Conditions for successful data assimilation

Size: px
Start display at page:

Download "Conditions for successful data assimilation"

Transcription

1 Conditions for successful data assimilation Matthias Morzfeld *,**, Alexandre J. Chorin *,**, Peter Bickel # * Department of Mathematics University of California, Berkeley ** Lawrence Berkeley National Laboratory # Department of Statistics University of California, Berkeley Probabilistic Approaches to Data Assimilation for Earth Systems, Banff, Canada Tuesday, 8th of February 3

2 Introduction Goal Use a mathematical model to make predictions about a physical process Problem Small errors grow quickly and become large errors 5 Solution Use noisy data to update the model

3 Solution of the data assimilation problem Goal Compute the random variable x z p(x z) Conditional mean Z E(x z) = xp(x z)dx is the minimum mean square error estimate Methods Kalman filter and its variants for linear Gaussian models Variational data assimilation computes the most likely state given the data Particle filters (Monte Carlo methods) construct empirical estimate of the conditional pdf Question: What are the conditions under which DA can be successful? 3

4 Assumptions Question: What are the conditions under which DA can be successful? To answer the question we analyze the conditional pdf (which depends on errors in model and data) Assumptions: Linear Gaussian synchronous model x n+ = Ax n + w n, w n N (,Q), iid z n+ = Hx n+ + v n+, v n N (,R), iid, independent of w n Initial state Gaussian x N (µ, ) Kalman formalism gives us the conditional pdf 4

5 Kalman filter Model and data: x n+ = Ax n + w n, w n N (,Q), iid z n+ = Hx n+ + v n+, v n N (,R), iid, independent of w n Kalman update: X n =AP n A T + Q K n =X n H T (HX n H T + R) P n+ =(I K n H)X n In steady state : P n+ = P n = P =(I KH)X X = AXA T AXH T (HXH T + R) HXA T + Q (Discrete Algebraic Ricatti Equation) 5

6 Conditional pdf in steady state In steady state : x n N (µ n,p) j are eigenvalues of P µ n x n µ n Distance from mean (most likely state): x n r = q (x n µ n ) T (x n µ n ) E(r) mx j= j A mx j= j mx j= j.5 var(r) A mx j= mx j= j j 6

7 Conditional pdf in steady state = O()! E(r) =O(m / ), var(r) =O() Samples of posterior pdf collect on a thin shell O() This is problematic There is not enough information in model and data to make reliable conclusions about the state This is unphysical Similar experiments are expected to have similar outcomes O(m / ) 7

8 Conditional pdf in steady state Large posterior covariance: Sample collect on a thin shell There is not enough information in model and data to make reliable conclusions about the state Small posterior covariance: Samples collect on a low dimensional ball There is enough information in model and data to make reliable conclusions about the state O() O(m / ) 8

9 The effective dimension O() O(m / ) vs Effective dimension: Definition: Frobenius norm of steady state covariance matrix P Interpretation: effective dimension must be well bounded or else data assimilation is hopeless (regardless of the algorithm) P F = q X 9

10 r Boundedness of the effective dimension: example Put: A = H = I, Q = qi, R = ri Steady state covariance:.8.4 P = p q +4qr q I. Effective dimension:.6 P F = p m p q +4qr q. m = m = m = q.8 In general: small Frobenius norm of Q and R lead to small effective dimension

11 Why is this realistic? Small effective dimension Khinshin s theorem: bounded energy implies small Frobenius norms of Q and R Smoothness of errors implies small Frobenius norm of Q and R Errors with spherical symmetries (error in one component leads to errors in all other components) lead to small Frobenius norms of Q and R Energy Modes / p m

12 Why is this realistic? Energy / p m Modes In general: correlations lead to small Frobenius norm of Q and R and therefore to a small effective dimension Probability mass is concentrated on a lower dimensional manifold due to correlations in the errors Error models in literature typically show strong correlations

13 Effective dimension: summary r O() O(m / ) vs Energy Modes Effective dimension must be bounded or else data assimilation is hopeless (independent of the DA algorithm).8.4 Bounded effective dimension induces balance condition between errors in model and data..6 In practice, the effective dimension is often small (correlations in errors). m = m = m = q.8 3

14 Agenda. Introduction. What can be expected in general? 3. How good are particle filters? 4. How good is 4D-Var or particle smoothing?

15 Review of importance sampling Direct Monte Carlo sampling Suppose we are interested in x ~ p(x) and want to compute the expected value of x. The Monte Carlo approximation is: E(x) = Z xp(x)dx N Importance sampling NX i= Suppose we can evaluate p(x) and want to compute the expected value of x. E(x) = Z xp(x)dx = x i w i / p(x i) (x i ), X wi = x i (x) Z, x i p(x) x p(x) N (x) (x)dx X x i w i i= Problem: it is not easy to obtain samples directly Replace direct samples with weighted samples 5

16 Review of particle filters Particle filters Apply importance sampling recursively to the conditional pdf p(x :n+ z :n+ )=p(x :n z :n ) p(xn+ x n )p(z n+ x n+ ) p(z n+ z :n ) This requires importance function that factorizes (x :n+ z :n+ )= (x ) Recursion for weights W n+ j / Ŵ n j n+ Y k= k (x k x :k,z :k ) p(x n+ j Xj n)p(zn+ X n+ j ) n+ (X n+ j Xj :n,z :k ) If variance of unnormalized weights is large, then the particle filter collapses (see papers by Snyder, Bickel, Anderson,...) 6

17 Review of the collapse of particle filters The SIR particle filter Importance function: n+ = p(x n+ x n ) Weights: Condition for collapse in high dimensions is large norm of * : W n+ j / p(z n+ X n+ j ). = H(Q + AP A T )H T R Collapse can also happen in low dimensions: * as shown by Snyder, Bickel, Anderson et al. 7

18 Review of the collapse of particle filters The optimal particle filter Importance function: n+ = p(x n+ x n,z n+ ) Weights: W n+ j / p(z n+ X n j ) Condition for collapse in high dimensions is large norm of * : = HAP A T H T HQH T + R Collapse is avoided in low dimensions: * as shown by Snyder 8

19 How good can we get with particle filters? Example revisited: Optimal filter: A = H = I, Q = qi, R = ri F = p p q +4qr m (q + r) q 3 Data assimilation possible Data assimilation not possible 3 Optimal particle filter works.5.5. r m = m = q q 9

20 How good can we get with particle filters? Example revisited: Optimal filter vs. SIR filter 3 Data assimilation possible Data assimilation not possible 3 Optimal particle filter works 3 SIR filter works r m = m = m = q q q.

21 How good can we get with particle filters? The general linear case: Using matrix bounds we find the balance conditions: A F H F P F apple H F Q F + R F Optimal filter H F Q F + A F P apple R F SIR filter Balance condition is easy in simple cases, but delicate in general The nonlinear/non-gaussian case: Correlations can be expected for realistic noise models Balance conditions must be worked out in each particular case Optimal filter hard/impossible to implement, while SIR remains easy to use

22 Agenda. Introduction. What can be expected in general? 3. How good are particle filters? 4. How good is 4D-Var or particle smoothing?

23 Strong constraint 4D-Var Perfect model assumption: Conditional pdf: p(x z :n ) / exp x T µ x µ nx z j HA j x T R z j HA j x Covariance: x n+ = Ax n z n+ = Hx n+ + v n+, = + j= nx (A j ) T H T R HA j j= Strong constraint 4D-Var can only be successful if the Frobenius norm of the covariance is small v n N (,R), iid, independent of w A 3

24 r How good can we get with 4D-Var? Example revisited: Norm of covariance matrix: F = p m + r r m = m = m =.5..5 σ 4

25 Weak constraint 4D-VAr Model and data: x n+ = Ax n + w n, w n N (,Q), iid z n+ = Hx n+ + v n+, v n N (,R), iid, independent of w n Conditional pdf: p(x :n z :n ) / exp x T µ x µ nx z j Hx j T R z j Hx j Covariance: = j= + A T A AT Q Q A Q + A T Q A + H T R H A T Q A T Q Q A Q + H T R H A C A. 5

26 r How good can we get with 4D-Var? Strong constraint 4D-Var Boundedness of covariance matrix induces balance condition between errors in prior and in the data.6. Weak constraint 4D-Var Boundedness of covariance matrix induces balance condition between errors in prior, in the model and in the data Particle smoothing Same balance condition as in 4D- Var, but choice of importance function is critical.8.4 m = m = m =.5..5 σ 6

27 Conclusions Numerical data assimilation hopeless unless effective dimension is small (probability mass is concentrated on a low dimensional manifold) Boundedness of effective dimension induces balance condition between errors in model and data In practice, effective dimension often small because correlations in errors Particle filters can work in high dimensions, provided their implementation is sound Variational data assimilation requires well boundedness of covariance matrix, i.e. balance condition between errors in prior, model and data Analysis for linear Gaussian case only. Nonlinear/non-Gaussian problems must be analyzed in each particular case. 7

28 Fin Thank you! 8

29 m How good can we get with particle filters? Example revisited: Optimal filter vs. SIR filter Optimal filter works SIR and optimal filter work 4 None of the two filters work q / r 4 9

Implicit sampling for particle filters. Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins

Implicit sampling for particle filters. Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins 0/20 Implicit sampling for particle filters Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins University of California at Berkeley 2/20 Example: Try to find people in a boat in the middle of

More information

Particle filters, the optimal proposal and high-dimensional systems

Particle filters, the optimal proposal and high-dimensional systems Particle filters, the optimal proposal and high-dimensional systems Chris Snyder National Center for Atmospheric Research Boulder, Colorado 837, United States chriss@ucar.edu 1 Introduction Particle filters

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

(Extended) Kalman Filter

(Extended) Kalman Filter (Extended) Kalman Filter Brian Hunt 7 June 2013 Goals of Data Assimilation (DA) Estimate the state of a system based on both current and all past observations of the system, using a model for the system

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

A Survey of Implicit Particle Filters for Data Assimilation

A Survey of Implicit Particle Filters for Data Assimilation A Survey of Implicit Particle Filters for Data Assimilation Alexandre J. Chorin, Matthias Morzfeld, Xuemin Tu Abstract The implicit particle filter is a sequential Monte Carlo method for data assimilation.

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

A Survey of Implicit Particle Filters for Data Assimilation

A Survey of Implicit Particle Filters for Data Assimilation A Survey of Implicit Particle Filters for Data Assimilation Alexandre J. Chorin, Matthias Morzfeld, Xuemin Tu Abstract The implicit particle filter is a sequential Monte Carlo method for data assimilation.

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions December 14, 2016 Questions Throughout the following questions we will assume that x t is the state vector at time t, z t is the

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

Markov localization uses an explicit, discrete representation for the probability of all position in the state space.

Markov localization uses an explicit, discrete representation for the probability of all position in the state space. Markov Kalman Filter Localization Markov localization localization starting from any unknown position recovers from ambiguous situation. However, to update the probability of all positions within the whole

More information

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

Implicit sampling, with application to data assimilation

Implicit sampling, with application to data assimilation Implicit sampling, with application to data assimilation Alexandre J. Chorin 1,2, Matthias Morzfeld 2, and Xuemin Tu 3 1 Department of Mathematics, University of California, Berkeley, CA, 94720, USA. 2

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Particle Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Motivation For continuous spaces: often no analytical formulas for Bayes filter updates

More information

Implicit Sampling, with Application to Data Assimilation

Implicit Sampling, with Application to Data Assimilation Chin. Ann. Math. 34B(1), 2013, 89 98 DOI: 10.1007/s11401-012-0757-5 Chinese Annals of Mathematics, Series B c The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2013 Implicit Sampling, with

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

Perception: objects in the environment

Perception: objects in the environment Zsolt Vizi, Ph.D. 2018 Self-driving cars Sensor fusion: one categorization Type 1: low-level/raw data fusion combining several sources of raw data to produce new data that is expected to be more informative

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems Modeling CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami February 21, 2017 Outline 1 Modeling and state estimation 2 Examples 3 State estimation 4 Probabilities

More information

CS281A/Stat241A Lecture 17

CS281A/Stat241A Lecture 17 CS281A/Stat241A Lecture 17 p. 1/4 CS281A/Stat241A Lecture 17 Factor Analysis and State Space Models Peter Bartlett CS281A/Stat241A Lecture 17 p. 2/4 Key ideas of this lecture Factor Analysis. Recall: Gaussian

More information

Biophysical Journal, Volume 98 Supporting Material Analysis of video-based Microscopic Particle Trajectories Using Kalman Filtering Pei-Hsun Wu,

Biophysical Journal, Volume 98 Supporting Material Analysis of video-based Microscopic Particle Trajectories Using Kalman Filtering Pei-Hsun Wu, Biophysical Journal, Volume 98 Supporting Material Analysis of video-based Microscopic Particle Trajectories Using Kalman Filtering Pei-Hsun Wu, Ashutosh Agarwal, Henry Hess, Pramod P Khargonekar, and

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS

UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS Monday, June 27, 2011 CEDAR-GEM joint workshop: DA tutorial 1 UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS Tomoko Matsuo University of Colorado, Boulder Space

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Linear regression. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Linear regression. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Linear regression DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Linear models Least-squares estimation Overfitting Example:

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute Inversion basics y = Kx + ε x ˆ = (K T K) 1 K T y Erkki Kyrölä Finnish Meteorological Institute Day 3 Lecture 1 Retrieval techniques - Erkki Kyrölä 1 Contents 1. Introduction: Measurements, models, inversion

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

A new formulation of vector weights in localized particle filters

A new formulation of vector weights in localized particle filters QuarterlyJournalof theroyalmeteorologicalsociety Q. J. R. Meteorol. Soc. : 69 78, October 07 B DOI:0.00/qj.80 A new formulation of vector weights in localized particle filters Zheqi Shen, a Youmin Tang

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Topics to be Covered Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling (CDF) Ancestral Sampling Rejection

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y.

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y. ATMO/OPTI 656b Spring 009 Bayesian Retrievals Note: This follows the discussion in Chapter of Rogers (000) As we have seen, the problem with the nadir viewing emission measurements is they do not contain

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

ENGR352 Problem Set 02

ENGR352 Problem Set 02 engr352/engr352p02 September 13, 2018) ENGR352 Problem Set 02 Transfer function of an estimator 1. Using Eq. (1.1.4-27) from the text, find the correct value of r ss (the result given in the text is incorrect).

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Robot Localization and Kalman Filters

Robot Localization and Kalman Filters Robot Localization and Kalman Filters Rudy Negenborn rudy@negenborn.net August 26, 2003 Outline Robot Localization Probabilistic Localization Kalman Filters Kalman Localization Kalman Localization with

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

State Estimation of Linear and Nonlinear Dynamic Systems

State Estimation of Linear and Nonlinear Dynamic Systems State Estimation of Linear and Nonlinear Dynamic Systems Part I: Linear Systems with Gaussian Noise James B. Rawlings and Fernando V. Lima Department of Chemical and Biological Engineering University of

More information

Constrained data assimilation. W. Carlisle Thacker Atlantic Oceanographic and Meteorological Laboratory Miami, Florida USA

Constrained data assimilation. W. Carlisle Thacker Atlantic Oceanographic and Meteorological Laboratory Miami, Florida USA Constrained data assimilation W. Carlisle Thacker Atlantic Oceanographic and Meteorological Laboratory Miami, Florida 33149 USA Plan Range constraints: : HYCOM layers have minimum thickness. Optimal interpolation:

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. Revised submission to IEEE TNN

Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. Revised submission to IEEE TNN Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables Revised submission to IEEE TNN Aapo Hyvärinen Dept of Computer Science and HIIT University

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

A Moment Matching Particle Filter for Nonlinear Non-Gaussian. Data Assimilation. and Peter Bickel

A Moment Matching Particle Filter for Nonlinear Non-Gaussian. Data Assimilation. and Peter Bickel Generated using version 3.0 of the official AMS L A TEX template A Moment Matching Particle Filter for Nonlinear Non-Gaussian Data Assimilation Jing Lei and Peter Bickel Department of Statistics, University

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Robert Collins Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Robert Collins A Brief Overview of Sampling Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

Particle Filters: Convergence Results and High Dimensions

Particle Filters: Convergence Results and High Dimensions Particle Filters: Convergence Results and High Dimensions Mark Coates mark.coates@mcgill.ca McGill University Department of Electrical and Computer Engineering Montreal, Quebec, Canada Bellairs 2012 Outline

More information

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Jon Poterjoy, Ryan Sobash, and Jeffrey Anderson National Center for Atmospheric Research

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

A NEW NONLINEAR FILTER

A NEW NONLINEAR FILTER COMMUNICATIONS IN INFORMATION AND SYSTEMS c 006 International Press Vol 6, No 3, pp 03-0, 006 004 A NEW NONLINEAR FILTER ROBERT J ELLIOTT AND SIMON HAYKIN Abstract A discrete time filter is constructed

More information

State Estimation using Moving Horizon Estimation and Particle Filtering

State Estimation using Moving Horizon Estimation and Particle Filtering State Estimation using Moving Horizon Estimation and Particle Filtering James B. Rawlings Department of Chemical and Biological Engineering UW Math Probability Seminar Spring 2009 Rawlings MHE & PF 1 /

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation

A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation 3964 M O N T H L Y W E A T H E R R E V I E W VOLUME 139 A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation JING LEI AND PETER BICKEL Department of Statistics, University of

More information

The Inversion Problem: solving parameters inversion and assimilation problems

The Inversion Problem: solving parameters inversion and assimilation problems The Inversion Problem: solving parameters inversion and assimilation problems UE Numerical Methods Workshop Romain Brossier romain.brossier@univ-grenoble-alpes.fr ISTerre, Univ. Grenoble Alpes Master 08/09/2016

More information

Convergence of the Ensemble Kalman Filter in Hilbert Space

Convergence of the Ensemble Kalman Filter in Hilbert Space Convergence of the Ensemble Kalman Filter in Hilbert Space Jan Mandel Center for Computational Mathematics Department of Mathematical and Statistical Sciences University of Colorado Denver Parts based

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

AUTOMOTIVE ENVIRONMENT SENSORS

AUTOMOTIVE ENVIRONMENT SENSORS AUTOMOTIVE ENVIRONMENT SENSORS Lecture 5. Localization BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Related concepts Concepts related to vehicles moving

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Kalman Filter. Lawrence J. Christiano

Kalman Filter. Lawrence J. Christiano Kalman Filter Lawrence J. Christiano Background The Kalman filter is a powerful tool, which can be used in a variety of contexts. can be used for filtering and smoothing. To help make it concrete, we will

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

Introduction to Mobile Robotics Bayes Filter Kalman Filter

Introduction to Mobile Robotics Bayes Filter Kalman Filter Introduction to Mobile Robotics Bayes Filter Kalman Filter Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Bayes Filter Reminder 1. Algorithm Bayes_filter( Bel(x),d ):

More information

Local Positioning with Parallelepiped Moving Grid

Local Positioning with Parallelepiped Moving Grid Local Positioning with Parallelepiped Moving Grid, WPNC06 16.3.2006, niilo.sirola@tut.fi p. 1/?? TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Local Positioning with Parallelepiped

More information

Inverse problems and uncertainty quantification in remote sensing

Inverse problems and uncertainty quantification in remote sensing 1 / 38 Inverse problems and uncertainty quantification in remote sensing Johanna Tamminen Finnish Meterological Institute johanna.tamminen@fmi.fi ESA Earth Observation Summer School on Earth System Monitoring

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 8: Importance Sampling 8.1 Importance Sampling Importance sampling

More information

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET. Questions AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET. Questions AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET The Problem Identification of Linear and onlinear Dynamical Systems Theme : Curve Fitting Division of Automatic Control Linköping University Sweden Data from Gripen Questions How do the control surface

More information

OBSTACLES TO HIGH-DIMENSIONAL PARTICLE FILTERING. Chris Snyder. Thomas Bengtsson. Bell Labs, Murray Hill, NJ. Peter Bickel

OBSTACLES TO HIGH-DIMENSIONAL PARTICLE FILTERING. Chris Snyder. Thomas Bengtsson. Bell Labs, Murray Hill, NJ. Peter Bickel OBSTACLES TO HIGH-DIMENSIONAL PARTICLE FILTERING Chris Snyder National Center for Atmospheric Research, Boulder, CO Thomas Bengtsson Bell Labs, Murray Hill, NJ Peter Bickel Department of Statistics, University

More information

Sequential Monte Carlo Methods in High Dimensions

Sequential Monte Carlo Methods in High Dimensions Sequential Monte Carlo Methods in High Dimensions Alexandros Beskos Statistical Science, UCL Oxford, 24th September 2012 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Andrew Stuart Imperial College,

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Department of Biomedical Engineering and Computational Science Aalto University April 28, 2010 Contents 1 Multiple Model

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Introduction to Particle Filters for Data Assimilation

Introduction to Particle Filters for Data Assimilation Introduction to Particle Filters for Data Assimilation Mike Dowd Dept of Mathematics & Statistics (and Dept of Oceanography Dalhousie University, Halifax, Canada STATMOS Summer School in Data Assimila5on,

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

A Hilbert Space for Random Processes

A Hilbert Space for Random Processes Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts A Hilbert Space for Random Processes I A vector space for random processes X t that is analogous to L 2 (a, b) is of

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

Sensor Fusion: Particle Filter

Sensor Fusion: Particle Filter Sensor Fusion: Particle Filter By: Gordana Stojceska stojcesk@in.tum.de Outline Motivation Applications Fundamentals Tracking People Advantages and disadvantages Summary June 05 JASS '05, St.Petersburg,

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information