Machine Learning 4771

Size: px
Start display at page:

Download "Machine Learning 4771"

Transcription

1 ony Jebara, Columbia Universiy achine Learning 4771 Insrucor: ony Jebara

2 ony Jebara, Columbia Universiy opic 20 Hs wih Evidence H Collec H Evaluae H Disribue H Decode H Parameer Learning via JA & E

3 ony Jebara, Columbia Universiy Hs: JA wih Evidence If y seuence is observed (in problems 1,2,3 ge evidence: p( 0 p( 1 p,y 1 he poenials urn ino slices: ψ (, 0 1 ψ 0,y 0 φ ( 1 ς( 1 φ 0 ψ 1,y 1 Nex, pick a roo, for example righmos one: Collec all zea separaors boom up: ς * ( ψ,y p( y Collec lefmos phi separaor o he righ: x p( y ψ 0,y 0 φ * 0 ς * ( ψ,y x ψ 1,y 1 y δ( y 0 y 0 p y 0, 0 y 0 ς * ( ψ(,y p( y ψ( 1,

4 ony Jebara, Columbia Universiy Hs: Collec wih Evidence Now, we will collec (* along he backbone lef o righ Updae each cliue wih is lef and boom separaors: ( φ* ς * ( ψ * ( ψ * φ * +1 ψ( φ * ( p( y α φ * ( p( y α Keep going along chain unil righ mos node Noe: above formula for phi is recursive, could use as is. Propery: recall we had p y 0, 0 0 p y 0,y 1, 1 1 p y 0,,y, φ * 1 φ * 2 φ * +1 p( y 0, 0 φ * 0 p( y 1 1 p( 1 0 p( y 0,y 1, 1 p( y 2 2 p( 2 1 p( y 0,y 1,y 2, 2 p( y p( +1 p y 0,,y +1

5 ony Jebara, Columbia Universiy Hs: Evaluae wih Evidence Say we are solving he firs H problem: 1 Evaluae: given y 0,,y & θ compue p(y 0,,y θ If we wan o compue he likelihood, we are already done! We really jus need o do collec (no even disribue. From previous slide we had: p y 0,,y, φ * +1 p( y p( +1 p y 0,,y +1 Collec il roo (righmos node: is normalizer is p(evidence! p( y 0,,y, ( 1, p( y 0,,y, 1, Or use hypoheical φ * Can compue he likelihood jus by marginalizing his phi p( y 0,,y, p y 0,,y φ * So, adding up he enries in las φ* gives us he likelihood ψ * hypoheical

6 ony Jebara, Columbia Universiy Hs: Disribue wih Evidence Back o collecing say jus finished collecing o he roo wih our las updae formula: ψ * ( φ* 1 1, 1 ς * 1 ψ( 1, φ * ( 1 p( y α 1, Now, we disribue (** along he backbone righ o lef Have firs ** for roo (says he same: ψ ** 1, Sar going o he lef from here: ψ * ( 1, a b c d for -1 o 0 a b φ ** ( ψ ** +1 ψ ** ( ς ** +1 c d φ** +1 ψ ** ψ ** y, ψ* φ * +1 ς** ψ y, ς *

7 ony Jebara, Columbia Universiy H Example You are given he parameers of a 2-sae H. You observed he inpu seuence AB (from a 2-symbol alphabe A or B. In oher words, you observe wo symbols from your finie sae machine, A and hen B. Using he juncion ree algorihm, evaluae he likelihood of his daa p(y given your H and is parameers. Also compue (for decoding he individual marginals of he saes afer he evidence from his seuence is observed: p( 0 y and p( 1 y. he parameers for he H are provided below. hey are he iniial sae prior p( 0, he sae ransiion marix given by p( -1, and he emission marix p(y, respecively. π p( / 3 2 / a p( / 4 1 / 2 1/ 4 1 / 2 η p( y A B 1 / 2 1 / 3 1 / 2 2 / 3

8 H Example ony Jebara, Columbia Universiy

9 H Example ony Jebara, Columbia Universiy

10 ony Jebara, Columbia Universiy Hs: arginals & axdecoding Now ha JA is finished, we have he following: φ ** ( p( y 1,,y ς ** ( +1 p( +1 y 1,,y p( y 1,,y ψ ** he separaors define a disribuion over he hidden saes his gives he probabiliy he DNA symbol y was {I,E,P} We ve done 2 Decode: given y 0,,y & θ find p( 0,,p( Can also do 2 Decode: given y 0,,y & θ find 0,, We can also decode o find he mos likely pah 0 Here, we use he Argax JA algorihm Run JA bu replace sums wih max hen, find bigges enry in separaors: ˆ arg max φ ** 0 I I E E P G A C C

11 ony Jebara, Columbia Universiy Hs: E Learning Finally 3 ax Likelihood: given y 0,,y learn parameers θ Recall max likelihood: ˆθ arg maxθ log p( y θ If observe, i s easy o maximize he complee likelihood: log p(,y log p( 0 p( 1 1 log p( 0 + log p( 1 l θ ( p y + log p y 1 i log π 0 N i1 i + log α 1 i1 ij + log η i1 ij i i 0 log π i + 1 j N logα ij + i y j log η ij i1 Inroduce Lagrange & ake derivaives ˆπ i 0 i ˆα ij 1 i, i j 1 i1 N π i 1 α ij 1 η ij 1 i1 1 i j +1 1 k1 i k +1 ˆη ij i y j N k1 i y k i j y

12 ony Jebara, Columbia Universiy Hs: E Learning Bu, we don observe he s, incomplee p(,y θ p y θ E: ax expeced complee likelihood given curren p( E l θ -sep is maximizing as before: Wha are E{} s? 0! p 0 0 p( 1 { } E { p 0 log p,y } p y (,, y { + i i1 1 j N 1 logα i, ij + i1 i y j log η } ij 1 log p,y p y E i 0 log π i i i j N i E { 0 }log π i + E { 1 }logα ij + E { }y j log η ij i1 i ˆπ i E { 0 } ˆα ij 1 i, 1 1 k1 { } E i k { +1 } E i j +1 ˆη ij i1 N k1 i j E { }y i k E { }y

13 ony Jebara, Columbia Universiy Hs: E Learning Bu, we don observe he s, incomplee p(,y θ p y θ E: ax expeced complee likelihood given curren p( E l θ -sep is maximizing as before: Wha are E{} s? 0! p 0 0 p( 1 { } E { p 0 log p,y } p y (,, y { + i i1 1 j N 1 logα i, ij + i1 i y j log η } ij 1 log p,y p y E i 0 log π i i i j N i E { 0 }log π i + E { 1 }logα ij + E { }y j log η ij i1 i ˆπ i E { 0 } ˆα ij 1 E p(x i, 1 E i j { +1 } 1 E i k { +1 } { x i } p x k1 i1 i j E { }y ˆη ij N i k k1 E { }y x i p( xδ( x x i p( x i x x

14 ony Jebara, Columbia Universiy E i j +1 Hs: E Learning Bu, we don observe he s, incomplee p(,y θ p y θ E: ax expeced complee likelihood given curren p( E l θ -sep is maximizing as before: Wha are E{} s? 0! p 0 0 p( 1 { } E { p 0 log p,y } p y (,, y { + i i1 1 j N 1 logα i, ij + i1 i y j log η } ij Our JA ψ & φ marginals! (JA is he E-Sep for given θ 1 log p,y p y E i 0 log π i i i j N i E { 0 }log π i + E { 1 }logα ij + E { }y j log η ij i1 i ˆπ i E { 0 } ˆα ij 1 E p(x i, 1 E i j { +1 } 1 E i k { +1 } { x i } p x k1 { } p( i j y ψ** i j i1 i j E { }y ˆη ij N i k k1 E { }y x i p( xδ( x x i p( x i x ψ ** ( i j E i ij x { } p( i y φ** i i φ ** i

15 ony Jebara, Columbia Universiy hank you! So, o incomplee maximize likelihood wih E, iniialize parameers randomly, Run Juncion ree Algorihm o ge marginals Use marginals over s in he maximum likelihood sep Please complee course evaluaion on courseworks Good luck wih finals week and happy holidays!

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides Hidden Markov Models Adaped from Dr Caherine Sweeney-Reed s slides Summary Inroducion Descripion Cenral in HMM modelling Exensions Demonsraion Specificaion of an HMM Descripion N - number of saes Q = {q

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 Expecaion- Maximizaion & Baum-Welch Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 1 The goal Inpu: incomplee daa originaing from a probabiliy disribuion wih some unknown parameers Wan o find

More information

Viterbi Algorithm: Background

Viterbi Algorithm: Background Vierbi Algorihm: Background Jean Mark Gawron March 24, 2014 1 The Key propery of an HMM Wha is an HMM. Formally, i has he following ingrediens: 1. a se of saes: S 2. a se of final saes: F 3. an iniial

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Orientation. Connections between network coding and stochastic network theory. Outline. Bruce Hajek. Multicast with lost packets

Orientation. Connections between network coding and stochastic network theory. Outline. Bruce Hajek. Multicast with lost packets Connecions beween nework coding and sochasic nework heory Bruce Hajek Orienaion On Thursday, Ralf Koeer discussed nework coding: coding wihin he nework Absrac: Randomly generaed coded informaion blocks

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

Speech and Language Processing

Speech and Language Processing Speech and Language rocessing Lecure 4 Variaional inference and sampling Informaion and Communicaions Engineering Course Takahiro Shinozaki 08//5 Lecure lan (Shinozaki s par) I gives he firs 6 lecures

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Homework sheet Exercises done during the lecture of March 12, 2014

Homework sheet Exercises done during the lecture of March 12, 2014 EXERCISE SESSION 2A FOR THE COURSE GÉOMÉTRIE EUCLIDIENNE, NON EUCLIDIENNE ET PROJECTIVE MATTEO TOMMASINI Homework shee 3-4 - Exercises done during he lecure of March 2, 204 Exercise 2 Is i rue ha he parameerized

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 59 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

An random variable is a quantity that assumes different values with certain probabilities.

An random variable is a quantity that assumes different values with certain probabilities. Probabiliy The probabiliy PrA) of an even A is a number in [, ] ha represens how likely A is o occur. The larger he value of PrA), he more likely he even is o occur. PrA) means he even mus occur. PrA)

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Simulating models with heterogeneous agents

Simulating models with heterogeneous agents Simulaing models wih heerogeneous agens Wouer J. Den Haan London School of Economics c by Wouer J. Den Haan Individual agen Subjec o employmen shocks (ε i, {0, 1}) Incomplee markes only way o save is hrough

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering

CSE 3802 / ECE Numerical Methods in Scientific Computation. Jinbo Bi. Department of Computer Science & Engineering CSE 3802 / ECE 3431 Numerical Mehods in Scienific Compuaion Jinbo Bi Deparmen of Compuer Science & Engineering hp://www.engr.uconn.edu/~jinbo 1 Ph.D in Mahemaics The Insrucor Previous professional experience:

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 5 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence CS 188 Fall 2018 Inroducion o Arificial Inelligence Wrien HW 9 Sol. Self-assessmen due: Tuesday 11/13/2018 a 11:59pm (submi via Gradescope) For he self assessmen, fill in he self assessmen boxes in your

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Stability. Coefficients may change over time. Evolution of the economy Policy changes Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Approximation Algorithms for Unique Games via Orthogonal Separators

Approximation Algorithms for Unique Games via Orthogonal Separators Approximaion Algorihms for Unique Games via Orhogonal Separaors Lecure noes by Konsanin Makarychev. Lecure noes are based on he papers [CMM06a, CMM06b, LM4]. Unique Games In hese lecure noes, we define

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

EE363 homework 1 solutions

EE363 homework 1 solutions EE363 Prof. S. Boyd EE363 homework 1 soluions 1. LQR for a riple accumulaor. We consider he sysem x +1 = Ax + Bu, y = Cx, wih 1 1 A = 1 1, B =, C = [ 1 ]. 1 1 This sysem has ransfer funcion H(z) = (z 1)

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Operating Systems Exercise 3

Operating Systems Exercise 3 Operaing Sysems SS 00 Universiy of Zurich Operaing Sysems Exercise 3 00-06-4 Dominique Emery, s97-60-056 Thomas Bocek, s99-706-39 Philip Iezzi, s99-74-354 Florian Caflisch, s96-90-55 Table page Table page

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

Problem set 2 for the course on. Markov chains and mixing times

Problem set 2 for the course on. Markov chains and mixing times J. Seif T. Hirscher Soluions o Proble se for he course on Markov chains and ixing ies February 7, 04 Exercise 7 (Reversible chains). (i) Assue ha we have a Markov chain wih ransiion arix P, such ha here

More information

Lecture 9: September 25

Lecture 9: September 25 0-725: Opimizaion Fall 202 Lecure 9: Sepember 25 Lecurer: Geoff Gordon/Ryan Tibshirani Scribes: Xuezhi Wang, Subhodeep Moira, Abhimanu Kumar Noe: LaTeX emplae couresy of UC Berkeley EECS dep. Disclaimer:

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Chapter 21. Reinforcement Learning. The Reinforcement Learning Agent

Chapter 21. Reinforcement Learning. The Reinforcement Learning Agent CSE 47 Chaper Reinforcemen Learning The Reinforcemen Learning Agen Agen Sae u Reward r Acion a Enironmen CSE AI Faculy Why reinforcemen learning Programming an agen o drie a car or fly a helicoper is ery

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

CSE/NB 528 Lecture 14: From Supervised to Reinforcement Learning (Chapter 9) R. Rao, 528: Lecture 14

CSE/NB 528 Lecture 14: From Supervised to Reinforcement Learning (Chapter 9) R. Rao, 528: Lecture 14 CSE/NB 58 Lecure 14: From Supervised o Reinforcemen Learning Chaper 9 1 Recall from las ime: Sigmoid Neworks Oupu v T g w u g wiui w Inpu nodes u = u 1 u u 3 T i Sigmoid oupu funcion: 1 g a 1 a e 1 ga

More information

Math From Scratch Lesson 34: Isolating Variables

Math From Scratch Lesson 34: Isolating Variables Mah From Scrach Lesson 34: Isolaing Variables W. Blaine Dowler July 25, 2013 Conens 1 Order of Operaions 1 1.1 Muliplicaion and Addiion..................... 1 1.2 Division and Subracion.......................

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

CSE/NB 528 Lecture 14: Reinforcement Learning (Chapter 9)

CSE/NB 528 Lecture 14: Reinforcement Learning (Chapter 9) CSE/NB 528 Lecure 14: Reinforcemen Learning Chaper 9 Image from hp://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg Lecure figures are from Dayan & Abbo s book hp://people.brandeis.edu/~abbo/book/index.hml

More information

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model Lecure Noes 3: Quaniaive Analysis in DSGE Models: New Keynesian Model Zhiwei Xu, Email: xuzhiwei@sju.edu.cn The moneary policy plays lile role in he basic moneary model wihou price sickiness. We now urn

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics. 8/10/018 Course Insrucor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@uep.edu EE 4347 Applied Elecromagneics Topic 4a Transmission Line Equaions Transmission These Line noes

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Answers to QUIZ

Answers to QUIZ 18441 Answers o QUIZ 1 18441 1 Le P be he proporion of voers who will voe Yes Suppose he prior probabiliy disribuion of P is given by Pr(P < p) p for 0 < p < 1 You ake a poll by choosing nine voers a random,

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection Appendix o Online l -Dicionary Learning wih Applicaion o Novel Documen Deecion Shiva Prasad Kasiviswanahan Huahua Wang Arindam Banerjee Prem Melville A Background abou ADMM In his secion, we give a brief

More information