Reconstructing the power grid dynamic model from sparse measurements

Size: px
Start display at page:

Download "Reconstructing the power grid dynamic model from sparse measurements"

Transcription

1 Reconsrucing he power grid dynamic model from sparse measuremens Andrey Lokhov wih Michael Cherkov, Deepjyoi Deka, Sidhan Misra, Marc Vuffray Los Alamos Naional Laboraory Banff, Canada

2 Moivaion: learning from correlaed samples, or ime series Assume linear dynamics: Ẋ () = AX () + ξ(), wih ξ() Gaussian noise Given N ime series, is i possible o reconsruc he srucure and parameers of A? x 1 1 x 2 x N. 2 A 12 N

3 Moivaion: learning from correlaed samples, or ime series Assume linear dynamics: Ẋ () = AX () + ξ(), wih ξ() Gaussian noise Given N ime series, is i possible o reconsruc he srucure and parameers of A? x 1 1 x 2 x N. 2 A 12 N Wha happens if only N O < N ime series are observed? X = X O X H

4 Example: graph-based anomaly deecion in cyber-physical sysems Task: deec and localize aacks on CPS using physical measuremens Smar Facories & Indusry Criical Infrasrucures & Smar Grid SCADA Aacked nodes Self-Driving Cars and Avionics Complex Transporaion Approach: assuming linearized dynamics, learn he normal graph and monior changes Normal operaion Seing: srucure unknown, usually no hidden nodes Faul or aack

5 Example: reconsrucing he power grid dynamics Sae esimaion and parameer learning in dynamics of he ransmission power grid θ i = f i, M i ḟ i + τ i f i = p i j i β ij (θ i θ j ) + ξ i (). Task: reconsruc parameers of generaors and lines (evolve slowly, hours) and injecions and consumpions (evolve rapidly, minues) from sensor measuremens θ 1 θ 3 θ 4 θ 2 Seing: srucure known, bu hidden observaions (sparsely locaed PMUs)

6 Reducion o he saic problem? For sable sysems: explore Lyapunov equaion for he saionary covariance marix AΣ + ΣA + I = 0 [Wang, Bialek, Turisyn 2015], [Zare, Jovanović, Georgiou 2016] Disadvanages: requires knowledge of some par of A, hard o generalize o hidden case Subsampling independen samples: use saic Gaussian graphical model learning Disadvanages: only saionary regime, wasing samples (desiring log N samples), Σ has less informaion (supp(a) supp(σ 1 )) 0.0 i.i.d. samples 0.1 (b) 10:00 10:30 11:00 11:30 12:00 0 (c) 10:00 10:30 11:00 11:30 12:00 0

7 In wha follows For simpliciy, consider discree-ime dynamics: X +1 = AX + ξ, wih ξ whie noise! Complee observaions on all nodes (a) Known graph srucure: leas-squares objecive (b) Unknown graph: l 1 and l 0 regularizaions! Parially observed sysem (a) Known graph: convex formulaion, incomplee soluion (b) Unknown graph: sparsiy and low-rank regularizaions (c) Non-convex EM-ype algorihm Remark: Inuiively and rigorously [Beno e al., 2010], in he case of coninuous equaions, here exiss an opimal discreizaion sep

8 Complee observaions: known graph srucure Assuming he uniform prior on A, P(A X, ξ) exp( T 1 =1 T 1 Â MMSE = Â MAP = argmin X +1 AX 2 A =1 X +1 AX 2 /2σ 2 ) For a sufficien number of samples M N, Â = ( T 1 =1 X +1 X ) ( T X X =1 ) = Σ,+1 (Σ, ) A = Âij

9 Unknown graph and high-dimensional regime Regularized leas-squares: [Beno, Ibrahimi, Monanari 2010] Â = argmin A ( T 1 =1 X +1 AX 2 + λ A 1 ) Reconsrucs graph srucure wih M log N samples under incoherence condiion and assumpions on (λ min, λ max ) of covariance marix Open quesion: similarly o he Gaussian GM selecion, assumpions-free algorihm? Candidae: non-convex l 0 sparsiy consrain [Misra, Vuffray, AL, Cherkov 2017]

10 Parial observaions: convex formulaion Likelihood of observaions: P(Ã O X, ξ) = dx H P(A X, ξ), X H Leads o a convex Lasso ype formulaion for small H : (Â O, ˆL) = argmin A O,L [ T 1 =1 Ã O = A O A OH A 1 H A HO A O + L X O +1 (A O + L)X O 2 + λ 1 A O 1 + λ 2 L ] Adapaion of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012] M log N under incoherence assumpion. If he graph is known, one could furher aemp o decompose he marix L ino sparse facors, see e.g. [Wien, Tibshirani, Hasie 2009]. Open quesion: is i possible o devise assumpions-free algorihm? Candidae: non-convex explici rank consrain rank(l) H [Yuan & Laurizen, Meinshausen 2012] ogeher wih an l 0 sparsiy consrain [Misra, Vuffray, AL, Cherkov 2017]

11 Parial observaions: convex formulaion Likelihood of observaions: P(Ã O X, ξ) = dx H P(A X, ξ), X H Leads o a convex Lasso ype formulaion for small H : (Â O, ˆL) = argmin A O,L [ T 1 =1 Ã O = A O A OH A 1 H A HO A O + L X O +1 (A O + L)X O 2 + λ 1 A O 1 + λ 2 L ] Adapaion of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012] M log N under incoherence assumpion. If he graph is known, one could furher aemp o decompose he marix L ino sparse facors, see e.g. [Wien, Tibshirani, Hasie 2009]. Open quesion: is i possible o devise assumpions-free algorihm? Candidae: non-convex explici rank consrain rank(l) H [Yuan & Laurizen, Meinshausen 2012] ogeher wih an l 0 sparsiy consrain [Misra, Vuffray, AL, Cherkov 2017]

12 Parial observaions: convex formulaion Likelihood of observaions: P(Ã O X, ξ) = dx H P(A X, ξ), X H Leads o a convex Lasso ype formulaion for small H : (Â O, ˆL) = argmin A O,L [ T 1 =1 Ã O = A O A OH A 1 H A HO A O + L X O +1 (A O + L)X O 2 + λ 1 A O 1 + λ 2 L ] Adapaion of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012] M log N under incoherence assumpion. If he graph is known, one could furher aemp o decompose he marix L ino sparse facors, see e.g. [Wien, Tibshirani, Hasie 2009]. Open quesion: is i possible o devise assumpions-free algorihm? Candidae: non-convex explici rank consrain rank(l) H [Yuan & Laurizen, Meinshausen 2012] ogeher wih an l 0 sparsiy consrain [Misra, Vuffray, AL, Cherkov 2017]

13 Parial observaions: alernaive convex formulaion Likelihood P(A X, ξ) can be rewrien in he saic form over he rajecories: P(A X, ξ) ( de B exp X BX ), X [X=1,..., X =T ], A A B = A A 1 + A A A A 1 + A A A A A A A 1 Likelihood of observaions: P( B O X, ξ) = dx H P(B X, ξ), X H B O = B O B OH B 1 H B HO Leads o a Graph Lasso ype convex formulaion for B O L 0 and L 0: [ ] (ˆB O, ˆL) = argmin r(σ(b O L)) log de(b O L) + λ 1 B O 1 + λ 2 r(l) B O,L Adapaion of [Chandrasekaran, Parillo and Willsky 2012]

14 Parial observaions: alernaive convex formulaion Likelihood P(A X, ξ) can be rewrien in he saic form over he rajecories: P(A X, ξ) ( de B exp X BX ), X [X=1,..., X =T ], A A B = A A 1 + A A A A 1 + A A A A A A A 1 Likelihood of observaions: P( B O X, ξ) = dx H P(B X, ξ), X H B O = B O B OH B 1 H B HO Leads o a Graph Lasso ype convex formulaion for B O L 0 and L 0: [ ] (ˆB O, ˆL) = argmin r(σ(b O L)) log de(b O L) + λ 1 B O 1 + λ 2 r(l) B O,L Adapaion of [Chandrasekaran, Parillo and Willsky 2012]

15 Parial observaions: Expecaion-Maximizaion approach Given iniial guess A (s=0), ierae unil convergence: Expecaion: compue Q(A, A (s) ) = E [ P(A X O X H, ξ) X O, A (s)] Maximizaion: updae A (s+1) = argmax Q(A, A (s) ) A The closes reference [Shumway, Soffer 1982] No widely considered (hard o analyse), bu naural choice if he graph is known

16 Pah forward! Theoreical analysis of he algorihms! Esablishing bes algorihms in pracice (using modern solvers, EM)! Applicaion o he power grid and cyberphysical daa ses

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides Hidden Markov Models Adaped from Dr Caherine Sweeney-Reed s slides Summary Inroducion Descripion Cenral in HMM modelling Exensions Demonsraion Specificaion of an HMM Descripion N - number of saes Q = {q

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type EMS SCM join meeing Barcelona, May 28-30, 2015 On sochasic parial differenial equaions of parabolic ype Isván Gyöngy School of Mahemaics and Maxwell Insiue Edinburgh Universiy 1 I. Filering problem II.

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Understanding the asymptotic behaviour of empirical Bayes methods

Understanding the asymptotic behaviour of empirical Bayes methods Undersanding he asympoic behaviour of empirical Bayes mehods Boond Szabo, Aad van der Vaar and Harry van Zanen EURANDOM, 11.10.2011. Conens 2/20 Moivaion Nonparameric Bayesian saisics Signal in Whie noise

More information

Adaptation and Synchronization over a Network: stabilization without a reference model

Adaptation and Synchronization over a Network: stabilization without a reference model Adapaion and Synchronizaion over a Nework: sabilizaion wihou a reference model Travis E. Gibson (gibson@mi.edu) Harvard Medical School Deparmen of Pahology, Brigham and Women s Hospial 55 h Conference

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Initial Value Problems

Initial Value Problems Iniial Value Problems ChEn 2450 d d f(, ) (0) 0 6 ODE.key - November 26, 2014 Example - Cooking a Lobser Assumpions: The lobser remains a a uniform emperaure. This implies ha he hermal conduciviy of he

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS SEIF, EnKF, EKF SLAM Pieer Abbeel UC Berkeley EECS Informaion Filer From an analyical poin of view == Kalman filer Difference: keep rack of he inverse covariance raher han he covariance marix [maer of

More information

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand Excel-Based Soluion Mehod For The Opimal Policy Of The Hadley And Whiin s Exac Model Wih Arma Demand Kal Nami School of Business and Economics Winson Salem Sae Universiy Winson Salem, NC 27110 Phone: (336)750-2338

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

Moving Horizon Estimation for Staged QP Problems

Moving Horizon Estimation for Staged QP Problems 51s IEEE Conference on Decision and Conrol, Maui, HI, December 212 Moving Horizon Esimaion for Saged QP Problems Eric Chu, Arezou Keshavarz, Dimiry Gorinevsky, and Sephen Boyd Absrac his paper considers

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

Applications in Industry (Extended) Kalman Filter. Week Date Lecture Title

Applications in Industry (Extended) Kalman Filter. Week Date Lecture Title hp://elec34.com Applicaions in Indusry (Eended) Kalman Filer 26 School of Informaion echnology and Elecrical Engineering a he Universiy of Queensland Lecure Schedule: Week Dae Lecure ile 29-Feb Inroducion

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM Robo Moion Model EKF based Localizaion EKF SLAM Graph SLAM General Robo Moion Model Robo sae v r Conrol a ime Sae updae model Noise model of robo conrol Noise model of conrol Robo moion model

More information

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006 2.160 Sysem Idenificaion, Esimaion, and Learning Lecure Noes No. 8 March 6, 2006 4.9 Eended Kalman Filer In many pracical problems, he process dynamics are nonlinear. w Process Dynamics v y u Model (Linearized)

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

Online Learning of Power Transmission Dynamics

Online Learning of Power Transmission Dynamics Online Learning of Power Transmission Dynamics ndrey Y. Lokhov, Marc Vuffray, Dmiry Shemeov, Deepjyoi Deka and Michael Cherkov Theoreical Division, Los lamos Naional Laboraory, Los lamos, NM 87544 Cener

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2

Solutions to the Exam Digital Communications I given on the 11th of June = 111 and g 2. c 2 Soluions o he Exam Digial Communicaions I given on he 11h of June 2007 Quesion 1 (14p) a) (2p) If X and Y are independen Gaussian variables, hen E [ XY ]=0 always. (Answer wih RUE or FALSE) ANSWER: False.

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

Lecture 9: September 25

Lecture 9: September 25 0-725: Opimizaion Fall 202 Lecure 9: Sepember 25 Lecurer: Geoff Gordon/Ryan Tibshirani Scribes: Xuezhi Wang, Subhodeep Moira, Abhimanu Kumar Noe: LaTeX emplae couresy of UC Berkeley EECS dep. Disclaimer:

More information

Stochastic Model Predictive Control for Gust Alleviation during Aircraft Carrier Landing

Stochastic Model Predictive Control for Gust Alleviation during Aircraft Carrier Landing Ouline Moivaion Sochasic formulaion Sochasic Model Predicive Conrol for Gus Alleviaion during Aircraf Carrier Landing Aircraf and gus modeling Resuls Deparmen of Mechanical and Aerospace Engineering Rugers,

More information

2016 Possible Examination Questions. Robotics CSCE 574

2016 Possible Examination Questions. Robotics CSCE 574 206 Possible Examinaion Quesions Roboics CSCE 574 ) Wha are he differences beween Hydraulic drive and Shape Memory Alloy drive? Name one applicaion in which each one of hem is appropriae. 2) Wha are he

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Temporal probability models

Temporal probability models Temporal probabiliy models CS194-10 Fall 2011 Lecure 25 CS194-10 Fall 2011 Lecure 25 1 Ouline Hidden variables Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic

More information

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2 Financial Economerics Kalman Filer: some applicaions o Finance Universiy of Evry - Maser 2 Eric Bouyé January 27, 2009 Conens 1 Sae-space models 2 2 The Scalar Kalman Filer 2 21 Presenaion 2 22 Summary

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by: Naional

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

Machine Learning 4771

Machine Learning 4771 ony Jebara, Columbia Universiy achine Learning 4771 Insrucor: ony Jebara ony Jebara, Columbia Universiy opic 20 Hs wih Evidence H Collec H Evaluae H Disribue H Decode H Parameer Learning via JA & E ony

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

SOMETHING ELSE ABOUT GAUSSIAN HIDDEN MARKOV MODELS AND AIR POLLUTION DATA

SOMETHING ELSE ABOUT GAUSSIAN HIDDEN MARKOV MODELS AND AIR POLLUTION DATA UNIVERSIÀ CAOLICA DEL SACRO CUORE ISIUO DI SAISICA Robera AROLI e Luigi SEZIA SOMEHING ELSE ABOU GAUSSIAN HIDDEN MARKOV MODELS AND AIR OLLUION DAA Serie E N 96 - Marzo 2000 SOMEHING ELSE ABOU GAUSSIAN

More information

Probabilistic learning

Probabilistic learning Probabilisic learning Charles Elkan November 8, 2012 Imporan: These lecure noes are based closely on noes wrien by Lawrence Saul. Tex may be copied direcly from his noes, or paraphrased. Also, hese ypese

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

Stable approximations of optimal filters

Stable approximations of optimal filters Sable approximaions of opimal filers Joaquin Miguez Deparmen of Signal Theory & Communicaions, Universidad Carlos III de Madrid. E-mail: joaquin.miguez@uc3m.es Join work wih Dan Crisan (Imperial College

More information

Robust and Learning Control for Complex Systems

Robust and Learning Control for Complex Systems Robus and Learning Conrol for Complex Sysems Peer M. Young Sepember 13, 2007 & Talk Ouline Inroducion Robus Conroller Analysis and Design Theory Experimenal Applicaions Overview MIMO Robus HVAC Conrol

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Using the Kalman filter Extended Kalman filter

Using the Kalman filter Extended Kalman filter Using he Kalman filer Eended Kalman filer Doz. G. Bleser Prof. Sricker Compuer Vision: Objec and People Tracking SA- Ouline Recap: Kalman filer algorihm Using Kalman filers Eended Kalman filer algorihm

More information

On Solving the Perturbed Multi- Revolution Lambert Problem: Applications in Enhanced SSA

On Solving the Perturbed Multi- Revolution Lambert Problem: Applications in Enhanced SSA On Solving he Perurbed Muli- Revoluion Lamber Problem: Applicaions in Enhanced SSA John L. Junkins and Robyn M. Woollands Texas A&M Universiy Presened o Sacie Williams (AFOSR/RT) AFOSR REMOTE SENSING PORTFOLIO

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading Daa Assimilaion Alan O Neill Naional Cenre for Earh Observaion & Universiy of Reading Conens Moivaion Univariae scalar) daa assimilaion Mulivariae vecor) daa assimilaion Opimal Inerpoleion BLUE) 3d-Variaional

More information

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1 SZG Macro 2011 Lecure 3: Dynamic Programming SZG macro 2011 lecure 3 1 Background Our previous discussion of opimal consumpion over ime and of opimal capial accumulaion sugges sudying he general decision

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NCLIMATE893 Temporal resoluion and DICE * Supplemenal Informaion Alex L. Maren and Sephen C. Newbold Naional Cener for Environmenal Economics, US Environmenal Proecion

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

Independent component analysis for nonminimum phase systems using H filters

Independent component analysis for nonminimum phase systems using H filters Independen componen analysis for nonminimum phase sysems using H filers Shuichi Fukunaga, Kenji Fujimoo Deparmen of Mechanical Science and Engineering, Graduae Shool of Engineering, Nagoya Universiy, Furo-cho,

More information

Data Fusion using Kalman Filter. Ioannis Rekleitis

Data Fusion using Kalman Filter. Ioannis Rekleitis Daa Fusion using Kalman Filer Ioannis Rekleiis Eample of a arameerized Baesian Filer: Kalman Filer Kalman filers (KF represen poserior belief b a Gaussian (normal disribuion A -d Gaussian disribuion is

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection Appendix o Online l -Dicionary Learning wih Applicaion o Novel Documen Deecion Shiva Prasad Kasiviswanahan Huahua Wang Arindam Banerjee Prem Melville A Background abou ADMM In his secion, we give a brief

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Stochastic Signals and Systems

Stochastic Signals and Systems Sochasic Signals and Sysems Conens 1. Probabiliy Theory. Sochasic Processes 3. Parameer Esimaion 4. Signal Deecion 5. Specrum Analysis 6. Opimal Filering Chaper 6 / Sochasic Signals and Sysems / Prof.

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Tracking. Announcements

Tracking. Announcements Tracking Tuesday, Nov 24 Krisen Grauman UT Ausin Announcemens Pse 5 ou onigh, due 12/4 Shorer assignmen Auo exension il 12/8 I will no hold office hours omorrow 5 6 pm due o Thanksgiving 1 Las ime: Moion

More information

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research Graphical Even Models and Causal Even Models Chris Meek Microsof Research Graphical Models Defines a join disribuion P X over a se of variables X = X 1,, X n A graphical model M =< G, Θ > G =< X, E > is

More information

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 Expecaion- Maximizaion & Baum-Welch Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 1 The goal Inpu: incomplee daa originaing from a probabiliy disribuion wih some unknown parameers Wan o find

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c December 3, 208, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social planner

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

CS376 Computer Vision Lecture 6: Optical Flow

CS376 Computer Vision Lecture 6: Optical Flow CS376 Compuer Vision Lecure 6: Opical Flow Qiing Huang Feb. 11 h 2019 Slides Credi: Krisen Grauman and Sebasian Thrun, Michael Black, Marc Pollefeys Opical Flow mage racking 3D compuaion mage sequence

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

Structural Break Detection in Time Series Models

Structural Break Detection in Time Series Models Srucural Break Deecion in Time Series Models Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam Colorado Sae Universiy (hp://www.sa.colosae.edu/~rdavis/lecures) This research suppored in par by an IBM faculy

More information

Distributed Linear Supervisory Control

Distributed Linear Supervisory Control 3rd IEEE Conference on Decision and Conrol December -7, Los Angeles, California, USA Disribued Linear Supervisory Conrol Ali Khanafer, Tamer Başar, and Daniel Liberzon Absrac In his work, we propose a

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions Time discreizaion of quadraic and superquadraic Markovian BSDEs wih unbounded erminal condiions Adrien Richou Universié Bordeaux 1, INRIA équipe ALEA Oxford framework Le (Ω, F, P) be a probabiliy space,

More information

Kalman filtering for maximum likelihood estimation given corrupted observations.

Kalman filtering for maximum likelihood estimation given corrupted observations. alman filering maimum likelihood esimaion given corruped observaions... Holmes Naional Marine isheries Service Inroducion he alman filer is used o eend likelihood esimaion o cases wih hidden saes such

More information

Recursive Identification

Recursive Identification Chaper 8 Recursive Idenificaion Given a curren esimaed model and a new observaion, how should we updae his model in order o ake his new piece of informaion ino accoun? In many cases i is beneficial o have

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Optimal Investment under Dynamic Risk Constraints and Partial Information

Optimal Investment under Dynamic Risk Constraints and Partial Information Opimal Invesmen under Dynamic Risk Consrains and Parial Informaion Wolfgang Puschögl Johann Radon Insiue for Compuaional and Applied Mahemaics (RICAM) Ausrian Academy of Sciences www.ricam.oeaw.ac.a 2

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information