Monitoring and data filtering III. The Kalman Filter and its relation with the other methods

Size: px
Start display at page:

Download "Monitoring and data filtering III. The Kalman Filter and its relation with the other methods"

Transcription

1 Monitoring and data filtering III. The Kalman Filter and its relation with the other methods Advanced Herd Management Cécile Cornou, IPH Dias 1

2 Gain (g) Before this part of the course Compare key figures (k) with expected results κ = θ + e s + e o Results from 2 herds Quarter Expected Herd A Herd B Dias 2

3 The methods we looked at In part I of the course (1/3) Key figures regarded as a time series of observations, treated as a whole κ = θ + e s + e o κ t = θ + e st + e ot = θ + v t I - Shewart Control Chart - Plot our Time Series of Observations : raw observations - Plot our Target Value (θ ) - Plot of Control Limits (UCL & LCL) Not so good... for our type of data... Dias 3

4 The methods we looked at In part I of the course (2/3) II - Shewart Control Chart - Plot a Moving Average of our TS - Plot our Target Value (θ ) - Plot of Control Limits (UCL & LCL) III - Shewart Control Chart - Plot a EWMA of our TS - Plot our Target Value (θ ) - Plot of Control Limits (UCL & LCL) Still not so good... for our type of data Here: milk yield Dias 4

5 The methods we looked at In part I of the course (3/3) IV Autocorrelated data - Model the data - Calculate a prediction for next obs. - Plot the prediction errors V EWMA for autocorrelated data - Use EWMA as one-step-ahead predictor - Plot the prediction errors Here we use 0 as Center Line and see how error terms are distributed Dias 5

6 The methods we looked at In part II of the course (1/4) A Simple DLM Before: κ t = θ + e st + e ot = θ + v t Time series Y t = (y 1,..., y n ) Observation equation: y t = t + v t, v t» N(0, V t ) Like before: v t = e s + e o The symbol t is the underlying true value at time t. System equation: t = t-1 + w t, w t» N(0, W t ) The true value is not any longer assumed to be constant. Dias 6

7 The methods we looked at In part II of the course (2/4) The Kalman Filter ( t-1 D t-1 )» N(m t-1, C t-1 ) ( t D t )» N(m t, C t ) The updating equations of the Kalman Filter are used for stepwise calculation of m t and C t DLM and EWMA DLM EWMA m t AY t t ( 1 At ) mt 1 z t t ( 1 ) zt 1 As the model adapts to the data, A t converges and becomes A The calculation of the mean of the underlying level for the simple DLM looks very similar to the calculation of the EWMA Dias 7

8 The methods we looked at In part II of the course (3/4) The different models - Simple DLM - DLM with a trend General form of the DLM Observation Equation: Y t = F t θ t + ν t, ν t ~ N(0,V t ) System Equation: θ t = G t θ t-1 + ω t, ω t ~ N(0,W t ) t = ( 1,, m ) is a vector of parameters describing the system at time t. Can include: Level, Trend, Seasonality, Periodicity,... Structure + External information According to the data observed, the use of DLM allows many modeling possibilities Dias 8

9 The methods we looked at In part II of the course (4/4) Monitoring methods used with DLM Monitor the forecast errors (e t = Y t f t ) as we did with autocorrelated data in part I NO need for expected value V-mask Tabular cusum Can look at the different components of the models (trends, seasons) Dias 9

10 Further examples Ex 1. Monitoring activity level A simple DLM Monitoring deviations by mean of V-mask and Tabular cusum Ex. 2. Monitoring sows activity types in farrowing house Use of a MPKF of class I Dias 10

11 Example 1. Monitoring activity level Context Development of Group housing in EU results of Council Directive 2001/88/EEC Difficulties identifying and accessing individual sow Idea Store data in a chip and transmit info to the farmer s PC Sensor in the chip allows to monitor activity of the sow Assumption Body Activity of sows is expected to change around the onset of oestrus Objective Develop an automated oestrus detection method for group housed sows using sows acceleration measurements Method Use of Dynamic Linear Models to model the sows activity Use of control methods that detects model deviations at the onset of oestrus Dias 11

12 Dias 12 Outdoor facilities

13 3 D accelerometer The large pen Animals and Housing 5 sows in group of days Activity Measurements Acceleration in 3 dimensions Four measurements per second Transfer PC via Blue Tooth Video Recordings Four cameras used as web cam ACTIVITY Oestrus Detection Golden standard Detect whether activity pattern changes at onset of oestrus Dias 13

14 Definition of the DLM Use hourly averages of the length of the acceleration vector Y t = acc = (acc x2 + acc y2 + acc z2 ) Observation equation: k t = θ t + v t, v t» N(0, V t ) System equation: θ t = θ t-1 + w t, w t» N(0, W t ) V t = V= unknow and constant W t = 0 (In normal condition: no change in activity) Model initialized by mean of Reference Analysis Model observations (Y t ) weighted by number of observations per hour Missing observation: e t =0 Dias 14

15 Illustration Model Cusum V-mask Tabular Cusum Dias 15

16 Example 2. Monitoring sows activity types Farrowing house Assumption Sow s behaviour is affected by physiological state / illness Accelerometer: measured any time / during whole reproductive cycle Objective Develop a method that automatically classify sows activity types Model selected activity types using DLM Classify each activity type using a Multi Process Kalman Filter See whether we can automatically detect the onset of farrowing Dias 16

17 Dias 17 The Farrowing House

18 Data Collected Farrowing house Farrowing Dias 18

19 Time series and activity types Activity types Extracts from time series of acceleration are associated to 5 activity types High Active (HA) Medium Active (MA) Passive Lying Side 1 (L1) Passive Lying Side 2 (L2) Passive Lying Sternally (Ls) 3 dimensions: X,Y, Z Learning data set: 10 minutes of each activity type Estimate the model parameters X Y Z Dias 19

20 Dynamic Linear Model Dynamic Linear Models (DLMs) combined with Kalman Filter (KF) General form of the DLM Observation Equation: Y t = F t θ t + ν t, ν t ~ N(0,V t ) System Equation: θ t = G t θ t-1 + ω t, ω t ~ N(0,W t ) DLM combined with Kalman Filter: estimate the underlying state vector θ t by its mean vector m t and its variance-covariance matrix C t. Multivariate DLM: each observation is a 3-dimensional vector V (3 x 3) and W (3 x 3), characteristic of each activity, are estimated by EM algorithm 5 DLMs (5 activities) Y t x y z Dias 20

21 Multi Process Kalman Filter MPKF class I At time t: Each DLM is analysed using the updating equations of the Kalman Filter: One step forecast mean f t One step forecast variance Q t Posterior Probabilities are estimated for each DLM Dias 21

22 Activity Classification Farrowing 2 days before farrowing Feeding: 7.15, 12.00, Active Dias 22 Lying side 1 Lying sternally Lying side 2

23 Activity Classification Farrowing Farrowing day Feeding / Rooting / Nesting Active Dias 23 Lying side 1 Lying sternally Lying side 2

24 Activity Classification Farrowing Percentage of activity types d-3 to d+1 Dias 24

25 Activity Classification Farrowing Sum of 2 min HA (red), MA (orange) and Passive (blue) / hour Farrowing Cusum of HA t HA t-24 Dias 25

26 The multi process kalman filter (MPKF) (1/2) Multi Process Models Class I ex: Classifying sows activities in Farrowing house A single out of a range of possible DLMs is viewed as appropriate at all time for describing the entire time series Parameters : V and W We try to find out which model is it at time t? Dias 26

27 The multi process kalman filter (MPKF) (2/2) Multi Process Models Class II ex: Monitoring Somatic Cell Counts / Boar visits No single DLM as adequate for all time: the possibility that different models are appropriate at different times is explicitly recognised and modelled through different defining parameters Parameters : V and W and Π (values for Π define fixed prior probabilities) We try to find out normal evolution, outlier, level shift We need to go back f.x. two, three steps to check which model is the right one Dias 27

28 Sum up of sum up We increased the complexity of our models and monitoring methods to try to adapt to the complexity of monitoring living beings Methods here based on a whole time series of observations -> need for automatic registration -> potential on-line monitoring From part I to part II, we made our model dynamics, so the true underlying level is no more constant Dias 28

Monitoring and data filtering II. Dynamic Linear Models

Monitoring and data filtering II. Dynamic Linear Models Monitoring and data filtering II. Dynamic Linear Models Advanced Herd Management Cécile Cornou, IPH Dias 1 Program for monitoring and data filtering Friday 26 (morning) - Lecture for part I : use of control

More information

Monitoring and data filtering II. Dan Jensen IPH, KU

Monitoring and data filtering II. Dan Jensen IPH, KU Monitoring and data filtering II Dan Jensen IPH, KU Outline Introduction to Dynamic Linear Models (DLM) - Conceptual introduction - Difference between the Classical methods and DLM - A very simple DLM

More information

Dynamic monitoring of mortality rate for sows and piglets

Dynamic monitoring of mortality rate for sows and piglets Dynamic monitoring of mortality rate for sows and piglets Claudia Bono C. Cornou A. R. Kristensen Dias 1 Background Problem Existing Management Information Systems (MIS) are static and typically computed

More information

Classifying Sows' Activity Types from Acceleration Patterns. An Application of the Multi- Process Kalman Filter

Classifying Sows' Activity Types from Acceleration Patterns. An Application of the Multi- Process Kalman Filter Classifying Sows' Activity Types from Acceleration Patterns. An Alication of the Multi- Process Kalman Filter Final preprint (uncorrected proof) of article published in Alied Animal Behaviour Science.

More information

Detection of Oestrus by Monitoring Boar Visits Tage Ostersen Advanced Herd Management 22/ Slide 1/30 1 Background 2 Data 3 Duration of Visits 4

Detection of Oestrus by Monitoring Boar Visits Tage Ostersen Advanced Herd Management 22/ Slide 1/30 1 Background 2 Data 3 Duration of Visits 4 Detection of Oestrus by Monitoring Boar Visits Tage Ostersen Advanced Herd Management 22/9 2009 Slide 1/30 1 Background 2 Data 3 Duration of Visits 4 Break 5 Frequency of Visits 6 Combining Frequency and

More information

Model Probability Var = 1 Var = 2.25 Var = 25

Model Probability Var = 1 Var = 2.25 Var = 25 1 Background Detection of Oestrus by Monitoring Boar Visits Tage Ostersen 2 Data 3 Duration of Visits 4 Break 5 Frequency of Visits 6 Visits 7 Conclusion Advanced Herd Management 22/9 29 Slide 1/3 Slide

More information

Monitoring and data filtering II. Dynamic Linear Models

Monitoring and data filtering II. Dynamic Linear Models Ouline Monioring and daa filering II. Dynamic Linear Models (Wes and Harrison, chaper 2 Updaing equaions: Kalman Filer Discoun facor as an aid o choose W Incorporae exernal informaion: Inervenion General

More information

Herd Management Science

Herd Management Science Herd Management Science Exercises and Supplementary Reading 2010 Edition Compiled on July 27, 2010 Anders Ringgaard Kristensen University of Copenhagen Faculty of Life Sciences 2 3 Preface These exercises

More information

Introduction to Time Series (I)

Introduction to Time Series (I) Introduction to Time Series (I) ZHANG RONG Department of Social Networking Operations Social Networking Group Tencent Company November 20, 2017 ZHANG RONG Introduction to Time Series (I) 1/69 Outline 1

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/term

More information

First Semester Dr. Abed Schokry SQC Chapter 9: Cumulative Sum and Exponential Weighted Moving Average Control Charts

First Semester Dr. Abed Schokry SQC Chapter 9: Cumulative Sum and Exponential Weighted Moving Average Control Charts Department of Industrial Engineering First Semester 2014-2015 Dr. Abed Schokry SQC Chapter 9: Cumulative Sum and Exponential Weighted Moving Average Control Charts Learning Outcomes After completing this

More information

Markov Decision Processes: Biosens II

Markov Decision Processes: Biosens II Markov Decision Processes: Biosens II E. Jørgensen & Lars R. Nielsen Department of Genetics and Biotechnology Faculty of Agricultural Sciences, University of Århus / 008 : Markov Decision Processes Examples

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

CHAPTER 3 DYNAMIC PRODUCTION MONITORING IN PIG HERDS I: MODELING AND MONITORING LITTER SIZE AT HERD AND SOW LEVEL

CHAPTER 3 DYNAMIC PRODUCTION MONITORING IN PIG HERDS I: MODELING AND MONITORING LITTER SIZE AT HERD AND SOW LEVEL CHAPTER 3 DYNAMIC PRODUCTION MONITORING IN PIG HERDS I: MODELING AND MONITORING LITTER SIZE AT HERD AND SOW LEVEL Claudia Bono, Cécile Cornou and Anders Ringgaard Kristensen Published in Livestock Science

More information

CHAPTER 4 DYNAMIC PRODUCTION MONITORING IN PIG HERDS II: MODELING AND MONITORING FARROWING RATE AT HERD LEVEL

CHAPTER 4 DYNAMIC PRODUCTION MONITORING IN PIG HERDS II: MODELING AND MONITORING FARROWING RATE AT HERD LEVEL CHAPTER 4 DYNAMIC PRODUCTION MONITORING IN PIG HERDS II: MODELING AND MONITORING FARROWING RATE AT HERD LEVEL Claudia Bono, Cécile Cornou, Søren Lundbye-Christensen and Anders Ringgaard Kristensen Published

More information

Advanced topics from statistics

Advanced topics from statistics Advanced topics from statistics Anders Ringgaard Kristensen Advanced Herd Management Slide 1 Outline Covariance and correlation Random vectors and multivariate distributions The multinomial distribution

More information

Multivariate Control and Model-Based SPC

Multivariate Control and Model-Based SPC Multivariate Control and Model-Based SPC T 2, evolutionary operation, regression chart. 1 Multivariate Control Often, many variables must be controlled at the same time. Controlling p independent parameters

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

More information

A Constructive-Fuzzy System Modeling for Time Series Forecasting

A Constructive-Fuzzy System Modeling for Time Series Forecasting A Constructive-Fuzzy System Modeling for Time Series Forecasting I. Luna 1, R. Ballini 2 and S. Soares 1 {iluna,dino}@cose.fee.unicamp.br, ballini@eco.unicamp.br 1 Department of Systems, School of Electrical

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Statistical Process Control SCM Pearson Education, Inc. publishing as Prentice Hall

Statistical Process Control SCM Pearson Education, Inc. publishing as Prentice Hall S6 Statistical Process Control SCM 352 Outline Statistical Quality Control Common causes vs. assignable causes Different types of data attributes and variables Central limit theorem SPC charts Control

More information

Nowcasting Norwegian GDP

Nowcasting Norwegian GDP Nowcasting Norwegian GDP Knut Are Aastveit and Tørres Trovik May 13, 2007 Introduction Motivation The last decades of advances in information technology has made it possible to access a huge amount of

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Kalman Filter. Lawrence J. Christiano

Kalman Filter. Lawrence J. Christiano Kalman Filter Lawrence J. Christiano Background The Kalman filter is a powerful tool, which can be used in a variety of contexts. can be used for filtering and smoothing. To help make it concrete, we will

More information

Department of Large Animal Sciences. Outline. Slide 2. Department of Large Animal Sciences. Slide 4. Department of Large Animal Sciences

Department of Large Animal Sciences. Outline. Slide 2. Department of Large Animal Sciences. Slide 4. Department of Large Animal Sciences Outline Advanced topics from statistics Anders Ringgaard Kristensen Covariance and correlation Random vectors and multivariate distributions The multinomial distribution The multivariate normal distribution

More information

Available online at ScienceDirect. Procedia Engineering 119 (2015 ) 13 18

Available online at   ScienceDirect. Procedia Engineering 119 (2015 ) 13 18 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 119 (2015 ) 13 18 13th Computer Control for Water Industry Conference, CCWI 2015 Real-time burst detection in water distribution

More information

Examination paper for TMA4285 Time Series Models

Examination paper for TMA4285 Time Series Models Department of Mathematical Sciences Examination paper for TMA4285 Series Models Academic contact during examination: Professor Jarle Tufto Phone: 99 70 55 19 Examination date: December 8, 2016 Examination

More information

Chart types and when to use them

Chart types and when to use them APPENDIX A Chart types and when to use them Pie chart Figure illustration of pie chart 2.3 % 4.5 % Browser Usage for April 2012 18.3 % 38.3 % Internet Explorer Firefox Chrome Safari Opera 35.8 % Pie chart

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

The Development of Guidance for Forecast of. Maximum Precipitation Amount

The Development of Guidance for Forecast of. Maximum Precipitation Amount The Development of Guidance for Forecast of Maximum Precipitation Amount Satoshi Ebihara Numerical Prediction Division, JMA 1. Introduction Since 198, the Japan Meteorological Agency (JMA) has developed

More information

CS Homework 3. October 15, 2009

CS Homework 3. October 15, 2009 CS 294 - Homework 3 October 15, 2009 If you have questions, contact Alexandre Bouchard (bouchard@cs.berkeley.edu) for part 1 and Alex Simma (asimma@eecs.berkeley.edu) for part 2. Also check the class website

More information

spc Statistical process control Key Quality characteristic :Forecast Error for demand

spc Statistical process control Key Quality characteristic :Forecast Error for demand spc Statistical process control Key Quality characteristic :Forecast Error for demand BENEFITS of SPC Monitors and provides feedback for keeping processes in control. Triggers when a problem occurs Differentiates

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Revision: Chapter 1-6. Applied Multivariate Statistics Spring 2012

Revision: Chapter 1-6. Applied Multivariate Statistics Spring 2012 Revision: Chapter 1-6 Applied Multivariate Statistics Spring 2012 Overview Cov, Cor, Mahalanobis, MV normal distribution Visualization: Stars plot, mosaic plot with shading Outlier: chisq.plot Missing

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

Weaning Age ReVisited

Weaning Age ReVisited Weaning Age ReVisited Dr Mike Varley BSc PhD FIBiol CBiol R.Nutr. mikeavarley@tiscali.co.uk mike.varley@bpex.org.uk Menu Menu Weaning age The last 30 years Weaning age The biology Weaning age The economics

More information

Tennis player segmentation for semantic behavior analysis

Tennis player segmentation for semantic behavior analysis Proposta di Tennis player segmentation for semantic behavior analysis Architettura Software per Robot Mobili Vito Renò, Nicola Mosca, Massimiliano Nitti, Tiziana D Orazio, Donato Campagnoli, Andrea Prati,

More information

Emerging trends in Statistical Process Control of Industrial Processes. Marco S. Reis

Emerging trends in Statistical Process Control of Industrial Processes. Marco S. Reis Emerging trends in Statistical Process Control of Industrial Processes Marco S. Reis Guimarães, July 15 th, 16 Chemical Process Engineering and Forest Products Research Center CIEPQPF Department of Chemical

More information

THE USE OF KALMAN FILTRATION TO ESTIMATE CHANGES OF TRUNK INCLINATION ANGLE DURING WEIGHTLIFTING 1. INTRODUCTION

THE USE OF KALMAN FILTRATION TO ESTIMATE CHANGES OF TRUNK INCLINATION ANGLE DURING WEIGHTLIFTING 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 15/2010, ISSN 1642-6037 Kalman filtration, filter algorithm, accelerometric sensor Grzegorz SAPOTA 1, Anna SAPOTA 1, Zygmunt WRÓBEL 1 THE USE OF KALMAN

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

Robots Autónomos. Depto. CCIA. 2. Bayesian Estimation and sensor models. Domingo Gallardo

Robots Autónomos. Depto. CCIA. 2. Bayesian Estimation and sensor models.  Domingo Gallardo Robots Autónomos 2. Bayesian Estimation and sensor models Domingo Gallardo Depto. CCIA http://www.rvg.ua.es/master/robots References Recursive State Estimation: Thrun, chapter 2 Sensor models and robot

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

E190Q Lecture 11 Autonomous Robot Navigation

E190Q Lecture 11 Autonomous Robot Navigation E190Q Lecture 11 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 013 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Performance of Conventional X-bar Chart for Autocorrelated Data Using Smaller Sample Sizes

Performance of Conventional X-bar Chart for Autocorrelated Data Using Smaller Sample Sizes , 23-25 October, 2013, San Francisco, USA Performance of Conventional X-bar Chart for Autocorrelated Data Using Smaller Sample Sizes D. R. Prajapati Abstract Control charts are used to determine whether

More information

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Outline Maximum likelihood (ML) Priors, and

More information

Statistics Toolbox 6. Apply statistical algorithms and probability models

Statistics Toolbox 6. Apply statistical algorithms and probability models Statistics Toolbox 6 Apply statistical algorithms and probability models Statistics Toolbox provides engineers, scientists, researchers, financial analysts, and statisticians with a comprehensive set of

More information

Embedding a State Space Model Into a Markov Decision Process

Embedding a State Space Model Into a Markov Decision Process Embedding a State Space Model Into a Markov Decision Process Lars Relund Nielsen, Erik Jørgensen and Søren Højsgaard Research Unit of Statistics and Decision Analysis, Department of Genetics and Biotechnology,

More information

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Monday 16 June 2014 Morning Time: 2 hours 30 minutes You

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

22/04/2014. Economic Research

22/04/2014. Economic Research 22/04/2014 Economic Research Forecasting Models for Exchange Rate Tuesday, April 22, 2014 The science of prognostics has been going through a rapid and fruitful development in the past decades, with various

More information

Monitoring Extreme Weather Events. February 8, 2010

Monitoring Extreme Weather Events. February 8, 2010 Monitoring Extreme Weather Events February 8, 2010 Extensive network of over 800 stations across the Prairies Good coverage across entire agriculture production region Network of networks strategy includes

More information

Lecture 14 Bayesian Models for Spatio-Temporal Data

Lecture 14 Bayesian Models for Spatio-Temporal Data Lecture 14 Bayesian Models for Spatio-Temporal Data Dennis Sun Stats 253 August 13, 2014 Outline of Lecture 1 Recap of Bayesian Models 2 Empirical Bayes 3 Case 1: Long-Lead Forecasting of Sea Surface Temperatures

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

6.867 Machine learning: lecture 2. Tommi S. Jaakkola MIT CSAIL

6.867 Machine learning: lecture 2. Tommi S. Jaakkola MIT CSAIL 6.867 Machine learning: lecture 2 Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learning problem hypothesis class, estimation algorithm loss and estimation criterion sampling, empirical and

More information

The effect of environmental and operational variabilities on damage detection in wind turbine blades

The effect of environmental and operational variabilities on damage detection in wind turbine blades The effect of environmental and operational variabilities on damage detection in wind turbine blades More info about this article: http://www.ndt.net/?id=23273 Thomas Bull 1, Martin D. Ulriksen 1 and Dmitri

More information

Classifying and building DLMs

Classifying and building DLMs Chapter 3 Classifying and building DLMs In this chapter we will consider a special form of DLM for which the transition matrix F k and the observation matrix H k are constant in time, ie, F k = F and H

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink) Write your name here Surname Other names Pearson Edexcel GCE Centre Number Statistics S2 Advanced/Advanced Subsidiary Candidate Number Monday 26 June 2017 Afternoon Time: 1 hour 30 minutes You must have:

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Pose tracking of magnetic objects

Pose tracking of magnetic objects Pose tracking of magnetic objects Niklas Wahlström Department of Information Technology, Uppsala University, Sweden Novmber 13, 2017 niklas.wahlstrom@it.uu.se Seminar Vi2 Short about me 2005-2010: Applied

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

A Novel Activity Detection Method

A Novel Activity Detection Method A Novel Activity Detection Method Gismy George P.G. Student, Department of ECE, Ilahia College of,muvattupuzha, Kerala, India ABSTRACT: This paper presents an approach for activity state recognition of

More information

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012)

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012) Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Linear Models for Regression Linear Regression Probabilistic Interpretation

More information

EM-algorithm for Training of State-space Models with Application to Time Series Prediction

EM-algorithm for Training of State-space Models with Application to Time Series Prediction EM-algorithm for Training of State-space Models with Application to Time Series Prediction Elia Liitiäinen, Nima Reyhani and Amaury Lendasse Helsinki University of Technology - Neural Networks Research

More information

Seminar Course 392N Spring2011. ee392n - Spring 2011 Stanford University. Intelligent Energy Systems 1

Seminar Course 392N Spring2011. ee392n - Spring 2011 Stanford University. Intelligent Energy Systems 1 Seminar Course 392N Spring211 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky Intelligent Energy Systems 1 Traditional Grid Worlds Largest Machine! 33 utilities 15,

More information

Adaptive Dual Control

Adaptive Dual Control Adaptive Dual Control Björn Wittenmark Department of Automatic Control, Lund Institute of Technology Box 118, S-221 00 Lund, Sweden email: bjorn@control.lth.se Keywords: Dual control, stochastic control,

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc.

Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc. Statistical Tools for Multivariate Six Sigma Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc. 1 The Challenge The quality of an item or service usually depends on more than one characteristic.

More information

X random; interested in impact of X on Y. Time series analogue of regression.

X random; interested in impact of X on Y. Time series analogue of regression. Multiple time series Given: two series Y and X. Relationship between series? Possible approaches: X deterministic: regress Y on X via generalized least squares: arima.mle in SPlus or arima in R. We have

More information

From Bayes to Extended Kalman Filter

From Bayes to Extended Kalman Filter From Bayes to Extended Kalman Filter Michal Reinštein Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

More information

Part I State space models

Part I State space models Part I State space models 1 Introduction to state space time series analysis James Durbin Department of Statistics, London School of Economics and Political Science Abstract The paper presents a broad

More information

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras Introduction to Mobile Robotics Information Gain-Based Exploration Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Tasks of Mobile Robots mapping SLAM localization integrated

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Mechanical Engineering 101

Mechanical Engineering 101 Mechanical Engineering 101 University of California, Berkeley Lecture #1 1 Today s lecture Statistical Process Control Process capability Mean shift Control charts eading: pp. 373-383 .Precision 3 Process

More information

Approximate Bayesian computation: an application to weak-lensing peak counts

Approximate Bayesian computation: an application to weak-lensing peak counts STATISTICAL CHALLENGES IN MODERN ASTRONOMY VI Approximate Bayesian computation: an application to weak-lensing peak counts Chieh-An Lin & Martin Kilbinger SAp, CEA Saclay Carnegie Mellon University, Pittsburgh

More information

Benefits of Using the MEGA Statistical Process Control

Benefits of Using the MEGA Statistical Process Control Eindhoven EURANDOM November 005 Benefits of Using the MEGA Statistical Process Control Santiago Vidal Puig Eindhoven EURANDOM November 005 Statistical Process Control: Univariate Charts USPC, MSPC and

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION ABSTRACT Presented in this paper is an approach to fault diagnosis based on a unifying review of linear Gaussian models. The unifying review draws together different algorithms such as PCA, factor analysis,

More information

Biostat 2065 Analysis of Incomplete Data

Biostat 2065 Analysis of Incomplete Data Biostat 2065 Analysis of Incomplete Data Gong Tang Dept of Biostatistics University of Pittsburgh October 20, 2005 1. Large-sample inference based on ML Let θ is the MLE, then the large-sample theory implies

More information

Research Article On the Charting Procedures: T 2 Chart and DD-Diagram

Research Article On the Charting Procedures: T 2 Chart and DD-Diagram Quality, Statistics, and Reliability Volume 2, Article ID 83764, 8 pages doi:.55/2/83764 Research Article On the Charting Procedures: T 2 Chart and DD-Diagram Mekki Hajlaoui Faculté des Sciences Economiques

More information

SYSTEM OPERATIONS. Dr. Frank A. Monforte

SYSTEM OPERATIONS. Dr. Frank A. Monforte SYSTEM OPERATIONS FORECASTING Dr. Frank A. Monforte Itron s Forecasting Brown Bag Seminar September 13, 2011 PLEASE REMEMBER» In order to help this session run smoothly, your phones are muted.» To make

More information

CLOUD NOWCASTING: MOTION ANALYSIS OF ALL-SKY IMAGES USING VELOCITY FIELDS

CLOUD NOWCASTING: MOTION ANALYSIS OF ALL-SKY IMAGES USING VELOCITY FIELDS CLOUD NOWCASTING: MOTION ANALYSIS OF ALL-SKY IMAGES USING VELOCITY FIELDS Yézer González 1, César López 1, Emilio Cuevas 2 1 Sieltec Canarias S.L. (Santa Cruz de Tenerife, Canary Islands, Spain. Tel. +34-922356013,

More information

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Simo Särkkä E-mail: simo.sarkka@hut.fi Aki Vehtari E-mail: aki.vehtari@hut.fi Jouko Lampinen E-mail: jouko.lampinen@hut.fi Abstract

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017 EKF and SLAM McGill COMP 765 Sept 18 th, 2017 Outline News and information Instructions for paper presentations Continue on Kalman filter: EKF and extension to mapping Example of a real mapping system:

More information