Monitoring and data filtering II. Dynamic Linear Models

Size: px
Start display at page:

Download "Monitoring and data filtering II. Dynamic Linear Models"

Transcription

1 Ouline Monioring and daa filering II. Dynamic Linear Models (Wes and Harrison, chaper 2 Updaing equaions: Kalman Filer Discoun facor as an aid o choose W Incorporae exernal informaion: Inervenion General form of he DLM Advanced Herd Managemen Cécile Cornou, IPH Examples Concluding remarks Dias 1 Dias 2 A Simple DLM Time series Y = (y 1,..., y n A DLM wih a rend Time series Y = (y 1,..., y n Observaion equaion: y = µ + v, v N(0, V Observaion equaion: y = µ + v, v N(0, V Like before: v = e s + e o The symbol µ is he underlying rue value a ime. Sysem equaion: µ = µ -1 + w, w N(0, W Sysem equaion: µ = µ -1 + β -1 + w 1, w 1 N(0, W 1 β = β -1 + w 2, w 2 N(0, W 2 The rue value is no any longer assumed o be consan. A fair assumpion in animal producion Basically, we wish o deec large changes in µ Dias 3 Dias 4 Updaing equaions: Kalman Filer (a Poserior for µ -1 : (µ -1 D -1 N(m -1, C -1 (b Prior for µ : (µ D -1 N(m -1, R where R = C -1 + W (c 1-sep forecas: (Y D -1 N(f, Q where f = m -1 and Q = R + V (d Poserior for µ : (µ D N(m, C Discoun facor as an aid o choosing W To run he model (assume wih consan parameers we need: m 0, C 0, V, W Discoun facor can be used if W is unknown we know ha W is a fixed proporion of C (Wes & Harrison R = C -1 + W R = C -1 / δ Typically 0.8 < δ < 1 wih m = m -1 + A.e and C = A.V where A = R / Q and e = Y - f Iniial Informaion: (µ 0 D 0 N(m 0, C 0 Dias 5 Dias 6 1

2 Incorporae exernal informaion: inervenion Types of exernal informaion: Known effec, experienced before (ex: change in breed for which we know he differen performances We wan he model o adap o he new known condiions Inervenion - 1. Known effec We wan he model o adap o he new known condiions Ex: Kurri example from Wes and Harrison (2.3.2 Esimaed mean afer change: 286 (vs. 143 Expeced change = 143 ( Dias 7 2. Unknown effec (ex: wave of hea, inroducion of new animals in a group We wan he model o adap o he new unknown condiions 3. Unknown effec we wan o measure (ex: change of feed composiion, new veerinary reamens We wan o measure he effec of a volonary change Uncerainy: from 80 (pessimisic o 200 (opimisic Dias 8 σ = 30 ( = ( / 4 : 4 s.dev (95% inerval Variance associaed (Uncerainy = 30 2 = 900 (ω 10 D 9, S 9 N (143, 900 Revised one-sep ahead forecas: (µ D -1 N(m -1, R (µ 10 D 9, S 9 N (286, 920 m 9 = 286 and R 10 = C 9 + W 10 = = 920 Inervenion - 2. Unknown effec (1/2 We wan he model o adap o he new unknown condiions Ex 1: wave of hea We can no adjus because we do no know he exac effec Ex 2: inroducion of new animals in a group Consider a mehod aimed o deec oesrus by monioring animal behaviour Incoming animals may modify he behaviour of he group Inervenion - 2. Unknown effec (2/2 In pracice we can emporarily reduce he value of he discoun facor so he evoluion variance increases We pu more weigh on he new observaions and forge abou he pas Here, inervenion aimed o increase model adapaion o new behaviour so o avoid alarms due o a known even See also eaing rank Dias 9 Dias 10 Inervenion - 3. Unknown effec We wan o measure he effec of a volonary change Ex: A new feed is used and we wan o esimae he associaed change in daily gain We know ha he new feed is used from ime τ (0 < τ < n y = µ + λ I + v, v N(0, V µ = µ -1 + w, w N(0, W Wih: I : inervenion effec ha we wan o measure λ = 0 when < τ λ = 1 when > τ The general DLM Generalisaion from he 1.order pol. Model Simple, mos widely used DLM Marix noaion allows o presen he DLM in a general form and o rea more complex cases Three examples of applicaion Monioring aciviy level Monioring aciviy ypes (MPKF Monioring eaing behaviour Dias 11 Dias 12 2

3 Modeling of he variable Dynamic Linear Models (DLMs combined wih Kalman Filer (KF Le Y = (y 1,, yn be a vecor of key figures observed a ime. Le θ = (θ 1,, θm be a vecor of parameers describing he sysem a ime. General form of he DLM Observaion Equaion: Y = F θ + ν, ν ~ N(0,V Sysem Equaion: θ = G θ -1 + ω, ω ~ N(0,W Monioring Deviaions from he model V-mask (parameers d and Ψ Applied on he cumulaive sum (cusum of he sandardized errors u = e / Q C = u = u + c = 1 1 DLM combined wih Kalman Filer: esimae he underlying sae vecor θ by is mean vecor m and is variance-covariance marix C. Elemens from KF used in monioring deviaions: f : One sep forecas mean e : One sep forecas error (e = Y f Q : One sep forecas variance Tabular Cusum (parameers K and H Creae a cusum: accumulae u i, using a reference value (K Alarm when cusum exceeds a decision inerval (H Dias 13 Dias 14 Example 1. Monioring aciviy level Conex Developmen of Group housing in EU resuls of Council Direcive 2001/88/EEC Difficulies idenifying and accessing individual sow Oesrus Deecion Oesrus Deecion I (from day 4 BPT (3 x / day in he maing secion Sow no inseminaed Transfered o gesaion secion Idea Sore daa in a chip and ransmi info o he farmer s PC Sensor in he chip allows o monior aciviy of he sow Assumpion Body Aciviy of sows is expeced o change around he onse of oesrus Objecive Develop an auomaed oesrus deecion mehod for group housed sows using sows acceleraion measuremens Mehod Use of Dynamic Linear Models o model he sows aciviy Use of conrol mehods ha deecs model deviaions a he onse of oesrus Dias 15 Weaning Oesrus Deecion II (from day 21 BPT (3 x / day in he gesaion secion d0 Dias 16 Golden Sandard Deec wheher aciviy paern changes a onse of oesrus BPT I Transfer d7 d10 Acceleraion measuremens d21 BPT II d30 Daa collecion Definiion of he DLM Place, Animals, Housing and Feeding 1 producion herd, March sows in group of days Aciviy Measuremens Acceleraion in 2 and 3 dimensions Four measuremens per second Transfer PC via Blue Tooh Video Recordings Four cameras used as web cam Oesrus Deecion Golden sandard Deec wheher aciviy paern changes a onse of oesrus Use hourly averages of he lengh of he acceleraion vecor µ = 0 V = unknow and consan Y = acc = (acc x2 + acc y2 + acc z2 θ F' = ( 1,0 W = 0 (In normal condiion: no change in aciviy Model iniialized by mean of Reference Analysis G = I Model observaions (Y weighed by number of observaions per hour Missing observaion: e =0 Dias 17 Dias 18 3

4 Illusraion Model Example 2. Monioring sows aciviy ypes Assumpion Daily Anoesrus Cusum Sow s behaviour is affeced by physiological sae / illness Oesrus: increase in aciviy Lameness: walking Daily Oesrus V-mask Acceleromeer: measured any ime / during whole reproducive cycle Objecive Tabular Cusum Develop a mehod ha auomaically classify sows aciviy ypes Model seleced aciviy ypes using DLM Classify each aciviy ype using a Muli Process Kalman Filer Dias 19 Dias 20 Time series and aciviy ypes Acceleraion daa Aciviy ypes Exracs from ime series of acceleraion are associaed o five aciviy ypes Feeding (FE Rooing (RO Walking (WA Lying sernally (LS Lying Laerally (LL 3 dimensions: X,Y, Z ACC = (acc x2 + acc y2 + acc z2 Two daa ses Aciviy filled whole daa se / no overlapping Learning daa se: 10 minues of each aciviy ype Esimae he model parameers Tes daa se: 10 x 2 minues of each aciviy ype Implemen he classificaion mehod X Y Z ACC Dias 21 Dias 22 Modeling each aciviy ype Classificaion mehod Use averages per second of acceleraion daa µ θ = s c 2π 2π ' = 1,sin,cos T T F G = I Model includes a periodic movemen cyclic componens V and W: esimaed using he EM algorihm Learning daa se 20 DLMs 5 aciviies x 4 axes (X, Y, Z, ACC Muli Process Kalman Filer of class I A ime : Each DLM is analysed using he updaing equaions of he Kalman Filer: One sep forecas mean f One sep forecas variance Q Poserior Probabiliies are esimaed for each DLM p ( i φ ( i p 1( i Dias 23 Dias 24 4

5 Classificaion mehod Illusraion: walking aciviy Resuls FE: bes recognized WA: axis Z beer RO: slow recogniion LL: axis Y beer LS: well recognized Perspecives Applicaion? Acive vs. Passive Illness Paruriion Example 3. Modeling Eaing Behaviour Assumpion Sow s feeding behaviour is affeced by oesrus and illness Currenly: lis of sows ha have no eaen is used o idenify individuals Objecive Develop a mehod ha auomaically deec oesrus, lameness and oher healh disorders for sows fed by ESF Model feeding behaviour (Feeding rank using DLM Deec deviaions by mean of conrol char Axis z Sed og dao (Indsæ --> Diasnummer Dias 25 Dias 26 Daa collecion Modeling of he variable Place, Housing and Feeding 3 producion herds, January 2005 January 2006 Herds 1 and 2: dynamic groups Herd 3: saic groups Elecronic Sow Feeders (ESF Regisraion ESF Oesrus (BPT Lameness and Healh disorders Use daily Feeding Rank (Y µ = β θ F' = ( 1,0 V assumed unknow and consan W esimaed by discoun facor Missing observaion : e =0 Exernal informaion: subgroup of sows eners or leaves a group or boh : Lower discouning G 1 = Dias 27 Dias 28 Deecion mehod Opimizaion of V-mask parameers for 3 condiions i oesrus ii lameness iii Oher healh disorders Crieria Sensiiviy of a leas 50% Number of FP is minimum Illusraion - Inervenion Subgroup in Subgroup in + ou Individual eaing rank Model forecas Increase Adapive Coefficien Dias 29 Dias 30 5

6 g g g g Resuls Example Daily Gain (from firs lecure i Oesrus deecion Sensiiviy ranges from 59 o 75% (vs. Lis of sows: 9 o 20% Marices Specificaion ii Lameness and iii Oher healh disorders Sensiiviy ranges from 41 o 70% (vs. Lis of sows: 22 o 39% Too many false alarms Perspecives Include Seasonal componens Include oher variables: e.g. ear base emperaure, aciviy Mulivariae model Dias 31 Dias 32 Example Daily Gain (from firs lecure Daily gain, slaugher pigs Observed gain Daily gain, slaugher pigs Prediced gain Seasons Daily gain, slaugher pigs Observed gain Prediced gain Level Season 1 Season 2 Season 3 Season Daily gain, slaugher pigs 2. kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral kvaral 01 Trend Errors Concluding remarks Differens Models were presened Simple local level model DLM in is general form Examples The general form of he model allow o include cyclic paern (as for eaing aciviy, daily gain Thomas Nejsum Madsen will presen an approach based on sine funcions o incorporae a diurnal paern. No necessarily as graphs auomaic alarms (as V mask. Many handles o adjus dangerous Always combine wih your knowledge on animal producion Season 1 Season 2 Season 3 Season 4 Forecas error Lower limi Upper limi Dias 33 Dias 34 6

Monitoring and data filtering II. Dynamic Linear Models

Monitoring and data filtering II. Dynamic Linear Models Monitoring and data filtering II. Dynamic Linear Models Advanced Herd Management Cécile Cornou, IPH Dias 1 Program for monitoring and data filtering Friday 26 (morning) - Lecture for part I : use of control

More information

Monitoring and data filtering III. The Kalman Filter and its relation with the other methods

Monitoring and data filtering III. The Kalman Filter and its relation with the other methods Monitoring and data filtering III. The Kalman Filter and its relation with the other methods Advanced Herd Management Cécile Cornou, IPH Dias 1 Gain (g) Before this part of the course Compare key figures

More information

Tracking. Announcements

Tracking. Announcements Tracking Tuesday, Nov 24 Krisen Grauman UT Ausin Announcemens Pse 5 ou onigh, due 12/4 Shorer assignmen Auo exension il 12/8 I will no hold office hours omorrow 5 6 pm due o Thanksgiving 1 Las ime: Moion

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad,

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad, GINI MEAN DIFFEENCE AND EWMA CHATS Muhammad iaz, Deparmen of Saisics, Quaid-e-Azam Universiy Islamabad, Pakisan. E-Mail: riaz76qau@yahoo.com Saddam Akbar Abbasi, Deparmen of Saisics, Quaid-e-Azam Universiy

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Lecture 3: Exponential Smoothing

Lecture 3: Exponential Smoothing NATCOR: Forecasing & Predicive Analyics Lecure 3: Exponenial Smoohing John Boylan Lancaser Cenre for Forecasing Deparmen of Managemen Science Mehods and Models Forecasing Mehod A (numerical) procedure

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

The complexity of climate model drifts

The complexity of climate model drifts The complexiy of climae model drifs Davide Zanchein Angelo Rubino Maeregu Arisido Carlo Gaean Universiy of Venice, Dep. of Environmeal Sc., Informaics and Saisics A conribuion o PREFACE-WP10: (Saisical

More information

מקורות לחומר בשיעור ספר הלימוד: Forsyth & Ponce מאמרים שונים חומר באינטרנט! פרק פרק 18

מקורות לחומר בשיעור ספר הלימוד: Forsyth & Ponce מאמרים שונים חומר באינטרנט! פרק פרק 18 עקיבה מקורות לחומר בשיעור ספר הלימוד: פרק 5..2 Forsh & once פרק 8 מאמרים שונים חומר באינטרנט! Toda Tracking wih Dnamics Deecion vs. Tracking Tracking as probabilisic inference redicion and Correcion Linear

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Monitoring and data filtering II. Dan Jensen IPH, KU

Monitoring and data filtering II. Dan Jensen IPH, KU Monitoring and data filtering II Dan Jensen IPH, KU Outline Introduction to Dynamic Linear Models (DLM) - Conceptual introduction - Difference between the Classical methods and DLM - A very simple DLM

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes WHAT IS A KALMAN FILTER An recursive analyical echnique o esimae ime dependen physical parameers in he presence of noise processes Example of a ime and frequency applicaion: Offse beween wo clocks PREDICTORS,

More information

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand Excel-Based Soluion Mehod For The Opimal Policy Of The Hadley And Whiin s Exac Model Wih Arma Demand Kal Nami School of Business and Economics Winson Salem Sae Universiy Winson Salem, NC 27110 Phone: (336)750-2338

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

THE CUSUM VERSUS MCUSUM MODIFIED CONTROL CHARTS WHEN APPLIED ON DIESEL ENGINES PARAMETERS CONTROL

THE CUSUM VERSUS MCUSUM MODIFIED CONTROL CHARTS WHEN APPLIED ON DIESEL ENGINES PARAMETERS CONTROL Proceedings of he 6h Inernaional Conference on Mechanics and Maerials in Design, Ediors: J.F. Silva Gomes & S.A. Meguid, P.Delgada/Azores, 26-30 July 2015 PAPER REF: 5649 THE CUSUM VERSUS MCUSUM MODIFIED

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Temporal probability models. Chapter 15, Sections 1 5 1

Temporal probability models. Chapter 15, Sections 1 5 1 Temporal probabiliy models Chaper 15, Secions 1 5 Chaper 15, Secions 1 5 1 Ouline Time and uncerainy Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic Bayesian

More information

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error Filering Turbulen Signals Using Gaussian and non-gaussian Filers wih Model Error June 3, 3 Nan Chen Cener for Amosphere Ocean Science (CAOS) Couran Insiue of Sciences New York Universiy / I. Ouline Use

More information

Time series model fitting via Kalman smoothing and EM estimation in TimeModels.jl

Time series model fitting via Kalman smoothing and EM estimation in TimeModels.jl Time series model fiing via Kalman smoohing and EM esimaion in TimeModels.jl Gord Sephen Las updaed: January 206 Conens Inroducion 2. Moivaion and Acknowledgemens....................... 2.2 Noaion......................................

More information

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif Chaper Kalman Filers. Inroducion We describe Bayesian Learning for sequenial esimaion of parameers (eg. means, AR coeciens). The updae procedures are known as Kalman Filers. We show how Dynamic Linear

More information

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear In The name of God Lecure4: Percepron and AALIE r. Majid MjidGhoshunih Inroducion The Rosenbla s LMS algorihm for Percepron 958 is buil around a linear neuron a neuron ih a linear acivaion funcion. Hoever,

More information

CSE-473. A Gentle Introduction to Particle Filters

CSE-473. A Gentle Introduction to Particle Filters CSE-473 A Genle Inroducion o Paricle Filers Bayes Filers for Robo Localizaion Dieer Fo 2 Bayes Filers: Framework Given: Sream of observaions z and acion daa u: d Sensor model Pz. = { u, z2, u 1, z 1 Dynamics

More information

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian CS 4495 Compuer Vision A. Bobick CS 4495 Compuer Vision - KalmanGaussian Aaron Bobick School of Ineracive Compuing CS 4495 Compuer Vision A. Bobick Adminisrivia S5 will be ou his Thurs Due Sun Nov h :55pm

More information

Forward guidance. Fed funds target during /15/2017

Forward guidance. Fed funds target during /15/2017 Forward guidance Fed funds arge during 2004 A. A wo-dimensional characerizaion of moneary shocks (Gürkynak, Sack, and Swanson, 2005) B. Odyssean versus Delphic foreign guidance (Campbell e al., 2012) C.

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

Presentation Overview

Presentation Overview Acion Refinemen in Reinforcemen Learning by Probabiliy Smoohing By Thomas G. Dieerich & Didac Busques Speaer: Kai Xu Presenaion Overview Bacground The Probabiliy Smoohing Mehod Experimenal Sudy of Acion

More information

Using the Kalman filter Extended Kalman filter

Using the Kalman filter Extended Kalman filter Using he Kalman filer Eended Kalman filer Doz. G. Bleser Prof. Sricker Compuer Vision: Objec and People Tracking SA- Ouline Recap: Kalman filer algorihm Using Kalman filers Eended Kalman filer algorihm

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

An Adaptive Generalized Likelihood Ratio Control Chart for Detecting an Unknown Mean Pattern

An Adaptive Generalized Likelihood Ratio Control Chart for Detecting an Unknown Mean Pattern An adapive GLR conrol char... 1/32 An Adapive Generalized Likelihood Raio Conrol Char for Deecing an Unknown Mean Paern GIOVANNA CAPIZZI and GUIDO MASAROTTO Deparmen of Saisical Sciences Universiy of Padua

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM Shinsuke KOBAYASHI, Shogo MURAMATSU, Hisakazu KIKUCHI, Masahiro IWAHASHI Dep. of Elecrical and Elecronic Eng., Niigaa Universiy, 8050 2-no-cho Igarashi,

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani Feb 6-8, 208 Recen Developmens In Evoluionary Daa Assimilaion And Model Uncerainy Esimaion For Hydrologic Forecasing Hamid Moradkhani Cener for Complex Hydrosysems Research Deparmen of Civil, Consrucion

More information

Errata (1 st Edition)

Errata (1 st Edition) P Sandborn, os Analysis of Elecronic Sysems, s Ediion, orld Scienific, Singapore, 03 Erraa ( s Ediion) S K 05D Page 8 Equaion (7) should be, E 05D E Nu e S K he L appearing in he equaion in he book does

More information

A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean

A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean Journal of Modern Applied Saisical Mehods Volume 5 Issue Aricle --005 A Robus Exponenially Weighed Moving Average Conrol Char for he Process Mean Michael B. C. Khoo Universii Sains, Malaysia, mkbc@usm.my

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Anti-Disturbance Control for Multiple Disturbances

Anti-Disturbance Control for Multiple Disturbances Workshop a 3 ACC Ani-Disurbance Conrol for Muliple Disurbances Lei Guo (lguo@buaa.edu.cn) Naional Key Laboraory on Science and Technology on Aircraf Conrol, Beihang Universiy, Beijing, 9, P.R. China. Presened

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Independent component analysis for nonminimum phase systems using H filters

Independent component analysis for nonminimum phase systems using H filters Independen componen analysis for nonminimum phase sysems using H filers Shuichi Fukunaga, Kenji Fujimoo Deparmen of Mechanical Science and Engineering, Graduae Shool of Engineering, Nagoya Universiy, Furo-cho,

More information

Ready for euro? Empirical study of the actual monetary policy independence in Poland VECM modelling

Ready for euro? Empirical study of the actual monetary policy independence in Poland VECM modelling Macroeconomerics Handou 2 Ready for euro? Empirical sudy of he acual moneary policy independence in Poland VECM modelling 1. Inroducion This classes are based on: Łukasz Goczek & Dagmara Mycielska, 2013.

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Data Fusion using Kalman Filter. Ioannis Rekleitis

Data Fusion using Kalman Filter. Ioannis Rekleitis Daa Fusion using Kalman Filer Ioannis Rekleiis Eample of a arameerized Baesian Filer: Kalman Filer Kalman filers (KF represen poserior belief b a Gaussian (normal disribuion A -d Gaussian disribuion is

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Kalman filtering for maximum likelihood estimation given corrupted observations.

Kalman filtering for maximum likelihood estimation given corrupted observations. alman filering maimum likelihood esimaion given corruped observaions... Holmes Naional Marine isheries Service Inroducion he alman filer is used o eend likelihood esimaion o cases wih hidden saes such

More information

BU Macro BU Macro Fall 2008, Lecture 4

BU Macro BU Macro Fall 2008, Lecture 4 Dynamic Programming BU Macro 2008 Lecure 4 1 Ouline 1. Cerainy opimizaion problem used o illusrae: a. Resricions on exogenous variables b. Value funcion c. Policy funcion d. The Bellman equaion and an

More information

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2 Financial Economerics Kalman Filer: some applicaions o Finance Universiy of Evry - Maser 2 Eric Bouyé January 27, 2009 Conens 1 Sae-space models 2 2 The Scalar Kalman Filer 2 21 Presenaion 2 22 Summary

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Maintenance Models. Prof. Robert C. Leachman IEOR 130, Methods of Manufacturing Improvement Spring, 2011

Maintenance Models. Prof. Robert C. Leachman IEOR 130, Methods of Manufacturing Improvement Spring, 2011 Mainenance Models Prof Rober C Leachman IEOR 3, Mehods of Manufacuring Improvemen Spring, Inroducion The mainenance of complex equipmen ofen accouns for a large porion of he coss associaed wih ha equipmen

More information

EKF SLAM vs. FastSLAM A Comparison

EKF SLAM vs. FastSLAM A Comparison vs. A Comparison Michael Calonder, Compuer Vision Lab Swiss Federal Insiue of Technology, Lausanne EPFL) michael.calonder@epfl.ch The wo algorihms are described wih a planar robo applicaion in mind. Generalizaion

More information

Exponentially Weighted Moving Average (EWMA) Chart Based on Six Delta Initiatives

Exponentially Weighted Moving Average (EWMA) Chart Based on Six Delta Initiatives hps://doi.org/0.545/mjis.08.600 Exponenially Weighed Moving Average (EWMA) Char Based on Six Dela Iniiaives KALPESH S. TAILOR Deparmen of Saisics, M. K. Bhavnagar Universiy, Bhavnagar-36400 E-mail: kalpesh_lr@yahoo.co.in

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM Robo Moion Model EKF based Localizaion EKF SLAM Graph SLAM General Robo Moion Model Robo sae v r Conrol a ime Sae updae model Noise model of robo conrol Noise model of conrol Robo moion model

More information

Chapter 5 Digital PID control algorithm. Hesheng Wang Department of Automation,SJTU 2016,03

Chapter 5 Digital PID control algorithm. Hesheng Wang Department of Automation,SJTU 2016,03 Chaper 5 Digial PID conrol algorihm Hesheng Wang Deparmen of Auomaion,SJTU 216,3 Ouline Absrac Quasi-coninuous PID conrol algorihm Improvemen of sandard PID algorihm Choosing parameer of PID regulaor Brief

More information

An Improved Adaptive CUSUM Control Chart for Monitoring Process Mean

An Improved Adaptive CUSUM Control Chart for Monitoring Process Mean An Improved Adapive CUSUM Conrol Char for Monioring Process Mean Jun Du School of Managemen Tianjin Universiy Tianjin 37, China Zhang Wu, Roger J. Jiao School of Mechanical and Aerospace Engineering Nanyang

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

Temporal probability models

Temporal probability models Temporal probabiliy models CS194-10 Fall 2011 Lecure 25 CS194-10 Fall 2011 Lecure 25 1 Ouline Hidden variables Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic

More information

Recursive Estimation and Identification of Time-Varying Long- Term Fading Channels

Recursive Estimation and Identification of Time-Varying Long- Term Fading Channels Recursive Esimaion and Idenificaion of ime-varying Long- erm Fading Channels Mohammed M. Olama, Kiran K. Jaladhi, Seddi M. Djouadi, and Charalambos D. Charalambous 2 Universiy of ennessee Deparmen of Elecrical

More information

Development of a new metrological model for measuring of the water surface evaporation Tovmach L. Tovmach Yr. Abstract Introduction

Development of a new metrological model for measuring of the water surface evaporation Tovmach L. Tovmach Yr. Abstract Introduction Developmen of a new merological model for measuring of he waer surface evaporaion Tovmach L. Tovmach Yr. Sae Hydrological Insiue 23 Second Line, 199053 S. Peersburg, Russian Federaion Telephone (812) 323

More information

Y, where. 1 Estimate St.error

Y, where. 1 Estimate St.error 1 HG Feb 2014 ECON 5101 Exercises III - 24 Feb 2014 Exercise 1 In lecure noes 3 (LN3 page 11) we esimaed an ARMA(1,2) for daa) for he period, 1978q2-2013q2 Le Y ln BNP ln BNP (Norwegian Model: Y Y, where

More information

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1 SZG Macro 2011 Lecure 3: Dynamic Programming SZG macro 2011 lecure 3 1 Background Our previous discussion of opimal consumpion over ime and of opimal capial accumulaion sugges sudying he general decision

More information

Reconstructing the power grid dynamic model from sparse measurements

Reconstructing the power grid dynamic model from sparse measurements Reconsrucing he power grid dynamic model from sparse measuremens Andrey Lokhov wih Michael Cherkov, Deepjyoi Deka, Sidhan Misra, Marc Vuffray Los Alamos Naional Laboraory Banff, Canada Moivaion: learning

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan Tracking Man slides adaped from Krisen Grauman Deva Ramanan Coures G. Hager Coures G. Hager J. Kosecka cs3b Adapive Human-Moion Tracking Acquisiion Decimaion b facor 5 Moion deecor Grascale convers. Image

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information