Kalman Filter. Lawrence J. Christiano

Size: px
Start display at page:

Download "Kalman Filter. Lawrence J. Christiano"

Transcription

1 Kalman Filter Lawrence J. Christiano

2 Background The Kalman filter is a powerful tool, which can be used in a variety of contexts. can be used for filtering and smoothing. To help make it concrete, we will derive the filter here. basic tool for forecasting, and for computing forecast confidence intervals.

3 State Space/Observer Form Canonical representation of data: where x t = Fx t 1 + u t, Eu t u 0 t = Q, Y data t = a + Hx t + w t, Ew t w 0 t = R, w t, u s are iid over time and uncorrelated for all s, t. u t s uncorrelated with past x t s. w t s uncorrelated with x t s at all leads and lags. Eigenvalues of F all less than 1 in absolute value. Let Y t denote demeaned data, Y t Yt data a, Will derive the Kalman filter, whichsolvestheprojection problem: Y t+j t P! " i Y t+j Y t, xt+j t P hx t+j Y t, j > 0 where Y t [Y 1,..., Y t ]. We simplify by setting w t = 0 for all t.

4 Example of Projection Let the log wage rate, w, and log price level, p, be w = z + u p = z + v, where u and v are uncorrelated with each other and with z. All have zero mean. Suppose you observe w, but what you re really interested in is w p. obviously a move in w that reflects z is not interesting to you. You form the projection, P [w p w] aw, where a solves min a E [w p aw] 2

5 Orthogonality Property of Projections: Projection solves a particular optimization problem: First order condition: projection error min a E [w p aw] 2 z } { E[w p aw]w = 0! a = E (w p) w Ew 2 = E (u v)(z + u) E (z + u) 2 = s 2 u s 2 u + s 2 z = s2 u/s 2 z s 2 u/s 2 z + 1 Orthogonality of projections: projection error uncorrelated with information, w, used in computing the projection.

6 The Filter Will compute projections: x t+1 t, Y t+1 t, recursively: * * * )x 1 0, Y 1 0, )x 2 1, Y 2 1,..., )x T+1 T, Y T+1 T Will simultaneously compute measures of uncertainty: i 0 P t+1 t = E hx t+1 x t+1 t ihx t+1 x t+1 t

7 Forecasts of the Data Will focus primarily on forecasting x t because forecasts of Y t easy to read from forecast of x t 2 3 P! uncorrelated with everything in Y " t z} { Y t+j Y t = P 4Hx t+j + w t+j Y t 5 i = HP hx t+j Y t + P! " w t+j Y t = Hxt+j t. Also, = E = E i 0 E hy t+j Y t+j t ihy t+j Y t+j t i 0 hhx t+j + w t+j Hx t+j t ihhx t+j + w t+j Hx t+j t h * * i 0 H )x t+j x t+j t + w t+j ih)x t+j x t+j t H 0 + w t+j = HP t+j t H 0 + R.

8 First Date of the Filter At t = 0 have Y 0 = f, the empty set. So, x 1 0 = P [x 1 Y 0 ] = Ex 1 = 0, the unconditional expectation. Also, ih i 0 P 1 0 = E hx 1 x 1 0 x 1 x 1 0 = V, say, where V denotes the variance of x 1. Compute V by solving the Ricatti equation: V = E [Fx t 1 + u t ][Fx t 1 + u t ] 0 = FVF 0 + Q Most robust way to find V is V = V in: Set V 0 to be any pos. def. matrix, compute V j+1 = FV j F 0 + Q, j = 0, 1, 2,...

9 An Intermediate Date with the Filter Suppose we have x t t 1, P t t 1 in hand. We now receive a new observation, Y t. Want to compute x t+1 t, P t+1 t. We do this in two steps: First, compute x t t, P t t. Second, compute x t+1 t, P t+1 t.

10 First Step for the Filter Basic recursive property of projections: 2 x t t = x t t 1 + P 6 4 forecast error in x t t 1 new information in Y t not in Y t 1 z } { x t x t t 1 z } { Y t Hx t t 1 {z } Y t t 1 This formula is obviously correct in the special case where the information in Y t allows you to compute the forecast error, x t x t t 1, exactly. Has a learning interpretation you update your old guess, x t t 1, about x t using what is new about the information in Y t, i.e., using Y t Hx t t

11 First Step for the Filter Write i x t t = x t t 1 + P hx t x t t 1 Y t Hx t t 1 h i = x t t 1 + a t Y t Hx t t 1, where the matrix, a t, solves *i 2 min E hx a t x t t 1 a t )Y t Hx t t 1 t First order condition associated with optimality: *i h i 0 E hx t x t t 1 a t )Y t Hx t t 1 Y t Hx t t 1 = 0, which again is the orthogonality of projections.

12 First Step for the Filter First order condition implies: i 0 E hx t x t t 1 ihy t Hx t t 1 * 0 = a t E )Y t Hx t t 1 *)Y t Hx t t 1 or, P t t 1 z } ih i { 0H 0 E hx t x t t 1 x t x t t 1 P t t 1 z } *) * { 0H = a t HE )x t x t t 1 x t x 0 t t 1, so that a t = P t t 1 H 0 ) HP t t 1 H 0* 1.

13 First Step for the Filter We conclude x t t = x t t 1 + P t t 1 H 0 ) HP t t 1 H 0* 1 h Y t Hx t t 1 i. With x t t in hand, we move on to P t t : P t t = i 0 E hx t x t t ihx t x t t 2 orthogonal to (Y t Hx t t 1 ) z } ) *{ = E 6x 4 t x t t 1 a t Y t Hx t t *i 0 hx t x t t 1 a t )Y t Hx t t 1 *i h i 0 = E hx t x t t 1 a t )Y t Hx t t 1 x t x t t 1, by orthogonality. 3

14 First Step for the Filter From the previous slide, *i i 0 P t t = E hx t x t t 1 a t )Y t Hx t t 1 hx t x t t 1 = P t t 1 P t t 1 H 0 ) HP t t 1 H 0* 1 HPt t 1 completing the derivation of x t t and P t t. Now we proceed to the second step, to compute x t+1 t and P t+1 t.

15 Second Step for the Filter By linearity of projections: It follows that: =0 z } { x t+1 t = Fx t t + u t+1 t. x t+1 t = forecast, x t+1 t 1, based on t 1 info, Y t 1 z } { Fx t t 1 Kalman gain matrix, K t new information z ) } { + FP t t 1 H 0 HP t t 1 H 0* z } { 1 i hy t Hx t t 1. Next, P t+1 t...

16 Finally, Second Step for the Filter P t+1 t = i 0 E hx t+1 x t+1 t ihx t+1 x t+1 t = h * ih * i 0 E F )x t x t t + u t+1 F )x t x t t + u t+1 = FP t t F 0 + Q = F 1P ) t t 1 P t t 1 H 0 HP t t 1 H 0* 2 1 HPt t 1 F 0 + Q. Done! We now have * * )x 1 0, P 1 0,..., )x T+1 T, P T+1 T and also * * )x 1 1, P 1 1,..., )x T T, P T T

17 Forecasting We have the one-step-ahead forecast and its uncertainty: Then, x T+1 T, P T+1 T =Fx T+1 T =0 z } { z } { x T+2 T = P [x T+2 Y t ] = FP [x T+1 Y T ] + P [u T+2 Y T ] and so on: x T+j T = F j 1 x T+1 T.

18 Forecasting Want measures of forecast uncertainty. For T + 2: P T+2 T = i 0 E hx T+2 x T+2 T ihx T+2 x T+2 T = h * ih * E F )x T+1 x T+1 T + u T+2 F )x T+1 x T+1 T = FP T+1 T F 0 + Q Similarly, for j > 1 i 0 P T+j T = E hx T+j x T+j T ihx T+j x T+j T h * i = E F )x T+j x T+j T + u T+j h * i 0 F )x T+j x T+j T + u T+j = FP T+j 1 T F 0 + Q

19 Forecasting Note, as j!, P T+j T! V x T+j T! 0 These features follow from the fact that the eigenvalues of F are less than unity in absolute value. Message: for observations far in the future, available data not helpful and might as well just guess the uconditional mean, with forecast error variance equal to unconditionarly

20 Smoothing We have reviewed filtering, which is what is used in forecasting (and, calculation of likelihood). Also useful to do smoothing: P [x t Y T ], t = 1, 2,..., T. Smoothing gives the best guess about the value taken on by a variable that is in the model (like the output gap, or the natural rate of interest), but that is not contained among the observed data. Derivations of the Kalman smoother first derive the Kalman filter, as we did, and then derive the smoother as a second step.

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Time-Varying Parameters

Time-Varying Parameters Kalman Filter and state-space models: time-varying parameter models; models with unobservable variables; basic tool: Kalman filter; implementation is task-specific. y t = x t β t + e t (1) β t = µ + Fβ

More information

Open Economy Macroeconomics: Theory, methods and applications

Open Economy Macroeconomics: Theory, methods and applications Open Economy Macroeconomics: Theory, methods and applications Lecture 4: The state space representation and the Kalman Filter Hernán D. Seoane UC3M January, 2016 Today s lecture State space representation

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator Kalman Filtering Namrata Vaswani March 29, 2018 Notes are based on Vincent Poor s book. 1 Kalman Filter as a causal MMSE estimator Consider the following state space model (signal and observation model).

More information

Examination paper for TMA4285 Time Series Models

Examination paper for TMA4285 Time Series Models Department of Mathematical Sciences Examination paper for TMA4285 Series Models Academic contact during examination: Professor Jarle Tufto Phone: 99 70 55 19 Examination date: December 8, 2016 Examination

More information

ARIMA Modelling and Forecasting

ARIMA Modelling and Forecasting ARIMA Modelling and Forecasting Economic time series often appear nonstationary, because of trends, seasonal patterns, cycles, etc. However, the differences may appear stationary. Δx t x t x t 1 (first

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t.

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t. ECO 513 Fall 2008 C.Sims KALMAN FILTER Model in the form 1. THE KALMAN FILTER Plant equation : s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. Var(ε t ) = Ω, Var(ν t ) = Ξ. ε t ν t and (ε t,

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Univariate Nonstationary Time Series 1

Univariate Nonstationary Time Series 1 Univariate Nonstationary Time Series 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Introduction

More information

Conditional Forecasts

Conditional Forecasts Conditional Forecasts Lawrence J. Christiano September 8, 17 Outline Suppose you have two sets of variables: y t and x t. Would like to forecast y T+j, j = 1,,..., f, conditional on specified future values

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Preliminaries. Probabilities. Maximum Likelihood. Bayesian

More information

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1)

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1) ECO 513 Fall 2005 C.Sims MID-TERM EXAM ANSWERS (1) Suppose a stock price p t and the stock dividend δ t satisfy these equations: p t + δ t = Rp t 1 + η t (1.1) δ t = γδ t 1 + φp t 1 + ε t, (1.2) where

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Measurement Errors and the Kalman Filter: A Unified Exposition

Measurement Errors and the Kalman Filter: A Unified Exposition Luiss Lab of European Economics LLEE Working Document no. 45 Measurement Errors and the Kalman Filter: A Unified Exposition Salvatore Nisticò February 2007 Outputs from LLEE research in progress, as well

More information

Filtering and Likelihood Inference

Filtering and Likelihood Inference Filtering and Likelihood Inference Jesús Fernández-Villaverde University of Pennsylvania July 10, 2011 Jesús Fernández-Villaverde (PENN) Filtering and Likelihood July 10, 2011 1 / 79 Motivation Introduction

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

Expectation propagation for signal detection in flat-fading channels

Expectation propagation for signal detection in flat-fading channels Expectation propagation for signal detection in flat-fading channels Yuan Qi MIT Media Lab Cambridge, MA, 02139 USA yuanqi@media.mit.edu Thomas Minka CMU Statistics Department Pittsburgh, PA 15213 USA

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Conditions for successful data assimilation

Conditions for successful data assimilation Conditions for successful data assimilation Matthias Morzfeld *,**, Alexandre J. Chorin *,**, Peter Bickel # * Department of Mathematics University of California, Berkeley ** Lawrence Berkeley National

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

... Econometric Methods for the Analysis of Dynamic General Equilibrium Models

... Econometric Methods for the Analysis of Dynamic General Equilibrium Models ... Econometric Methods for the Analysis of Dynamic General Equilibrium Models 1 Overview Multiple Equation Methods State space-observer form Three Examples of Versatility of state space-observer form:

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Quantitative Trendspotting. Rex Yuxing Du and Wagner A. Kamakura. Web Appendix A Inferring and Projecting the Latent Dynamic Factors

Quantitative Trendspotting. Rex Yuxing Du and Wagner A. Kamakura. Web Appendix A Inferring and Projecting the Latent Dynamic Factors 1 Quantitative Trendspotting Rex Yuxing Du and Wagner A. Kamakura Web Appendix A Inferring and Projecting the Latent Dynamic Factors The procedure for inferring the latent state variables (i.e., [ ] ),

More information

Why do we care? Examples. Bayes Rule. What room am I in? Handling uncertainty over time: predicting, estimating, recognizing, learning

Why do we care? Examples. Bayes Rule. What room am I in? Handling uncertainty over time: predicting, estimating, recognizing, learning Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

The Kalman Filter. An Algorithm for Dealing with Uncertainty. Steven Janke. May Steven Janke (Seminar) The Kalman Filter May / 29

The Kalman Filter. An Algorithm for Dealing with Uncertainty. Steven Janke. May Steven Janke (Seminar) The Kalman Filter May / 29 The Kalman Filter An Algorithm for Dealing with Uncertainty Steven Janke May 2011 Steven Janke (Seminar) The Kalman Filter May 2011 1 / 29 Autonomous Robots Steven Janke (Seminar) The Kalman Filter May

More information

ARMA Estimation Recipes

ARMA Estimation Recipes Econ. 1B D. McFadden, Fall 000 1. Preliminaries ARMA Estimation Recipes hese notes summarize procedures for estimating the lag coefficients in the stationary ARMA(p,q) model (1) y t = µ +a 1 (y t-1 -µ)

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

A. Recursively orthogonalized. VARs

A. Recursively orthogonalized. VARs Orthogonalized VARs A. Recursively orthogonalized VAR B. Variance decomposition C. Historical decomposition D. Structural interpretation E. Generalized IRFs 1 A. Recursively orthogonalized Nonorthogonal

More information

Volume 30, Issue 3. A note on Kalman filter approach to solution of rational expectations models

Volume 30, Issue 3. A note on Kalman filter approach to solution of rational expectations models Volume 30, Issue 3 A note on Kalman filter approach to solution of rational expectations models Marco Maria Sorge BGSE, University of Bonn Abstract In this note, a class of nonlinear dynamic models under

More information

Identifying the Monetary Policy Shock Christiano et al. (1999)

Identifying the Monetary Policy Shock Christiano et al. (1999) Identifying the Monetary Policy Shock Christiano et al. (1999) The question we are asking is: What are the consequences of a monetary policy shock a shock which is purely related to monetary conditions

More information

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Probabilistic Map-based Localization (Kalman Filter) Chapter 5 (textbook) Based on textbook

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Lawrence J Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Problem: the time series dimension of data is relatively

More information

Università di Pavia. Forecasting. Eduardo Rossi

Università di Pavia. Forecasting. Eduardo Rossi Università di Pavia Forecasting Eduardo Rossi Mean Squared Error Forecast of Y t+1 based on a set of variables observed at date t, X t : Yt+1 t. The loss function MSE(Y t+1 t ) = E[Y t+1 Y t+1 t ]2 The

More information

Forecasting with ARMA

Forecasting with ARMA Forecasting with ARMA Eduardo Rossi University of Pavia October 2013 Rossi Forecasting Financial Econometrics - 2013 1 / 32 Mean Squared Error Linear Projection Forecast of Y t+1 based on a set of variables

More information

Lecture Note 12: Kalman Filter

Lecture Note 12: Kalman Filter ECE 645: Estimation Theory Spring 2015 Instructor: Prof. Stanley H. Chan Lecture Note 12: Kalman Filter LaTeX prepared by Stylianos Chatzidakis) May 4, 2015 This lecture note is based on ECE 645Spring

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations Ch 15 Forecasting Having considered in Chapter 14 some of the properties of ARMA models, we now show how they may be used to forecast future values of an observed time series For the present we proceed

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Exercises * on Principal Component Analysis

Exercises * on Principal Component Analysis Exercises * on Principal Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 207 Contents Intuition 3. Problem statement..........................................

More information

DART Tutorial Part II: How should observa'ons impact an unobserved state variable? Mul'variate assimila'on.

DART Tutorial Part II: How should observa'ons impact an unobserved state variable? Mul'variate assimila'on. DART Tutorial Part II: How should observa'ons impact an unobserved state variable? Mul'variate assimila'on. UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on.

More information

2.5 Forecasting and Impulse Response Functions

2.5 Forecasting and Impulse Response Functions 2.5 Forecasting and Impulse Response Functions Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables

More information

State Observers and the Kalman filter

State Observers and the Kalman filter Modelling and Control of Dynamic Systems State Observers and the Kalman filter Prof. Oreste S. Bursi University of Trento Page 1 Feedback System State variable feedback system: Control feedback law:u =

More information

Trend-Cycle Decompositions

Trend-Cycle Decompositions Trend-Cycle Decompositions Eric Zivot April 22, 2005 1 Introduction A convenient way of representing an economic time series y t is through the so-called trend-cycle decomposition y t = TD t + Z t (1)

More information

ξ t = Fξ t 1 + v t. then λ is less than unity in absolute value. In the above expression, A denotes the determinant of the matrix, A. 1 y t 1.

ξ t = Fξ t 1 + v t. then λ is less than unity in absolute value. In the above expression, A denotes the determinant of the matrix, A. 1 y t 1. Christiano FINC 520, Spring 2009 Homework 3, due Thursday, April 23. 1. In class, we discussed the p th order VAR: y t = c + φ 1 y t 1 + φ 2 y t 2 +... + φ p y t p + ε t, where ε t is a white noise with

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

Economics Department LSE. Econometrics: Timeseries EXERCISE 1: SERIAL CORRELATION (ANALYTICAL)

Economics Department LSE. Econometrics: Timeseries EXERCISE 1: SERIAL CORRELATION (ANALYTICAL) Economics Department LSE EC402 Lent 2015 Danny Quah TW1.10.01A x7535 : Timeseries EXERCISE 1: SERIAL CORRELATION (ANALYTICAL) 1. Suppose ɛ is w.n. (0, σ 2 ), ρ < 1, and W t = ρw t 1 + ɛ t, for t = 1, 2,....

More information

AN ADAPTIVE ALGORITHM TO EVALUATE CLOCK PERFORMANCE IN REAL TIME*

AN ADAPTIVE ALGORITHM TO EVALUATE CLOCK PERFORMANCE IN REAL TIME* AN ADAPTIVE ALGORITHM TO EVALUATE CLOCK PERFORMANCE IN REAL TIME* Dr. James A. Barnes Austron Boulder, Co. Abstract Kalman filters and ARIMA models provide optimum control and evaluation techniques (in

More information

Crib Sheet : Linear Kalman Smoothing

Crib Sheet : Linear Kalman Smoothing Crib Sheet : Linear Kalman Smoothing Gabriel A. Terejanu Department of Computer Science and Engineering University at Buffalo, Buffalo, NY 14260 terejanu@buffalo.edu 1 Introduction Smoothing can be separated

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Empirical and Policy Performance of a Forward-Looking Monetary Model

Empirical and Policy Performance of a Forward-Looking Monetary Model Empirical and Policy Performance of a Forward-Looking Monetary Model Alexei Onatski and Noah Williams FRB San Francisco Conference on Interest Rates and Monetary Policy March 19-20, 2004 Comments by Jeff

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Parameter estimation Conditional risk

Parameter estimation Conditional risk Parameter estimation Conditional risk Formalizing the problem Specify random variables we care about e.g., Commute Time e.g., Heights of buildings in a city We might then pick a particular distribution

More information

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 2004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

Extended Kalman Filter Tutorial

Extended Kalman Filter Tutorial Extended Kalman Filter Tutorial Gabriel A. Terejanu Department of Computer Science and Engineering University at Buffalo, Buffalo, NY 14260 terejanu@buffalo.edu 1 Dynamic process Consider the following

More information

Perceived productivity and the natural rate of interest

Perceived productivity and the natural rate of interest Perceived productivity and the natural rate of interest Gianni Amisano and Oreste Tristani European Central Bank IRF 28 Frankfurt, 26 June Amisano-Tristani (European Central Bank) Productivity and the

More information

Economics 472. Lecture 10. where we will refer to y t as a m-vector of endogenous variables, x t as a q-vector of exogenous variables,

Economics 472. Lecture 10. where we will refer to y t as a m-vector of endogenous variables, x t as a q-vector of exogenous variables, University of Illinois Fall 998 Department of Economics Roger Koenker Economics 472 Lecture Introduction to Dynamic Simultaneous Equation Models In this lecture we will introduce some simple dynamic simultaneous

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen, Ocean Dynamics, Vol 5, No p. The Ensemble

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Y t = log (employment t )

Y t = log (employment t ) Advanced Macroeconomics, Christiano Econ 416 Homework #7 Due: November 21 1. Consider the linearized equilibrium conditions of the New Keynesian model, on the slide, The Equilibrium Conditions in the handout,

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

Announcements Kevin Jamieson

Announcements Kevin Jamieson Announcements Project proposal due next week: Tuesday 10/24 Still looking for people to work on deep learning Phytolith project, join #phytolith slack channel 2017 Kevin Jamieson 1 Gradient Descent Machine

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

1 Outline. 1. Motivation. 2. SUR model. 3. Simultaneous equations. 4. Estimation

1 Outline. 1. Motivation. 2. SUR model. 3. Simultaneous equations. 4. Estimation 1 Outline. 1. Motivation 2. SUR model 3. Simultaneous equations 4. Estimation 2 Motivation. In this chapter, we will study simultaneous systems of econometric equations. Systems of simultaneous equations

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

EM-algorithm for Training of State-space Models with Application to Time Series Prediction

EM-algorithm for Training of State-space Models with Application to Time Series Prediction EM-algorithm for Training of State-space Models with Application to Time Series Prediction Elia Liitiäinen, Nima Reyhani and Amaury Lendasse Helsinki University of Technology - Neural Networks Research

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

Applied Econometrics. Professor Bernard Fingleton

Applied Econometrics. Professor Bernard Fingleton Applied Econometrics Professor Bernard Fingleton 1 Causation & Prediction 2 Causation One of the main difficulties in the social sciences is estimating whether a variable has a true causal effect Data

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

From Bayes to Extended Kalman Filter

From Bayes to Extended Kalman Filter From Bayes to Extended Kalman Filter Michal Reinštein Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1 Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters Lecturer: Drew Bagnell Scribe:Greydon Foil 1 1 Gauss Markov Model Consider X 1, X 2,...X t, X t+1 to be

More information

Research Division Federal Reserve Bank of St. Louis Working Paper Series

Research Division Federal Reserve Bank of St. Louis Working Paper Series Research Division Federal Reserve Bank of St Louis Working Paper Series Kalman Filtering with Truncated Normal State Variables for Bayesian Estimation of Macroeconomic Models Michael Dueker Working Paper

More information

Dynamic Regression Models (Lect 15)

Dynamic Regression Models (Lect 15) Dynamic Regression Models (Lect 15) Ragnar Nymoen University of Oslo 21 March 2013 1 / 17 HGL: Ch 9; BN: Kap 10 The HGL Ch 9 is a long chapter, and the testing for autocorrelation part we have already

More information

5 Transfer function modelling

5 Transfer function modelling MSc Further Time Series Analysis 5 Transfer function modelling 5.1 The model Consider the construction of a model for a time series (Y t ) whose values are influenced by the earlier values of a series

More information

Monitoring and data filtering III. The Kalman Filter and its relation with the other methods

Monitoring and data filtering III. The Kalman Filter and its relation with the other methods Monitoring and data filtering III. The Kalman Filter and its relation with the other methods Advanced Herd Management Cécile Cornou, IPH Dias 1 Gain (g) Before this part of the course Compare key figures

More information

Assessing Structural VAR s

Assessing Structural VAR s ... Assessing Structural VAR s by Lawrence J. Christiano, Martin Eichenbaum and Robert Vigfusson Yale, October 2005 1 Background Structural Vector Autoregressions Can be Used to Address the Following Type

More information

Estimation and Prediction Scenarios

Estimation and Prediction Scenarios Recursive BLUE BLUP and the Kalman filter: Estimation and Prediction Scenarios Amir Khodabandeh GNSS Research Centre, Curtin University of Technology, Perth, Australia IUGG 2011, Recursive 28 June BLUE-BLUP

More information

Lecture 3: Functions of Symmetric Matrices

Lecture 3: Functions of Symmetric Matrices Lecture 3: Functions of Symmetric Matrices Yilin Mo July 2, 2015 1 Recap 1 Bayes Estimator: (a Initialization: (b Correction: f(x 0 Y 1 = f(x 0 f(x k Y k = αf(y k x k f(x k Y k 1, where ( 1 α = f(y k x

More information

A new unscented Kalman filter with higher order moment-matching

A new unscented Kalman filter with higher order moment-matching A new unscented Kalman filter with higher order moment-matching KSENIA PONOMAREVA, PARESH DATE AND ZIDONG WANG Department of Mathematical Sciences, Brunel University, Uxbridge, UB8 3PH, UK. Abstract This

More information

Particle Filtering for Data-Driven Simulation and Optimization

Particle Filtering for Data-Driven Simulation and Optimization Particle Filtering for Data-Driven Simulation and Optimization John R. Birge The University of Chicago Booth School of Business Includes joint work with Nicholas Polson. JRBirge INFORMS Phoenix, October

More information

Euro-indicators Working Group

Euro-indicators Working Group Euro-indicators Working Group Luxembourg, 9 th & 10 th June 2011 Item 9.3 of the Agenda Towards an early warning system for the Euro area By Gian Luigi Mazzi Doc 308/11 Introduction Clear picture of economic

More information

1 First-order di erence equation

1 First-order di erence equation References Hamilton, J. D., 1994. Time Series Analysis. Princeton University Press. (Chapter 1,2) The task facing the modern time-series econometrician is to develop reasonably simple and intuitive models

More information