 ln.q + 1/ p + L 0 d :

13 So x ; p;d F f, i.e., the assumptions of Lemma 3 are fulfilled and the result follows. In [12] an algorithm is described to solve P (approximately) by computing solutions x k = x k ; p k ;d k of P k ; p k ;d k for a sequence of parameters. k ; p k ; d k /, with p k ; d k 0 and k is iteratively controlled (kept bounded) by an appropriate test function. It is shown that (under certain assumptions) the solutions x k converges to a critical point of P. The convergence result of the preceding Theorem is new. We now consider the L 2 -penalty approach P in Section 3 (see also [9]): P : x X f.x/ s.t. '.x/ 0 ; '.x/ := max { g.x; y/ v +.x; y/ 2 2} We need some assumptions: A5: Let A1-A3 be satisfied. Let the following hold with constants L g > 0. i. g.x; y 1 / g.x; y 2 / L g y 1 y 2 for all y 1 ; y 2 Y 0 ; x X. ii. For all x X the MFCQ holds for all points y Y.x/. Note that under this assumption, Lemma 7 implies a relation (with some > 0) Theorem 3 Let A5 be fulfilled. Then d.y; Y.x// v +.x; y/ ; y Y 0 ; x X : a. For all > 0, x X the inequality 0 '.x/ '.x/.l g / 2 = holds implying F F and b. Let in addition AP 2 hold and let x be solutions of P for. Then d.x ; S / 0 and. Proof. a. Apply Lemma 10 to ' = '.x/. b. Since by a., 0 '.x/ '.x/.l g / 2 1 for all x X, the result is proven by applying Lemma 2 (with = 1= the assumption AP 1 is satisfied). Remark. In contrast to the smoothed L approach ( ; p, see Lemma 5), in this L 2 penalty method P the converse inequality holds. Consequently, a solution x of P does not automatically fulfill f.x / and x f 1=. So the perturbation approach of Lemma 3 is not directly applicable. Therefore Levitin [9] introduced a further artificial perturbation '.x/ (with parameter > 0) to fit the theory and obtained a convergence 13

14 result as in Theorem 3 (see [9, Th.5.2]). This leads to an artificial numerical approach which depends on certain unknown parameters. In this paper instead we obtained the convergence result of Theorem 3 directly via Lemma 2. We now apply an additional discretization to P and consider the finite program P ;d : x X f.x/ s.t. ' ;d.x/ 0 ; ' ;d.x/ := max y Y d { g.x; y/ v +.x; y/ 2 2 } where Y d Y 0 is again a discretization of meshsize d, ;d the optimal value and F ;d the feasible set. We cannot directly apply Lemma 11 since the function '.x; y/ := g.x; y/ v +.x; y/ 2 2 does not satisfy a Lipschitz condition uniformly for all 1. However we obtain a similar result as in Theorem 2. Note first that by our assumption v C 1 there exists some L 1 such that v +.x; y 1 / 2 2 v +.x; y 2 / 2 2 L 1 y 1 y 2 y 1 ; y 2 Y 0 ; x X : (13) Theorem 4 Let A5 be fulfilled. Then a. With L 1 in (13) for all > 0, x X the relations 0 '.x/ ' ;d.x/ L g d + L 1 d.l g / 2 1 '.x/ ' ;d.x/ L g d + L 1 d hold implying F F ;d and ;d. b. Let in addition AP 2 hold. Suppose ; d 0 in such a way that L g d + L 1 d 0 (e.g. d = 1= 2 ). Then with solutions x ;d of P ;d : ;d and d.x ;d ; S / 0 : Proof. a. (Modification of the proof of Lemma 11.) For fixed x X let y Y 0 be a maximizer of '. Since d.y d ; Y 0 / d there is some y d Y d such that y d y d. Then 0 '.x/ ' ;d.x/ '.x; y / '.x; y d / g.x; y / g.x; y d / + ( v +.x; yd / 2 2 ) v+.x; y / 2 2 L g y y d + L 1 y y d L g d + L 1 d : In particular, F F ;d and ;d. By combining this inequality with the bound in Theorem 3 a. we obtain the last inequality. 14

15 b. By a., '.x/ ' ;d.x/ max {.L g / 2 = ; L g d + L 1 d} 0, i.e., AP 1 is satisfied, and the result follows by Lemma 2. Remark. As a direct approach we could also consider a double penalization such as P r ; p;d : x X f.x/ + r '+ ; p;d.x/ : Note that ' + ; p;d.x/ is a Lipschitz function such that this problem represents a nonsmooth unconstrained finite problem which (for small dimensions) could be solved approximately by an appropriate algorithm (e.g. Nelder/Mead). Theoretically, to this approach we can apply Lemma 8 by considering the perturbation./ : x X f.x/ s.t. ' ; p;d.x/ : Under the assumption that./ is Lipschitz continuous, for any r large enough, the problems P ; p;d and P r ; p;d are equivalent. We emphasize that under the additional assumption APS 2 and AG (see Section 4, e.g., Lemma 4) we obtain a rate of convergence in the results of Theorems 2-4. As an illustration we only state the result for the relaxations in Theorem 2. The proof follows directly from the discussions at the end of Section 4 (see (9)) using the arguments in the proof of Theorem 2. Corollary 2 Let, in addition to the assumptions of Theorem 2, the conditions APS 2 and AG hold. Then with solutions x ; p, x ; p;d of P ; p and P ; p;d for all [; ˆ] : 0 ; p ; p;d O.1= p/ + O.d/ and d.x ; p ; S /.O.1= p// 1=r, d.x ; p;d ; S /.O.1= p/ + O.d// 1=r : Remark. Under the stronger assumptions A1 red.x/ and A2 red.x/ we may apply a special type of discretization as described in [16]. This would lead to a faster rate of convergence in the discretization parameter d, namely in the results above, d would then be replaced by d 2. 6 Appendix This section intends to provide a brief survey of results from parametric optimization (cf. [1] and [2] for details) and penalty methods used to prove the results of the paper. Let be given the finite program Q : ' := max y g.y/ s.t. y Y := {y IR m v i.y/ 0 ; i I} ; (14) 15

16 I := {1; : : : ; q}, with feasible set Y Y 0, Y 0 IR m compact, and S, the set of optimal solutions. Consider now the parametric version, Q.z/ : '.z/ := max y g.z; y/ s.t. y Y.z/ = {y IR m v i.z; y/ 0 ; i I} for z Z IR N, and Z a compact parameter set. Let S.z/ denote the set of optimal solutions of Q.z/. We assume that all the involved functions are C 2 -functions and Aa 1 : There is a compact set Y 0 IR m such that Y.z/ Y 0 z Z. Given z Z, the MFCQ is said to hold for Q.z/ at y Y.z/ if there is some IR m such that y v i.z; y/ < 0 i I 0.z; y/ := {i I v i.z; y/ = 0} : It is well-known that under MFCQ each (local) maximizer y of Q.z/ must satisfy the KKT-condition y L.z; y; / := y g.z; y/ i y v i.z; y/ = 0 (15) i I 0.z;y/ with multipliers i 0. Let K.z; y/ denote the set of all multiplier vectors such that (15) holds. We begin with a result on the behavior of the value function '.z/. Lemma 6 Let Aa 1 hold. a. If the mapping Y.z/ is continuous (on Z) (or if for all z Z the condition MFCQ is satisfied at (at least) one point y S.z/) then the function '.z/ is continuous on Z (and S.z/ is a closed mapping). b. Let MFCQ be satisfied for all z Z and all solutions y S.z/. Then ' is Lipschitz continuous i.e., with some B: '.z/ '.z/ B z z z; z Z : Proof. a. Under Aa 1 and the continuity of Y the continuity of '.z/ can be proved with straightforward arguments. For the proof of the result under the MFCQ assumption we refer e.g. to [2, Prop. 4.4.]. Note that in our situation MFCQ is equivalent with the so-called Robinson Constraint Qualification (see [2, Sect ]) and this qualification implies the assumption iv in [2, Prop. 4.4.]. b. This result can be proven elementary by making use of the properties of MFCQvectors. It also can be deduced from the bounds (see e.g. [11] for a proof) inf y S.z/ K.z;y/ z L.z; y; / d '.z; d/ ' +.z; d/ inf y S.z/ for the Hadamard lower and upper derivatives, max K.z;y/ z L.z; y; / d (16) '.z; d/ := lim d d inf t 0 '.z + td/ '.z/ t ; ' +.z; d/ := lim d d sup t 0 '.z + td/ '.z/ t : 16

17 To do so, we firstly note that it is not difficult to show that under our assumptions (MFCQ, Z compact etc.) the multiplier set K 0 := K.z; y/ is bounded. Consequently also a bound inf y S.z/ max K.z;y/ z Z;y S.z/ z L.z; y; / 1 b 1 z Z (17) is valid. In view of (16) by using z L.z; y; /d z L.z; y; / 1 d we find '.z; d/ ; ' +.z; d/ b 1 for all z Z, d IR N ; d = 1 : This implies that for any z Z, d IR N ; d = 1 there exists " > 0 such that '.z + td/ '.z/ 2b 1 t t < " : (18) The compactness of Z yields the uniform Lipschitz condition of the theorem. Remark A1. For the special case '.z/ := max y g.y/ s.t. v i.y/ z i 0 ; i I, we find the formula max z L.z; y; / d = max T d max 1 d K.z;y/ K.z;y/ K.z;y/ and the Lipschitz constant B in Lemma 6 is governed by the number B := sup z Z inf y S.z/ max 1 (19) K.z;y/ The next lemma involves the so-called metric regularity of the mapping Y.z/ (see e.g. [2, Th. 2.87] for a proof). Lemma 7 Let Aa 1 hold and let MFCQ be satisfied for all z Z, and for all y Y.z/. Then Y.z/ is uniformly metric regular, i.e., there exists > 0 such that d.y; Y.z// v +.z; y/ y Y 0 ; z Z ; where d.y; Y / denotes the distance d.y; Y / = ŷ Y y ŷ. We briefly survey some results from penalty methods. Consider the problems Q.u/ : Q : '.u/ := max g.y/ s.t. v i.y/ u i 0 ; i I ' := max { g.y/ v +.y/ } : Aa 2 : For all u IR q such that u max y Y0 v +.y/ the following Lipschitz condition holds with some L : '.u/ '.0/ L u : The next lemma presents a standard result in penalty methods (see [3]). 17

18 Lemma 8 Let assumption Aa 2 hold. Then for any L it follows ' = ' and each solution y of ' is also a solution of ' For the smoothing procedure in Section 5 we make use of the following auxiliary result. Lemma 9 Let 0 1 : : : q, p > 0. Then [ ( q )] p ln e p ln.q + 1/ j : p j=0 Proof. The inequality is a consequence of the relation 1 p ln ( q j=0 e p j ) = 1 p ln (e p 0 [ 1 + = 0 1 p ln (1 + q j=1 q e ]) p. j 0 / j=1 e p. j 0 / ) We also give a basic result for the L 2 -penalty approach for solving Q: Q : ' := max { g.y/ v +.y/ 2 2 } : Aa 3 : There exist constants ; L > 0 such that: g.y 1 / g.y 2 / L y 1 y 2 y 1 ; y 2 Y 0 d.y; Y / v +.y/ y Y 0 Aa 4 : The point y Y is the unique solution of Q of order r = 1 or r = 2, i.e., with some : g.y/ g.y/ y y r y Y : Lemma 10 The inequality ' ' holds and if Aa 3 is fulfilled then for the solutions y of Q we have 0 ' '.L/ 2 1 ; d.y ; Y / 2 L 1 : If in addition Aa 4 is satisfied then with some c, y y c 1 1=r > 0 : 18

19 Proof. (For completeness we give the proof which is partially contained in [9].) For any y Y (Y the feasible set of Q) the relation g.y/ = g.y/ v +.y/ 2 2 is true which in view of Y Y 0 yields ' '. Let now y be a solution of Q. Then the inequality ' ' = g.y / v +.y / 2 2 implies 0 v +.y / 2 2 g.y / ' : (20) By using max i.v + i.y // 2 v +.y / 2 2 and the second condition in Aa 3 we find 1 2 d2.y ; Y / v +.y / 2 v +.y / 2 2 g.y / ' : (21) Let ỹ Y be such that ỹ y = d.y ; Y /. By Aa 3 we then obtain g.y / g.ỹ / + L ỹ y = g.ỹ / + L d.y ; Y / ' + L d.y ; Y / and using (21) also d 2.y ; Y / 2 L d.y ; Y / or d.y ; Y / L 2 Moreover it follows : ' = g.y / v +.y / 2 2 g.y / ' + L d.y ; Y / ' + L2 2 which proves the first inequalities of the lemma. Under Aa 4 we deduce with ỹ as defined above g.ỹ / g.y / + L ỹ y or ' g.ỹ / ' g.y / + L d.y /; Y / L d.y /; Y / and with ỹ y r ' g.ỹ / Ld.y ; Y / L2 2 also y y ỹ y + ỹ y.l 2 2 =/ 1=r.1= 1=r / +.L 2 =/ 1 : Finally we describe the effect of a discretization step and compare with a grid Y d Y 0 of mesh size d.y d ; Y 0 / = d the problems where k : Y 0 IR is a given function. ' := max k.y/, ' d := max y Y d k.y/ Lemma 11 Let k satisfy a Lipschitz condition on Y 0 with Lipschitz constant B 1. Then 0 ' ' d B 1 d : Proof. In view of Y d Y 0 the relation ' d ' is immediate. To any solution y of ' we can choose a point y d Y d, y y d d. Then, using ' d k.y d / we deduce ' ' d k.y/ k.y d / B 1 d : Acknowledgments. The author is indebted to the referees for their valuable comments. 19

20 References [1] Bank B., Guddat J., Klatte D., Kummer B., Tammer K., Non-Linear Parametric Optimization, Birkhäuser Verlag, Basel, (1983). [2] Bonnans J.F., Shapiro A., Perturbation Analysis of Optimization Problems, Springer, New York, (2000). [3] Burke, J.V., Calmness and exact penalization, SIAM J. Control and Optimization, Vol. 29, No. 2, pp , (1991). [4] Faigle U., Kern W., Still G., Algorithmic Principles of Mathematical Programg, Kluwer, Dordrecht, (2002). [5] R. Hettich, G. Still, Second order optimality conditions for generalized semi-infinite programg problems, Optimization Vol. 34, , (1995). [6] Hettich R., Kortanek K., Semi-infinite programg: Theory, methods and applications, SIAM Review, vol. 35, No. 3, (1993). [7] H. Th Jongen, J.-J. Rückmann, O. Stein, Generalized semi-infinite optimization: A first order optimality condition and examples, Mathematical Programg 83, , (1998). [8] Levitin E. and Tichatschke R., A branch and bound approach for solving a class of generalized semi-infinite programg problems, J. of Global Optimization 13, , (1998). [9] Levitin E., Reduction of generalized semi-infinite programg problems to semi-infinite or piece-wise smooth programg problems, preprint, to appear. [10] Reemtsen R., Rückmann J.-J. (eds.) Semi-Infinite Programg, Kluwer, Boston, (1998). [11] Rockafellar R.T., Directional differentiability of the optimal value function in nonlinear programg problem, Math. Programg Study 21, , (1984). [12] Royset J.O., Polak E., Der Kiureghian A., Adaptive approximations and exact penalization for the solution of generalized semi-infinite -max problems, preprint, to appear. [13] Rückmann J.-J., Shapiro A., First order optimality conditions in Generalized Semiinfinite Programg, JOTA, Vol. 101, No. 2 (1999). [14] Stein O., Still G., Solving semi-infinite optimization problems with interior point techniques, SIAM J. Control Optim. 42, no. 3, , (2003). [15] Still G., Generalized semi-infinite programg: Numerical aspects, Optimization 49, No. 3, , (2001). [16] Still G., Discretization in semi-infinite programg: the rate of convergence, Math. Program. 91, no. 1, Ser. A, 53 69, (2001). 20

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE Journal of Applied Analysis Vol. 6, No. 1 (2000), pp. 139 148 A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE A. W. A. TAHA Received

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

First-Order Optimally Conditions in Generalized Semi-Infinite Programming 1

First-Order Optimally Conditions in Generalized Semi-Infinite Programming 1 JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 101, No. 3, pp. 677-691, JUNE 1999 First-Order Optimally Conditions in Generalized Semi-Infinite Programming 1 J. J. RUCKMANN 2 AND A. SHAPIRO 3 Communicated

More information

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization MATHEMATICS OF OPERATIONS RESEARCH Vol. 29, No. 3, August 2004, pp. 479 491 issn 0364-765X eissn 1526-5471 04 2903 0479 informs doi 10.1287/moor.1040.0103 2004 INFORMS Some Properties of the Augmented

More information

CHARACTERIZATIONS OF LIPSCHITZIAN STABILITY

CHARACTERIZATIONS OF LIPSCHITZIAN STABILITY CHARACTERIZATIONS OF LIPSCHITZIAN STABILITY IN NONLINEAR PROGRAMMING 1 A. L. DONTCHEV Mathematical Reviews, Ann Arbor, MI 48107 and R. T. ROCKAFELLAR Dept. of Math., Univ. of Washington, Seattle, WA 98195

More information

A FRITZ JOHN APPROACH TO FIRST ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS

A FRITZ JOHN APPROACH TO FIRST ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS A FRITZ JOHN APPROACH TO FIRST ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS Michael L. Flegel and Christian Kanzow University of Würzburg Institute of Applied Mathematics

More information

Lectures on Parametric Optimization: An Introduction

Lectures on Parametric Optimization: An Introduction -2 Lectures on Parametric Optimization: An Introduction Georg Still University of Twente, The Netherlands version: March 29, 2018 Contents Chapter 1. Introduction and notation 3 1.1. Introduction 3 1.2.

More information

SEMI-INFINITE PROGRAMMING

SEMI-INFINITE PROGRAMMING SEMI-INFINITE PROGRAMMING MARCO LÓPEZ, GEORG STILL ABSTRACT. A semi-infinite programming problem is an optimization problem in which finitely many variables appear in infinitely many constraints. This

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Preprint Stephan Dempe and Patrick Mehlitz Lipschitz continuity of the optimal value function in parametric optimization ISSN

Preprint Stephan Dempe and Patrick Mehlitz Lipschitz continuity of the optimal value function in parametric optimization ISSN Fakultät für Mathematik und Informatik Preprint 2013-04 Stephan Dempe and Patrick Mehlitz Lipschitz continuity of the optimal value function in parametric optimization ISSN 1433-9307 Stephan Dempe and

More information

Constrained Optimization Theory

Constrained Optimization Theory Constrained Optimization Theory Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August

More information

ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS

ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS MATHEMATICS OF OPERATIONS RESEARCH Vol. 28, No. 4, November 2003, pp. 677 692 Printed in U.S.A. ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS ALEXANDER SHAPIRO We discuss in this paper a class of nonsmooth

More information

Technische Universität Dresden Herausgeber: Der Rektor

Technische Universität Dresden Herausgeber: Der Rektor Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor The Gradient of the Squared Residual as Error Bound an Application to Karush-Kuhn-Tucker Systems Andreas Fischer MATH-NM-13-2002

More information

The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1

The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1 October 2003 The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1 by Asuman E. Ozdaglar and Dimitri P. Bertsekas 2 Abstract We consider optimization problems with equality,

More information

Semi-infinite programming, duality, discretization and optimality conditions

Semi-infinite programming, duality, discretization and optimality conditions Semi-infinite programming, duality, discretization and optimality conditions Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205,

More information

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS GERD WACHSMUTH Abstract. Kyparisis proved in 1985 that a strict version of the Mangasarian- Fromovitz constraint qualification (MFCQ) is equivalent to

More information

Constraint qualifications for nonlinear programming

Constraint qualifications for nonlinear programming Constraint qualifications for nonlinear programming Consider the standard nonlinear program min f (x) s.t. g i (x) 0 i = 1,..., m, h j (x) = 0 1 = 1,..., p, (NLP) with continuously differentiable functions

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Pacific Journal of Optimization (Vol. 2, No. 3, September 2006) ABSTRACT

Pacific Journal of Optimization (Vol. 2, No. 3, September 2006) ABSTRACT Pacific Journal of Optimization Vol., No. 3, September 006) PRIMAL ERROR BOUNDS BASED ON THE AUGMENTED LAGRANGIAN AND LAGRANGIAN RELAXATION ALGORITHMS A. F. Izmailov and M. V. Solodov ABSTRACT For a given

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

AN ABADIE-TYPE CONSTRAINT QUALIFICATION FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS. Michael L. Flegel and Christian Kanzow

AN ABADIE-TYPE CONSTRAINT QUALIFICATION FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS. Michael L. Flegel and Christian Kanzow AN ABADIE-TYPE CONSTRAINT QUALIFICATION FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS Michael L. Flegel and Christian Kanzow University of Würzburg Institute of Applied Mathematics and Statistics

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

Nonlinear Optimization

Nonlinear Optimization Nonlinear Optimization Etienne de Klerk (UvT)/Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos Course WI3031 (Week 4) February-March, A.D. 2005 Optimization Group 1 Outline

More information

Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms

Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms Carlos Humes Jr. a, Benar F. Svaiter b, Paulo J. S. Silva a, a Dept. of Computer Science, University of São Paulo, Brazil Email: {humes,rsilva}@ime.usp.br

More information

Robust Duality in Parametric Convex Optimization

Robust Duality in Parametric Convex Optimization Robust Duality in Parametric Convex Optimization R.I. Boţ V. Jeyakumar G.Y. Li Revised Version: June 20, 2012 Abstract Modelling of convex optimization in the face of data uncertainty often gives rise

More information

Second Order Optimality Conditions for Constrained Nonlinear Programming

Second Order Optimality Conditions for Constrained Nonlinear Programming Second Order Optimality Conditions for Constrained Nonlinear Programming Lecture 10, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Implications of the Constant Rank Constraint Qualification

Implications of the Constant Rank Constraint Qualification Mathematical Programming manuscript No. (will be inserted by the editor) Implications of the Constant Rank Constraint Qualification Shu Lu Received: date / Accepted: date Abstract This paper investigates

More information

SOME STABILITY RESULTS FOR THE SEMI-AFFINE VARIATIONAL INEQUALITY PROBLEM. 1. Introduction

SOME STABILITY RESULTS FOR THE SEMI-AFFINE VARIATIONAL INEQUALITY PROBLEM. 1. Introduction ACTA MATHEMATICA VIETNAMICA 271 Volume 29, Number 3, 2004, pp. 271-280 SOME STABILITY RESULTS FOR THE SEMI-AFFINE VARIATIONAL INEQUALITY PROBLEM NGUYEN NANG TAM Abstract. This paper establishes two theorems

More information

CONVERGENCE ANALYSIS OF AN INTERIOR-POINT METHOD FOR NONCONVEX NONLINEAR PROGRAMMING

CONVERGENCE ANALYSIS OF AN INTERIOR-POINT METHOD FOR NONCONVEX NONLINEAR PROGRAMMING CONVERGENCE ANALYSIS OF AN INTERIOR-POINT METHOD FOR NONCONVEX NONLINEAR PROGRAMMING HANDE Y. BENSON, ARUN SEN, AND DAVID F. SHANNO Abstract. In this paper, we present global and local convergence results

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Nonlinear Programming, Elastic Mode, SQP, MPEC, MPCC, complementarity

Nonlinear Programming, Elastic Mode, SQP, MPEC, MPCC, complementarity Preprint ANL/MCS-P864-1200 ON USING THE ELASTIC MODE IN NONLINEAR PROGRAMMING APPROACHES TO MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS MIHAI ANITESCU Abstract. We investigate the possibility

More information

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS A Dissertation Submitted For The Award of the Degree of Master of Philosophy in Mathematics Neelam Patel School of Mathematics

More information

On smoothness properties of optimal value functions at the boundary of their domain under complete convexity

On smoothness properties of optimal value functions at the boundary of their domain under complete convexity On smoothness properties of optimal value functions at the boundary of their domain under complete convexity Oliver Stein # Nathan Sudermann-Merx June 14, 2013 Abstract This article studies continuity

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Roger Behling a, Clovis Gonzaga b and Gabriel Haeser c March 21, 2013 a Department

More information

First-order optimality conditions for mathematical programs with second-order cone complementarity constraints

First-order optimality conditions for mathematical programs with second-order cone complementarity constraints First-order optimality conditions for mathematical programs with second-order cone complementarity constraints Jane J. Ye Jinchuan Zhou Abstract In this paper we consider a mathematical program with second-order

More information

WEAK LOWER SEMI-CONTINUITY OF THE OPTIMAL VALUE FUNCTION AND APPLICATIONS TO WORST-CASE ROBUST OPTIMAL CONTROL PROBLEMS

WEAK LOWER SEMI-CONTINUITY OF THE OPTIMAL VALUE FUNCTION AND APPLICATIONS TO WORST-CASE ROBUST OPTIMAL CONTROL PROBLEMS WEAK LOWER SEMI-CONTINUITY OF THE OPTIMAL VALUE FUNCTION AND APPLICATIONS TO WORST-CASE ROBUST OPTIMAL CONTROL PROBLEMS ROLAND HERZOG AND FRANK SCHMIDT Abstract. Sufficient conditions ensuring weak lower

More information

Aubin Property and Uniqueness of Solutions in Cone Constrained Optimization

Aubin Property and Uniqueness of Solutions in Cone Constrained Optimization Preprint manuscript No. (will be inserted by the editor) Aubin Property and Uniqueness of Solutions in Cone Constrained Optimization Diethard Klatte Bernd Kummer submitted 6 January 2012, revised 11 June

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Convex Optimization Lecture 6: KKT Conditions, and applications

Convex Optimization Lecture 6: KKT Conditions, and applications Convex Optimization Lecture 6: KKT Conditions, and applications Dr. Michel Baes, IFOR / ETH Zürich Quick recall of last week s lecture Various aspects of convexity: The set of minimizers is convex. Convex

More information

Nonlinear Programming and the Kuhn-Tucker Conditions

Nonlinear Programming and the Kuhn-Tucker Conditions Nonlinear Programming and the Kuhn-Tucker Conditions The Kuhn-Tucker (KT) conditions are first-order conditions for constrained optimization problems, a generalization of the first-order conditions we

More information

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE HANDE Y. BENSON, ARUN SEN, AND DAVID F. SHANNO Abstract. In this paper, we present global

More information

ON REGULARITY CONDITIONS FOR COMPLEMENTARITY PROBLEMS

ON REGULARITY CONDITIONS FOR COMPLEMENTARITY PROBLEMS ON REGULARITY CONDITIONS FOR COMPLEMENTARITY PROBLEMS A. F. Izmailov and A. S. Kurennoy December 011 ABSTRACT In the context of mixed complementarity problems various concepts of solution regularity are

More information

Date: July 5, Contents

Date: July 5, Contents 2 Lagrange Multipliers Date: July 5, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 14 2.3. Informative Lagrange Multipliers...........

More information

Some new facts about sequential quadratic programming methods employing second derivatives

Some new facts about sequential quadratic programming methods employing second derivatives To appear in Optimization Methods and Software Vol. 00, No. 00, Month 20XX, 1 24 Some new facts about sequential quadratic programming methods employing second derivatives A.F. Izmailov a and M.V. Solodov

More information

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 11 On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method ROMAN A. POLYAK Department of SEOR and Mathematical

More information

MODIFYING SQP FOR DEGENERATE PROBLEMS

MODIFYING SQP FOR DEGENERATE PROBLEMS PREPRINT ANL/MCS-P699-1097, OCTOBER, 1997, (REVISED JUNE, 2000; MARCH, 2002), MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE NATIONAL LABORATORY MODIFYING SQP FOR DEGENERATE PROBLEMS STEPHEN J. WRIGHT

More information

A convergence result for an Outer Approximation Scheme

A convergence result for an Outer Approximation Scheme A convergence result for an Outer Approximation Scheme R. S. Burachik Engenharia de Sistemas e Computação, COPPE-UFRJ, CP 68511, Rio de Janeiro, RJ, CEP 21941-972, Brazil regi@cos.ufrj.br J. O. Lopes Departamento

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

On constraint qualifications with generalized convexity and optimality conditions

On constraint qualifications with generalized convexity and optimality conditions On constraint qualifications with generalized convexity and optimality conditions Manh-Hung Nguyen, Do Van Luu To cite this version: Manh-Hung Nguyen, Do Van Luu. On constraint qualifications with generalized

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

A Geometric Framework for Nonconvex Optimization Duality using Augmented Lagrangian Functions

A Geometric Framework for Nonconvex Optimization Duality using Augmented Lagrangian Functions A Geometric Framework for Nonconvex Optimization Duality using Augmented Lagrangian Functions Angelia Nedić and Asuman Ozdaglar April 15, 2006 Abstract We provide a unifying geometric framework for the

More information

Jørgen Tind, Department of Statistics and Operations Research, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O, Denmark.

Jørgen Tind, Department of Statistics and Operations Research, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O, Denmark. DUALITY THEORY Jørgen Tind, Department of Statistics and Operations Research, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O, Denmark. Keywords: Duality, Saddle point, Complementary

More information

Inequality Constraints

Inequality Constraints Chapter 2 Inequality Constraints 2.1 Optimality Conditions Early in multivariate calculus we learn the significance of differentiability in finding minimizers. In this section we begin our study of the

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets

Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets A. L. Dontchev Mathematical Reviews, Ann Arbor, MI 48107 and R. T. Rockafellar Dept. of Math., Univ. of Washington,

More information

On Penalty and Gap Function Methods for Bilevel Equilibrium Problems

On Penalty and Gap Function Methods for Bilevel Equilibrium Problems On Penalty and Gap Function Methods for Bilevel Equilibrium Problems Bui Van Dinh 1 and Le Dung Muu 2 1 Faculty of Information Technology, Le Quy Don Technical University, Hanoi, Vietnam 2 Institute of

More information

A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems

A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems Math. Program., Ser. A (2013) 142:591 604 DOI 10.1007/s10107-012-0586-z SHORT COMMUNICATION A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

A lifting method for generalized semi-infinite programs based on lower level Wolfe duality

A lifting method for generalized semi-infinite programs based on lower level Wolfe duality A lifting method for generalized semi-infinite programs based on lower level Wolfe duality M. Diehl B. Houska O. Stein # P. Steuermann # December 16, 2011 Abstract This paper introduces novel numerical

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

The exact absolute value penalty function method for identifying strict global minima of order m in nonconvex nonsmooth programming

The exact absolute value penalty function method for identifying strict global minima of order m in nonconvex nonsmooth programming Optim Lett (2016 10:1561 1576 DOI 10.1007/s11590-015-0967-3 ORIGINAL PAPER The exact absolute value penalty function method for identifying strict global minima of order m in nonconvex nonsmooth programming

More information

How to Solve a Semi-infinite Optimization Problem

How to Solve a Semi-infinite Optimization Problem How to Solve a Semi-infinite Optimization Problem Oliver Stein March 27, 2012 Abstract After an introduction to main ideas of semi-infinite optimization, this article surveys recent developments in theory

More information

Lecture 13: Constrained optimization

Lecture 13: Constrained optimization 2010-12-03 Basic ideas A nonlinearly constrained problem must somehow be converted relaxed into a problem which we can solve (a linear/quadratic or unconstrained problem) We solve a sequence of such problems

More information

8 Barrier Methods for Constrained Optimization

8 Barrier Methods for Constrained Optimization IOE 519: NL, Winter 2012 c Marina A. Epelman 55 8 Barrier Methods for Constrained Optimization In this subsection, we will restrict our attention to instances of constrained problem () that have inequality

More information

Sharpening the Karush-John optimality conditions

Sharpening the Karush-John optimality conditions Sharpening the Karush-John optimality conditions Arnold Neumaier and Hermann Schichl Institut für Mathematik, Universität Wien Strudlhofgasse 4, A-1090 Wien, Austria email: Arnold.Neumaier@univie.ac.at,

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

appeared in: S. Dempe, V. Kalashnikov (eds): Optimization with Multivalued Mappings, Springer, 2006,

appeared in: S. Dempe, V. Kalashnikov (eds): Optimization with Multivalued Mappings, Springer, 2006, appeared in: S. Dempe, V. Kalashnikov (eds): Optimization with Multivalued Mappings, Springer, 2006, 209-228. Chapter 1 A SEMI-INFINITE APPROACH TO DESIGN CENTERING Oliver Stein RWTH Aachen University

More information

1. Introduction. We consider mathematical programs with equilibrium constraints in the form of complementarity constraints:

1. Introduction. We consider mathematical programs with equilibrium constraints in the form of complementarity constraints: SOME PROPERTIES OF REGULARIZATION AND PENALIZATION SCHEMES FOR MPECS DANIEL RALPH AND STEPHEN J. WRIGHT Abstract. Some properties of regularized and penalized nonlinear programming formulations of mathematical

More information

A smoothing augmented Lagrangian method for solving simple bilevel programs

A smoothing augmented Lagrangian method for solving simple bilevel programs A smoothing augmented Lagrangian method for solving simple bilevel programs Mengwei Xu and Jane J. Ye Dedicated to Masao Fukushima in honor of his 65th birthday Abstract. In this paper, we design a numerical

More information

ON GENERALIZED-CONVEX CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION

ON GENERALIZED-CONVEX CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION ON GENERALIZED-CONVEX CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION CHRISTIAN GÜNTHER AND CHRISTIANE TAMMER Abstract. In this paper, we consider multi-objective optimization problems involving not necessarily

More information

Finite Convergence for Feasible Solution Sequence of Variational Inequality Problems

Finite Convergence for Feasible Solution Sequence of Variational Inequality Problems Mathematical and Computational Applications Article Finite Convergence for Feasible Solution Sequence of Variational Inequality Problems Wenling Zhao *, Ruyu Wang and Hongxiang Zhang School of Science,

More information

REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS

REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS fredi tröltzsch 1 Abstract. A class of quadratic optimization problems in Hilbert spaces is considered,

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control RTyrrell Rockafellar and Peter R Wolenski Abstract This paper describes some recent results in Hamilton- Jacobi theory

More information

CONSTRAINED NONLINEAR PROGRAMMING

CONSTRAINED NONLINEAR PROGRAMMING 149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 12: Nonlinear optimization, continued Prof. John Gunnar Carlsson October 20, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 20,

More information

Asymptotic Convergence of the Steepest Descent Method for the Exponential Penalty in Linear Programming

Asymptotic Convergence of the Steepest Descent Method for the Exponential Penalty in Linear Programming Journal of Convex Analysis Volume 2 (1995), No.1/2, 145 152 Asymptotic Convergence of the Steepest Descent Method for the Exponential Penalty in Linear Programming R. Cominetti 1 Universidad de Chile,

More information

Identifying Active Constraints via Partial Smoothness and Prox-Regularity

Identifying Active Constraints via Partial Smoothness and Prox-Regularity Journal of Convex Analysis Volume 11 (2004), No. 2, 251 266 Identifying Active Constraints via Partial Smoothness and Prox-Regularity W. L. Hare Department of Mathematics, Simon Fraser University, Burnaby,

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Convex Optimization and Support Vector Machine

Convex Optimization and Support Vector Machine Convex Optimization and Support Vector Machine Problem 0. Consider a two-class classification problem. The training data is L n = {(x 1, t 1 ),..., (x n, t n )}, where each t i { 1, 1} and x i R p. We

More information

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology March 2016 1 / 27 Constrained

More information

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS Xiaofei Fan-Orzechowski Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Lecture 5. Theorems of Alternatives and Self-Dual Embedding

Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 1 Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 2 A system of linear equations may not have a solution. It is well known that either Ax = c has a solution, or A T y = 0, c

More information