Tom Heskes and Onno Zoeter. Presented by Mark Buller

Size: px
Start display at page:

Download "Tom Heskes and Onno Zoeter. Presented by Mark Buller"

Transcription

1 Tom Heskes and Onno Zoeer Presened by Mark Buller

2 Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden Markov Models (HMM)

3 Goal is Inference Far Lef coupled HMM wih 5 chains Lef DBN o monior wase waer reamen plan. Murphy and Weiss 2001 Will generally like o perform inference: P(x y 1:T ) Why no discreize and use he Forward-Backward algorihm for exac inference? Very quickly can become unenable.

4 Approximae Inference Sampling Paricle Filers Variaional (Ghahramani and Hinon 1998) Swiching Linear Dynamical Sysem (Ghahramani and Jordan 1997) Facorial Hidden Markov Models Variaional Subse Greedy projecion algorihms Where projecion provides a simpler approximae belief Expecaion Propagaion

5 Problem Seup x super node ha conains all laen variables a a ime poin. y 1:T fixed and is included in he definiion of he poenials: ψ (x -1, ) ψ (x -1, x, y )

6 Goal: Infer P(x y 1:T ) Find he marginal beliefs or he probabiliy disribuions of he laen variables a a given ime given all he evidence. Pearl s Belief Propagaion (1988) Specific case of he sum-produc rule in facor graphs (Kschischang e al., 2001) Noe: In chain facor graphs variable nodes simply pass received messages on o he nex funcion node.

7 Message Propagaion 1. Compue esimae of disribuion a local funcion node: 2. Inegrae ou all variables excep x (x he node o which he message is sen) o ge curren esimae of he belief and projec his belief ono a disribuion in he exponenial family: 3. Condiionalize, i.e. divide by message from X o ψ

8 Belief Approximaion Projec belief akes an exponenial family form: Where γ = canonical parameers and f(x ) he sufficien saisics. If he forward and backward messages are iniialized as: Wih hen he canonical parameers α and β will fully specify he messages α (x ) and β (x ). Thus he belief can be specified as a combinaion of he messages

9 Momen Maching To projec he belief o he bes exponenial family approximaion is found when he Kullback-Leibler (KL) divergence is minimized: Minima is found when he momens of P(x) and q(x) are mached. Bishop 2006 KL(p q) KL(q p) KL(q p) Funcion g convers from canonical form o momens

10 Compuing Forward and Backward Messages Compue α such ha: Wih β kep fixed: Similarly Compue β -1 such ha: Noe: wihou he projecion o he exponenial family his is basically he sandard forward backward algorihm. Order of message updaing is free

11 Example: Swiching Linear Dynamical Sysem Poenials: Messages are aken o be condiional Gaussian poenials:

12 Example: Sep 1 Compue esimae of disribuion a local funcion node : Messages are combinaions of M Gaussian poenials one for each swich sae i. Transform o a represenaion wih momens

13 Example: Sep 2 Inegrae and sum ou componens z -1 and s -1 : Inegraion over z -1 can be done direcly: Summaion over s -1 yields a mixure of Gaussians and mus be approximaed using momen maching:

14 Example: Sep 3 Forward message is found by dividing he approximae belief by he backward message : = Conver o Canonical form

15 Observaions Backward pass is symmeric o he forward pass. Forward filering pass is equivalen o a popular inference algorihm for swiching linear dynamical sysem (GPB2 Bar-Shalom and Li 1993) Backward smoohing pass improves upon curren algorihms because no addiional approximaions were required. Forward and Backward passes can be ieraed unil convergence. Expecaion propagaion can be used o ieraively improve oher mehods for inference in DBNs (e.g. Murphy and Weiss 2001) Bu his algorihm does no always converge

16 Behe Free Energy Fixed poins of expecaion propagaion correspond o fixed poins of he Behe free energy (Minka, 2001) Expecaion consrains Under hese consrains he free energy funcion may no be convex. i.e. Can have local fixed poins.

17 Double Loop Algorihm Linearly bound concave par: For each ouer loop sep rese he bound: For inner loop solve convex consrained minimizaion problem, guaraneeing:

18 Inner Loop Change o a consrained maximizaion problem over Lagrange mulipliers δ : old Wih: log q ( x ) f( x ) and subsiuing: Tha is, δ can be inerpreed as he difference beween he forward and backward messages, γ as heir sum.

19 Inner Loop Maximizaion In erms of: gradien wih respec o δ : Se o 0: Damp updae: Ouer-loop can be re-wrien as he updae:

20 Damped Expecaion Propagaion Minimizaion of he free energy under he expecaion consrains is equivalen o Saddle Poin problem. Double-loop algorihm solves his problem, bu Full compleion in he inner loop is required o guaranee convergence Gradien descen-ascen behavior can be achieved by damping he full updaes in EP: Sable fixed poins of damped EP mus be a leas local minima of Behe free energy

21 Simulaions Randomly generaed swiching linear dynamical sysems. T varied beween 2 and 5, number of swiches beween 2 and 4 Exac beliefs calculaed using an algorihm by (Laurizen, 1992) using a srong juncion ree. Compared approximae algorihm beliefs o exac beliefs using KL divergence.

22 Simulaion Resuls Undamped EP One forward pass yields accepable resuls KL drops afer 1 o 2 more passes Double-loop and damped EP converge o same poin

23 Simulaion Resuls Difficul Insance Undamped suck in a limi cycle (solid line) Damped EP (ε = 0.5), allows sable convergence Double-loop converges bu usually akes longer

24 Non Convergence One Insance where damped EP did no converge Does i make sense o force convergence using double-loop? Compared KL divergence afer a single forward pass and afer convergence For easy (damped EP) and difficul (double-loop) Conclude: I makes sense o search for he minimum of he free energy using more exhausive means. Convergence of undamped belief propagaion is an indicaion of he qualiy of an approximaion

25 Conclusion Inroduced a belief propagaion algorihm for DBN ha is symmeric for boh forwards and backward messages Projec beliefs and derive messages from approximae beliefs raher han approximae messages Derived double-loop algorihm guaraneed o converge Derived damped EP as a single-loop version Propery ha when i converges his mus be a minimum of Behe free energy. Thus minimum KL divergence for approximaion Undamped EP works well in many cases When i fails could be due o: Need for damping Need for more edious double-loop algorihm

26 Kevin Murphy and Yair Weiss Presened by Mark Buller

27 Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden Markov Models (HMM)

28 Goal is Inference Far Lef coupled HMM wih 5 chains Lef DBN o monior wase waer reamen plan. Murphy and Weiss 2001 Will generally like o perform inference: P(x y 1:T ) Why no discreize and use he Forward-Backward algorihm? O(TS 2 ), S=num saes

29 Forwards Backward Algorihm ) ( : 1 def i y i X P ) ( : 1T def i y i X P i i T def i y i X P ) ( : 1 ) ( ), ( i X y P i i W def Transiion Marix ) ( ), ( 1 i X j X P j i M def Diagonal Evidence Marix 1 T M W 1 1 M W

30 Fronier Algorihm Mehod o compue α and β s wihou he need o form he Q N x Q N ransiion marix: N = number of hidden nodes Q = number possible saes of a node Sweep a Markov Blanke forwards hen backwards across he DBN. The se of nodes composed of a node s he parens, children, and children s oher parens. Every oher node is condiionally independen of A when condiioned on A s Markov blanke. Wikipedia

31 Fronier Algorihm F Fronier Se = Nodes in Markov Blanke, Nodes o lef = L, Nodes o righ = R. A every sep F d-separaes L and R. A join disribuion over nodes in F is mainained.

32 Fronier Algorihm A node is added from R o F as soon as all parens are in F To add a node muliply by condiional probabiliy able (CPT) A node is moved from F o L as soon as all children are in F To remove a marginalize by he removed node.

33 Fronier Algorihm Add X(1) Add X(2) Rem X(1)-1 Forward Message

34 Fronier Algorihm (Observaions) Exac Inference akes O(TNQ N+2 ) ime and space: N = number of hidden nodes Q = number possible saes of a node Exponenial in he size of he larges fronier Opimal ordering of addiions and removals o minimize F is NP- Hard. For regular DBNs when unrolled, he fronier algorihm is equivalen o he juncion ree algorihm. Fronier ses correspond o: maximal cliques in he moralized riangulaed graph.

35 Facored Fronier Algorihm Approximae he belief sae wih a produc of marginals: N 1 i 1 i P( X y : ) P( X y1 : When a node is added he node s CPT is muliplied by he produc of facors corresponding o is parens. Join disribuion for he family Paren nodes are immediaely marginalized ou Can be done for any node in any order as long as parens are added firs. Join disribuion over fronier nodes is mainained in facored form. Takes O(TNQ F+1 ) )

36 Boyen-Koller Algorihm Belief sae wih a produc of marginals over C clusers: C c P X y ) P( X y ) Where X is a subse of he variables { i } c Accuracy depends on size of clusers used o approximae belief sae Exac inference corresponds o using a single cluser wih all hidden variables a a ime slice Mos aggressive approximaion uses N clusers one per variable very similar o FF ( 1: c 1 1: X

37 BK and FF as Special Cases of Loopy Belief Propagaion Pearl s belief propagaion algorihm compues exac marginal poserior probabiliies in graphs wihou cycles Generalizes he forward-backward algorihm o rees. Assumes messages coming ino a node are independen. FF makes he same assumpion Boh algorihms are equivalen if he order of messages in LBP is specified Normally LBP every node compues λ and π messages in parallel and hen sends ou o all of he neighbors However, messages can be compued in a forwards backward approach. Firs send π (α) from lef o righ, hen send λ (β) messages from righ o lef. FF and BK are equivalen o one ieraion LBP, hus hey can be improved by ieraing more han once.

38 Experimens Used a coupled HMM (CHMM) wih 10 chains rained wih real highway daa. Define L1 error as: N Q P( X i s y1: T ) Pˆ( X i s y1 : i 1 s 1 T )

39 Resuls Damping was necessary wih LBP. Ieraing wih damped LBP improves jus a single run of BK

40 Resuls Waer Nework

41 Resuls Speed BK and FF / LBP have a running ime linear in N BK is slower because of repeaed marginalizaions When N<11 BK slower han exac inference

42 Conclusions Described a simple approximae inference algorihm for DBNs and shown equivalence o LBP Shown a connecion beween BK and LBP Showed empirically ha LBP can improve FF and BK.

43 Shakhnarovich 1996,CS195-5

44 Shakhnarovich 1996,CS195-5

45 Shakhnarovich 1996,CS195-5

46 Shakhnarovich 1996,CS195-5

47 Shakhnarovich 1996,CS195-5

48 Shakhnarovich 1996,CS195-5

49 Shakhnarovich 1996,CS195-5

50 Shakhnarovich 1996,CS195-5

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

Machine Learning 4771

Machine Learning 4771 ony Jebara, Columbia Universiy achine Learning 4771 Insrucor: ony Jebara ony Jebara, Columbia Universiy opic 20 Hs wih Evidence H Collec H Evaluae H Disribue H Decode H Parameer Learning via JA & E ony

More information

A variational radial basis function approximation for diffusion processes.

A variational radial basis function approximation for diffusion processes. A variaional radial basis funcion approximaion for diffusion processes. Michail D. Vreas, Dan Cornford and Yuan Shen {vreasm, d.cornford, y.shen}@ason.ac.uk Ason Universiy, Birmingham, UK hp://www.ncrg.ason.ac.uk

More information

Speech and Language Processing

Speech and Language Processing Speech and Language rocessing Lecure 4 Variaional inference and sampling Informaion and Communicaions Engineering Course Takahiro Shinozaki 08//5 Lecure lan (Shinozaki s par) I gives he firs 6 lecures

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Temporal probability models

Temporal probability models Temporal probabiliy models CS194-10 Fall 2011 Lecure 25 CS194-10 Fall 2011 Lecure 25 1 Ouline Hidden variables Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Temporal probability models. Chapter 15, Sections 1 5 1

Temporal probability models. Chapter 15, Sections 1 5 1 Temporal probabiliy models Chaper 15, Secions 1 5 Chaper 15, Secions 1 5 1 Ouline Time and uncerainy Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic Bayesian

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15

Expectation- Maximization & Baum-Welch. Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 Expecaion- Maximizaion & Baum-Welch Slides: Roded Sharan, Jan 15; revised by Ron Shamir, Nov 15 1 The goal Inpu: incomplee daa originaing from a probabiliy disribuion wih some unknown parameers Wan o find

More information

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 06 A Primal-Dual Type Algorihm wih he O(/) Convergence Rae for Large Scale Consrained Convex Programs Hao Yu and Michael J. Neely Absrac This paper considers

More information

Planning in POMDPs. Dominik Schoenberger Abstract

Planning in POMDPs. Dominik Schoenberger Abstract Planning in POMDPs Dominik Schoenberger d.schoenberger@sud.u-darmsad.de Absrac This documen briefly explains wha a Parially Observable Markov Decision Process is. Furhermore i inroduces he differen approaches

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Variational Learning for Switching State-Space Models

Variational Learning for Switching State-Space Models LEER Communicaed by Volker resp Variaional Learning for Swiching Sae-Space odels Zoubin Ghahramani Geoffrey E. Hinon Gasby Compuaional euroscience Uni, Universiy College London, London WC 3R, U.K. We inroduce

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence CS 188 Fall 2018 Inroducion o Arificial Inelligence Wrien HW 9 Sol. Self-assessmen due: Tuesday 11/13/2018 a 11:59pm (submi via Gradescope) For he self assessmen, fill in he self assessmen boxes in your

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

BU Macro BU Macro Fall 2008, Lecture 4

BU Macro BU Macro Fall 2008, Lecture 4 Dynamic Programming BU Macro 2008 Lecure 4 1 Ouline 1. Cerainy opimizaion problem used o illusrae: a. Resricions on exogenous variables b. Value funcion c. Policy funcion d. The Bellman equaion and an

More information

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides

Hidden Markov Models. Adapted from. Dr Catherine Sweeney-Reed s slides Hidden Markov Models Adaped from Dr Caherine Sweeney-Reed s slides Summary Inroducion Descripion Cenral in HMM modelling Exensions Demonsraion Specificaion of an HMM Descripion N - number of saes Q = {q

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Isolated-word speech recognition using hidden Markov models

Isolated-word speech recognition using hidden Markov models Isolaed-word speech recogniion using hidden Markov models Håkon Sandsmark December 18, 21 1 Inroducion Speech recogniion is a challenging problem on which much work has been done he las decades. Some of

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Lecture 9: September 25

Lecture 9: September 25 0-725: Opimizaion Fall 202 Lecure 9: Sepember 25 Lecurer: Geoff Gordon/Ryan Tibshirani Scribes: Xuezhi Wang, Subhodeep Moira, Abhimanu Kumar Noe: LaTeX emplae couresy of UC Berkeley EECS dep. Disclaimer:

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

MANY FACET, COMMON LATENT TRAIT POLYTOMOUS IRT MODEL AND EM ALGORITHM. Dimitar Atanasov

MANY FACET, COMMON LATENT TRAIT POLYTOMOUS IRT MODEL AND EM ALGORITHM. Dimitar Atanasov Pliska Sud. Mah. Bulgar. 20 (2011), 5 12 STUDIA MATHEMATICA BULGARICA MANY FACET, COMMON LATENT TRAIT POLYTOMOUS IRT MODEL AND EM ALGORITHM Dimiar Aanasov There are many areas of assessmen where he level

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif Chaper Kalman Filers. Inroducion We describe Bayesian Learning for sequenial esimaion of parameers (eg. means, AR coeciens). The updae procedures are known as Kalman Filers. We show how Dynamic Linear

More information

Bias-Variance Error Bounds for Temporal Difference Updates

Bias-Variance Error Bounds for Temporal Difference Updates Bias-Variance Bounds for Temporal Difference Updaes Michael Kearns AT&T Labs mkearns@research.a.com Sainder Singh AT&T Labs baveja@research.a.com Absrac We give he firs rigorous upper bounds on he error

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Scheduling of Crude Oil Movements at Refinery Front-end

Scheduling of Crude Oil Movements at Refinery Front-end Scheduling of Crude Oil Movemens a Refinery Fron-end Ramkumar Karuppiah and Ignacio Grossmann Carnegie Mellon Universiy ExxonMobil Case Sudy: Dr. Kevin Furman Enerprise-wide Opimizaion Projec March 15,

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Inferring State Sequences for Non-linear Systems with Embedded Hidden Markov Models

Inferring State Sequences for Non-linear Systems with Embedded Hidden Markov Models Inferring Sae Sequences for Non-linear Sysems wih Embedded Hidden Markov Models Radford M. Neal, Mahew J. Beal, and Sam T. Roweis Deparmen of Compuer Science Universiy of Torono Torono, Onario, Canada

More information

Pattern Classification (VI) 杜俊

Pattern Classification (VI) 杜俊 Paern lassificaion VI 杜俊 jundu@usc.edu.cn Ouline Bayesian Decision Theory How o make he oimal decision? Maximum a oserior MAP decision rule Generaive Models Join disribuion of observaion and label sequences

More information

Probabilistic learning

Probabilistic learning Probabilisic learning Charles Elkan November 8, 2012 Imporan: These lecure noes are based closely on noes wrien by Lawrence Saul. Tex may be copied direcly from his noes, or paraphrased. Also, hese ypese

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Ordinary dierential equations

Ordinary dierential equations Chaper 5 Ordinary dierenial equaions Conens 5.1 Iniial value problem........................... 31 5. Forward Euler's mehod......................... 3 5.3 Runge-Kua mehods.......................... 36

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

An EM based training algorithm for recurrent neural networks

An EM based training algorithm for recurrent neural networks An EM based raining algorihm for recurren neural neworks Jan Unkelbach, Sun Yi, and Jürgen Schmidhuber IDSIA,Galleria 2, 6928 Manno, Swizerland {jan.unkelbach,yi,juergen}@idsia.ch hp://www.idsia.ch Absrac.

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Inferring Dynamic Dependency with Applications to Link Analysis

Inferring Dynamic Dependency with Applications to Link Analysis Inferring Dynamic Dependency wih Applicaions o Link Analysis Michael R. Siracusa Massachuses Insiue of Technology 77 Massachuses Ave. Cambridge, MA 239 John W. Fisher III Massachuses Insiue of Technology

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information