Problem set 2 for the course on. Markov chains and mixing times

Size: px
Start display at page:

Download "Problem set 2 for the course on. Markov chains and mixing times"

Transcription

1 J. Seif T. Hirscher Soluions o Proble se for he course on Markov chains and ixing ies February 7, 04 Exercise 7 (Reversible chains). (i) Assue ha we have a Markov chain wih ransiion arix P, such ha here exis a posiive funcion f and a non-negaive funcion g on S wih p ij = f(i) g(j) for all i,j S. Show ha such a Markov chain is reversible and derive he corresponding saionary probabiliy vecor. Why is he saionary disribuion unique in his case? How any seps will i ake o reach equilibriu? (ii) Can -sae Markov chains be non-reversible? Exhibi a 3-sae Markov chain wih p ij > 0 for all i,j S which is no reversible. Soluion. (i) Le E := {i S, g(i) > 0}. Since p ij > 0 for all i S, j E, all saes in E are essenial, saes ouside E us be inessenial due o p ij = 0 for all i S, j / E. In conclusion, E is he subse of all essenial saes. Tha P is sochasic yields = j S p ij = f(i) j S g(j). Hence, for all saes i, we ge f(i) =, where c := c j S g(j). If we undersand g as a vecor in R n, every uliple of i will saisfy he deailed balance equaions, due o f being consan. Obviously, π = g is he righ scaling o c ge a probabiliy disribuion. Since p ij > 0 for all i,j E, we have only one essenial counicaing class. By Prop..6 which iediaely follows fro Ex. 5 on he firs assignen he saionary disribuion π is unique. Since p ij does no depend on i, due o f being consan, he disribuion afer he firs sep will be π regardless of he iniial disribuion. So afer sep, equilibriu is reached. page

2 (ii) In Ex. 3 on he firs assignen i was shown ha a general -sae MC wih ransiion probabiliies p = p, p = q has he saionary disribuion π = ( q, p ), if i is no he case ha p = q = 0. Since π saisfies he p+q p+q deailed balance equaion (here is jus one having only saes) and in he case p = q = 0 boh sides equal 0, every -sae MC is reversible. As an exaple for a non-reversible chain on hree saes wih p ij > 0, we can ake he ransiion arix P =. 4 Since P is doubly sochasic, he unifor disribuion is saionary. The corresponding Markov chain is obviously irreducible, which ells us ha π = ( 3, 3, 3 ) is he unique saionary disribuion. This allows us o conclude fro π() p = 3 = 6 π() p = 3 4 = ha he chain is non-reversible, since every disribuion saisfying he deailed balance equaions would be saionary. For he nex exercise you will need he following corollary o he Convergence Theore (Th. 4.9): A finie Markov chain (X ) N0 which is irreducible and aperiodic forges is iniial sae and is disribuion converges o equilibriu in he sense ha for all saes i,j. li p() ij = li P[X = j X 0 = i] = π(j) Exercise 8. Le (X ) N0 be a finie irreducible Markov chain having saionary disribuion π and furher N(i,) denoe he (rando) nuber of visis of sae i aong X,...,X. Wihou using Proposiion.4 or Theore 4.6, show ha E[N(i,)] π(i) as and ha N(i,) π(i) in probabiliy. Noe ha Theore 4.6 acually iplies ha his laer convergence holds alos surely. Hin: Wrie N(i,) as a su of indicaor variables and bound is variance. Soluion. Le us firs consider only aperiodic chains, wrie q s := P(X s = i) and N(i,) = s= {Xs=i}. page

3 I is no hard o show ha any sequence (a s ) s N converging o soe lii a is Cesàro suable and he Cesàro su equals a, i.e. li a s = a. Using he convergence of p () ij q = P(X = i) = j S Cobining boh facs yields E[N(i,)] = s= as saed above, we can conclude p () ji P(X 0 = j) π(i) as. q s π(i) as. s= As o he second saeen, Chebyshev s inequaliy gives for all ε > 0: P ( N(i,) π(i) > ε ) P ( N(i,) E[N(i,)] > ε ) 4 var ( N(i,) ), ε if is large enough s.. E[N(i,)] π(i) < ε. In order o prove ha his ends o 0, which iplies N(i,) π(i) in probabiliy, i is lef o show ha var ( N(i,) ) 0 as. Using lineariy of expecaion, we can conclude var ( N(i,) ) = E[N(i,) ] ( E[N(i,)] ) = E [ = {Xr=i,X s=i} ] ( E [ {Xs=i} + s= r s s= q s qs + r = i,x s = i) q r q s ) r s(p(x s= s= q s + r<s s= q r (p (s r) ii q s ). ]) {Xs=i} The firs su divided by converges o π(i), so o 0 if divided by. As o he second su, we know fro above ha for δ > 0, here exiss T N such ha boh p (s) ii π(i) and q s π(i) are a os δ for s T. For s T, using he riangle inequaliy, we ge s q r (p (s r) ii q s ) s T q r δ + s q r δ q r + T δ π(i), as. r= This iplies for T : r<s r= r=s T + q r (p (s r) ii q s ) = s= r= r= s q r (p (s r) ii q s ) ( T + ( δ s=t q r + T ) ). r= page 3

4 Since his las upper bound converges o δ π(i) as well and δ > 0 was arbirary, we have shown ha var ( N(i,) ) = o( ) which concludes he proof for he aperiodic case. If he considered Markov chain is no aperiodic, due o irreducibiliy all saes have he sae period d. We won ge he convergence of probabiliies as saed before he exercise, bu if we consider P d, we can order he saes such ha he ransiion arix has block-diagonal for: Le define an equivalence relaion on S by i j p (sd) ij > 0 for soe s > 0. Le A,...,A d denoe he corresponding equivalence classes, ordered such ha P[X A k+ X 0 A k ] =. If we look a he d-sep MC, i has he irreducible coponens A,...,A d. If π denoes he saionary disribuion, πp d = π and for X 0 π: π(a k+ ) = P(X A k+ ) = P(X 0 A k ) = π(a k ). Hence π(a k ) = for all k. The d-sep MC resriced o A d k, for fixed k, is irreducible, aperiodic and has saionary disribuion π π(a k ) Ak = d π Ak. So by he above we ge for i A k : E[N(i,s)] d π(i) and N(i,s) d π(i) in probabiliy, s s where s is he ie in he d-sep MC. If denoes he ie in he original periodic chain, we ge = sd, hence jus as claied. E[N(i,)] π(i) and N(i,) π(i) in probabiliy, Exercise 9. You are given wo probabiliy easures µ and ν on a finie se S. Bob is required o flip a fair coin (which you canno see he resul of) and if he coin is heads, he us give you an eleen of S which has disribuion µ and if he coin is ails, he us give you an eleen of S which has disribuion ν (independenly chosen of he coin oss). Based upon wha you end up receiving, your job is o ry o guess if he coin was heads or ails and o axiize he probabiliy ha you are correc. Of course you can be correc wih probabiliy by jus always guessing heads bu you wan o do beer han his. (i) Show ha if µ ν TV δ, hen here is a sraegy which gives a probabiliy of being correc which is a leas + δ. (ii) Show ha if µ ν TV δ, hen he axial probabiliy of being correc is a os + δ. In conclusion, oal variaion easures he degree o which you can saisically ell apar wo disribuions. page 4

5 Soluion. By Prop. 4. we know ha µ ν TV = µ(i) ν(i) = µ(i) ν(i), i B where B := {i S, µ(i) ν(i)}. Le X denoe he rando eleen of S which we are given. Then for all i S: P(heads, X = i) = µ(i) and P(ails, X = i) = ν(i). (i) If µ ν TV δ, le us adop he sraegy o guess µ whenever we receive an eleen of B and ν oherwise. The probabiliy p of guessing correc becoes p = P(heads, X = i) + P(ails, X = i) i B i/ B = ( µ(i) + ) ν(i) i B i/ B = ( + ) µ(i) ν(i) = ( + µ ν TV) i B + δ. (ii) No aer which sraegy we adop, if we are given eleen i we are incorrec wih our guess wih probabiliy a leas in{p[heads X = i], P[ails X = i]}, even for a randoized decision. Hence, if µ ν TV δ: p P(X = i) in{p[heads X = i], P[ails X = i]} = in { µ(i), ν(i) } = ( µ(i) + i/ B i B = ( µ(i) + i B i/ B δ, which iplies p + δ. ) ν(i) ) ν(i) = µ ν TV Exercise 0. Le P be he ransiion arix of a finie Markov chain (X ) N0 wih saionary disribuion π and saring disribuion µ = L(X 0 ). Show ha he oal variaion disance of he disribuion of X, i.e. µ P, o π is non-increasing wih, i.e. µ P π TV µ P + π TV for all N 0. Explain how his iplies ha d() = ax P (i, ) π TV is non-increasing. page 5

6 Soluion. Le us wrie µ := µ P. Since πp = π, applying Prop. 4. and he riangle inequaliy yields Choosing µ = δ i shows µ P + π TV = µ P π P TV = µ (j)p (j,i) π(j)p (j,i) j S j S P (j,i) µ (j) π(j) j S = µ (j) π(j) P (j,i) j S = µ (j) π(j) = µ π TV. j S P + (i, ) π TV P (i, ) π TV, axiizing his over i gives d( + ) d(). Exercise. (i) Consider an aperiodic irreducible finie Markov chain having saionary disribuion π and he propery ha here exiss a sae i and a se A S wih π(a) = i A π(i) >, and d(i,a), where d(i,a) is he shores pah 4 disance fro i o any node in A in he (direced) Markov chain graph. Show ha ix. (ii) Use his o obain lower bounds for he ixing ie for a lazy rando walk on he hypercube Z d and on he orus Z, d >. How sharp a bound can you ge for he hypercube arguing his way? For wha cobinaions of and d can you prove, using (i), ha he chain is no rapidly ixing? Soluion. (i) If <, we find P[X A X 0 = i] = 0. This enails d() P (i, ) π TV π(a) j A P (i,j) = π(a) > 4. Hence ix >, which gives ix. (ii) In he case of he hypercube Z d, ake i = (0,...,0) and A o be he se of saes having a leas d coordinaes wih value, giving d(i,a) d. As he graph is regular, π is unifor and we ge π(a), which iplies ix d by he above. Fro Chebyshev s inequaliy, we know ha for a Bin(d, )-disribued rando variable Z P( Z EZ c) var(z) c = d 4c. page 6

7 As he disribuion of Z is syeric around is ean, his iediaely iplies P(Z EZ c) d. Hence, already he se B of vecors having a leas 8c d + d ones is of insufficien size, since π(b) = d B = P(Z EZ d) 8 < 4. So using he arguen above, when i coes o he asypoically leading er we won ge anyhing beer han d as a lower bound. In he case of he orus Z, d ake again i = (0,...,0) and his ie A o be he se of vecors which have a leas d coordinaes in { 4,..., 3 4 }. Then d(i,a) d 4 and since π is again unifor, π(a). Consequenly, ix d 4. Noe ha he size of he sae space is Z d = d. Using he lower bound on ix jus derived, we can conclude ha a sequence of lazy rando walks on ori Z d is no rapidly ixing, if is no polynoial in d, i.e. he sequence of (,d) is such ha for all k N. dk Exercise. Show ha here exiss a finie sae Markov chain so ha for wo of is saes i and j, li P (i, ) P (j, ) TV > 0 bu here exiss a coupling of he Markov chain saring respecively a i and a j, (X,Y ) N0 so ha T := inf{ : X = Y } is finie wih probabiliy. Noe ha his ells you ha condiion (5.) is very essenial in he saeen of Theore 5.. Soluion. By he convergence heore, such a chain can no be irreducible: In he aperiodic case boh P (i, ) and P (j, ) converge o π; in he periodic case define and he corresponding equivalence classes as in he soluion o Exercise 8, hen eiher i j, which will give convergence of boh P d (i, ) and P d (j, ) o π([i]) π [i] by he sae reasoning as above and hus li P (i, ) P (j, ) TV = 0, or i j which will ake P(T < ) = ipossible. A concree exaple can be found as Prop. 4. in he paper A Noe on Disagreeen Percolaion by Olle Häggsrö. Noe ha he coupling described here is no Markovian. If we had a Markovian coupling wih P(T < ) =, we could odify i for > T o enforce (5.) which hen would give li P (i, ) P (j, ) TV = 0, by Th. 5.. page 7

1 Widrow-Hoff Algorithm

1 Widrow-Hoff Algorithm COS 511: heoreical Machine Learning Lecurer: Rob Schapire Lecure # 18 Scribe: Shaoqing Yang April 10, 014 1 Widrow-Hoff Algorih Firs le s review he Widrow-Hoff algorih ha was covered fro las lecure: Algorih

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

556: MATHEMATICAL STATISTICS I

556: MATHEMATICAL STATISTICS I 556: MATHEMATICAL STATISTICS I INEQUALITIES 5.1 Concenraion and Tail Probabiliy Inequaliies Lemma (CHEBYCHEV S LEMMA) c > 0, If X is a random variable, hen for non-negaive funcion h, and P X [h(x) c] E

More information

CS Homework Week 2 ( 2.25, 3.22, 4.9)

CS Homework Week 2 ( 2.25, 3.22, 4.9) CS3150 - Homework Week 2 ( 2.25, 3.22, 4.9) Dan Li, Xiaohui Kong, Hammad Ibqal and Ihsan A. Qazi Deparmen of Compuer Science, Universiy of Pisburgh, Pisburgh, PA 15260 Inelligen Sysems Program, Universiy

More information

Seminar 4: Hotelling 2

Seminar 4: Hotelling 2 Seminar 4: Hoelling 2 November 3, 211 1 Exercise Par 1 Iso-elasic demand A non renewable resource of a known sock S can be exraced a zero cos. Demand for he resource is of he form: D(p ) = p ε ε > A a

More information

Tracking Adversarial Targets

Tracking Adversarial Targets A. Proofs Proof of Lemma 3. Consider he Bellman equaion λ + V π,l x, a lx, a + V π,l Ax + Ba, πax + Ba. We prove he lemma by showing ha he given quadraic form is he unique soluion of he Bellman equaion.

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

EXPONENTIAL PROBABILITY DISTRIBUTION

EXPONENTIAL PROBABILITY DISTRIBUTION MTH/STA 56 EXPONENTIAL PROBABILITY DISTRIBUTION As discussed in Exaple (of Secion of Unifor Probabili Disribuion), in a Poisson process, evens are occurring independenl a rando and a a unifor rae per uni

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

An random variable is a quantity that assumes different values with certain probabilities.

An random variable is a quantity that assumes different values with certain probabilities. Probabiliy The probabiliy PrA) of an even A is a number in [, ] ha represens how likely A is o occur. The larger he value of PrA), he more likely he even is o occur. PrA) means he even mus occur. PrA)

More information

Mixing times and hitting times: lecture notes

Mixing times and hitting times: lecture notes Miing imes and hiing imes: lecure noes Yuval Peres Perla Sousi 1 Inroducion Miing imes and hiing imes are among he mos fundamenal noions associaed wih a finie Markov chain. A variey of ools have been developed

More information

Thermal Forces and Brownian Motion

Thermal Forces and Brownian Motion Theral Forces and Brownian Moion Ju Li GEM4 Suer School 006 Cell and Molecular Mechanics in BioMedicine Augus 7 18, 006, MIT, Cabridge, MA, USA Ouline Meaning of he Cenral Lii Theore Diffusion vs Langevin

More information

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform? ourier Series & The ourier Transfor Wha is he ourier Transfor? Wha do we wan fro he ourier Transfor? We desire a easure of he frequencies presen in a wave. This will lead o a definiion of he er, he specru.

More information

Asymptotic Equipartition Property - Seminar 3, part 1

Asymptotic Equipartition Property - Seminar 3, part 1 Asympoic Equipariion Propery - Seminar 3, par 1 Ocober 22, 2013 Problem 1 (Calculaion of ypical se) To clarify he noion of a ypical se A (n) ε and he smalles se of high probabiliy B (n), we will calculae

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

arxiv: v1 [math.fa] 12 Jul 2012

arxiv: v1 [math.fa] 12 Jul 2012 AN EXTENSION OF THE LÖWNER HEINZ INEQUALITY MOHAMMAD SAL MOSLEHIAN AND HAMED NAJAFI arxiv:27.2864v [ah.fa] 2 Jul 22 Absrac. We exend he celebraed Löwner Heinz inequaliy by showing ha if A, B are Hilber

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Approximation Algorithms for Unique Games via Orthogonal Separators

Approximation Algorithms for Unique Games via Orthogonal Separators Approximaion Algorihms for Unique Games via Orhogonal Separaors Lecure noes by Konsanin Makarychev. Lecure noes are based on he papers [CMM06a, CMM06b, LM4]. Unique Games In hese lecure noes, we define

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework 4 (Sas 62, Winer 217) Due Tuesday Feb 14, in class Quesions are derived from problems in Sochasic Processes by S. Ross. 1. Le A() and Y () denoe respecively he age and excess a. Find: (a) P{Y

More information

2.1 Level, Weight, Nominator and Denominator of an Eta Product. By an eta product we understand any finite product of functions. f(z) = m.

2.1 Level, Weight, Nominator and Denominator of an Eta Product. By an eta product we understand any finite product of functions. f(z) = m. Ea Producs.1 Level, Weigh, Noinaor and Denoinaor of an Ea Produc By an ea produc we undersand any finie produc of funcions f(z = η(z a where runs hrough a finie se of posiive inegers and he exponens a

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Oscillation Properties of a Logistic Equation with Several Delays

Oscillation Properties of a Logistic Equation with Several Delays Journal of Maheaical Analysis and Applicaions 247, 11 125 Ž 2. doi:1.16 jaa.2.683, available online a hp: www.idealibrary.co on Oscillaion Properies of a Logisic Equaion wih Several Delays Leonid Berezansy

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

A note on diagonalization of integral quadratic forms modulo p m

A note on diagonalization of integral quadratic forms modulo p m NNTDM 7 ( 3-36 A noe on diagonalizaion of inegral quadraic fors odulo Ali H Hakai Dearen of Maheaics King Khalid Universiy POo 94 Abha Posal Code: 643 Saudi Arabia E-ail: aalhakai@kkuedusa Absrac: Le be

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Wave Mechanics. January 16, 2017

Wave Mechanics. January 16, 2017 Wave Mechanics January 6, 7 The ie-dependen Schrödinger equaion We have seen how he ie-dependen Schrodinger equaion, Ψ + Ψ i Ψ follows as a non-relaivisic version of he Klein-Gordon equaion. In wave echanics,

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

. Now define y j = log x j, and solve the iteration.

. Now define y j = log x j, and solve the iteration. Problem 1: (Disribued Resource Allocaion (ALOHA!)) (Adaped from M& U, Problem 5.11) In his problem, we sudy a simple disribued proocol for allocaing agens o shared resources, wherein agens conend for resources

More information

The Strong Law of Large Numbers

The Strong Law of Large Numbers Lecure 9 The Srong Law of Large Numbers Reading: Grimme-Sirzaker 7.2; David Williams Probabiliy wih Maringales 7.2 Furher reading: Grimme-Sirzaker 7.1, 7.3-7.5 Wih he Convergence Theorem (Theorem 54) and

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

Random variables. A random variable X is a function that assigns a real number, X(ζ), to each outcome ζ in the sample space of a random experiment.

Random variables. A random variable X is a function that assigns a real number, X(ζ), to each outcome ζ in the sample space of a random experiment. Random variables Some random eperimens may yield a sample space whose elemens evens are numbers, bu some do no or mahemaical purposes, i is desirable o have numbers associaed wih he oucomes A random variable

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

The consumption-based determinants of the term structure of discount rates: Corrigendum. Christian Gollier 1 Toulouse School of Economics March 2012

The consumption-based determinants of the term structure of discount rates: Corrigendum. Christian Gollier 1 Toulouse School of Economics March 2012 The consumpion-based deerminans of he erm srucure of discoun raes: Corrigendum Chrisian Gollier Toulouse School of Economics March 0 In Gollier (007), I examine he effec of serially correlaed growh raes

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Lecture 2 April 04, 2018

Lecture 2 April 04, 2018 Sas 300C: Theory of Saisics Spring 208 Lecure 2 April 04, 208 Prof. Emmanuel Candes Scribe: Paulo Orensein; edied by Sephen Baes, XY Han Ouline Agenda: Global esing. Needle in a Haysack Problem 2. Threshold

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

non -negative cone Population dynamics motivates the study of linear models whose coefficient matrices are non-negative or positive.

non -negative cone Population dynamics motivates the study of linear models whose coefficient matrices are non-negative or positive. LECTURE 3 Linear/Nonnegaive Marix Models x ( = Px ( A= m m marix, x= m vecor Linear sysems of difference equaions arise in several difference conexs: Linear approximaions (linearizaion Perurbaion analysis

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

VOL. 1, NO. 8, November 2011 ISSN ARPN Journal of Systems and Software AJSS Journal. All rights reserved

VOL. 1, NO. 8, November 2011 ISSN ARPN Journal of Systems and Software AJSS Journal. All rights reserved VOL., NO. 8, Noveber 0 ISSN -9833 ARPN Journal of Syses and Sofware 009-0 AJSS Journal. All righs reserved hp://www.scienific-journals.org Soe Fixed Poin Theores on Expansion Type Maps in Inuiionisic Fuzzy

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Practice Problems - Week #4 Higher-Order DEs, Applications Solutions

Practice Problems - Week #4 Higher-Order DEs, Applications Solutions Pracice Probles - Wee #4 Higher-Orer DEs, Applicaions Soluions 1. Solve he iniial value proble where y y = 0, y0 = 0, y 0 = 1, an y 0 =. r r = rr 1 = rr 1r + 1, so he general soluion is C 1 + C e x + C

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

A Generalization of Student s t-distribution from the Viewpoint of Special Functions

A Generalization of Student s t-distribution from the Viewpoint of Special Functions A Generalizaion of Suden s -disribuion fro he Viewpoin of Special Funcions WOLFRAM KOEPF and MOHAMMAD MASJED-JAMEI Deparen of Maheaics, Universiy of Kassel, Heinrich-Ple-Sr. 4, D-343 Kassel, Gerany Deparen

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Expert Advice for Amateurs

Expert Advice for Amateurs Exper Advice for Amaeurs Ernes K. Lai Online Appendix - Exisence of Equilibria The analysis in his secion is performed under more general payoff funcions. Wihou aking an explici form, he payoffs of he

More information

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas Mah 527 Lecure 6: Hamilon-Jacobi Equaion: Explici Formulas Sep. 23, 2 Mehod of characerisics. We r o appl he mehod of characerisics o he Hamilon-Jacobi equaion: u +Hx, Du = in R n, u = g on R n =. 2 To

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions.

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions. Conseraion of Moenu Purose The urose of his exerien is o erify he conseraion of oenu in wo diensions. Inroducion and Theory The oenu of a body ( ) is defined as he roduc of is ass () and elociy ( ): When

More information

On Edgeworth Expansions in Generalized Urn Models

On Edgeworth Expansions in Generalized Urn Models On Edgeworh Expansions in Generalized Urn Models Sh M Mirahedov Insiue of Maheaics and Inforaion Technologies Uzbeisan (E- ail: shirahedov@yahooco S Rao Jaalaadaa Universiy of California Sana Barbara USA

More information

Exercises: Similarity Transformation

Exercises: Similarity Transformation Exercises: Similariy Transformaion Problem. Diagonalize he following marix: A [ 2 4 Soluion. Marix A has wo eigenvalues λ 3 and λ 2 2. Since (i) A is a 2 2 marix and (ii) i has 2 disinc eigenvalues, we

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Online Learning Applications

Online Learning Applications Online Learning Applicaions Sepember 19, 2016 In he las lecure we saw he following guaranee for minimizing misakes wih Randomized Weighed Majoriy (RWM). Theorem 1 Le M be misakes of RWM and M i he misakes

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 2, May 2013, pp. 209 227 ISSN 0364-765X (prin) ISSN 1526-5471 (online) hp://dx.doi.org/10.1287/moor.1120.0562 2013 INFORMS On Boundedness of Q-Learning Ieraes

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Machine Learning 4771

Machine Learning 4771 ony Jebara, Columbia Universiy achine Learning 4771 Insrucor: ony Jebara ony Jebara, Columbia Universiy opic 20 Hs wih Evidence H Collec H Evaluae H Disribue H Decode H Parameer Learning via JA & E ony

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Representation of Stochastic Process by Means of Stochastic Integrals

Representation of Stochastic Process by Means of Stochastic Integrals Inernaional Journal of Mahemaics Research. ISSN 0976-5840 Volume 5, Number 4 (2013), pp. 385-397 Inernaional Research Publicaion House hp://www.irphouse.com Represenaion of Sochasic Process by Means of

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

Note on oscillation conditions for first-order delay differential equations

Note on oscillation conditions for first-order delay differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 2016, No. 2, 1 10; doi: 10.14232/ejqde.2016.1.2 hp://www.ah.u-szeged.hu/ejqde/ Noe on oscillaion condiions for firs-order delay differenial

More information