Simulation of BSDEs and. Wiener Chaos Expansions

Size: px
Start display at page:

Download "Simulation of BSDEs and. Wiener Chaos Expansions"

Transcription

1 Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp:// Workshop on BSDEs Rennes, May 22-24, 213

2 Inroducion Simulaion of BSDEs and Wiener Chaos Expansions Inroducion Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

3 Inroducion Backward Sochasic Differenial Equaions A BSDE is an equaion of he ype T T Y = ξ + f (s, Y s, Z s )ds Z s db s, T The firs resul was proved by É. Pardoux and S. Peng Theorem (Pardoux-Peng) If he generaor f is Lipschiz, and [ ] E ξ 2 + T f (s,, ) 2 ds < + hen he BSDE has a unique square inegrable soluion Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

4 Inroducion Euler s scheme for BSDEs For a SDE For a BSDE X +h = X + h b(x ) + σ(x ) (B +h B ) Y h = Y + h f (Y h, Z h ) Z h (B B h ) The correc equaion is Y h = Y + h f (Y h, Z h ) Z h (B B h ) + (N N h ) The soluion is given by Z h = h 1 E (Y (B B h ) F h ), Y h = E (Y F h ) + h f (Y h, Z h ) Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

5 Inroducion Discreizaion of BSDEs No so easy as for SDEs D. Chevance 1997, V. Bally 1997 Dynamical Programming Equaion A "sepwise consan" Brownian moion in his case (Ph. B., B. Delyon, J. Mémin 1 & 2) The speed of convergence was proved by J. Zhang 4 and B. Bouchard and N. Touzi 4 for Markovian BSDEs Error expansion by E. Gobe and C. Labar 7 L 2 regulariy E. Gobe, A. Makhlouf 1, Quadraic case A. Richou 11 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

6 Inroducion Discreizaion of BSDEs One of he main difficulies is o compue condiional expecaions Several approaches : using Malliavin calculus, B. Bouchard and N. Touzi using regression mehods, E. Gobe, J.-P. Lemor and X. Warin using quanizaion, V. Bally and G. Pagès We propose here o use Wiener chaos expansions In he spiri, i is no so far from he regression echnics C. Bender and R. Denk 7 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

7 Inroducion How o solve a BSDE? Two seps : The generaor does no depend on (Y, Z ) Fixed poin argumen Picard ieraions ξ, {f (s)} s T square inegrable T T Y = ξ + f (s) ds Z s db s, T. The soluion is given by Y = E ( ξ + T f (s) ds ) F Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

8 Inroducion How o solve a BSDE? T Seing F = ξ + f (s) ds, we have Y = E (F F ) f (s) ds Finally, he soluion is given by T F = E [F ] + Z s db s. Y = E (F F ) f (s) ds Z = D Y = D E (F F ) Explici formulae using Wiener chaos expansions + Picard ieraions Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

9 The Algorihm Simulaion of BSDEs and Wiener Chaos Expansions The Algorihm Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

10 The Algorihm Wiener Chaos Expansion Muliple Wiener Inegrals (Ω, F, P) complee probabiliy space B real valued Brownian moion {F } T augmened filraion of B : F = F T If F L 2 (Ω, F, P), T F =E[F ] u 1 (s 1 )db s1 + T sn T s2 u n is a deerminisic funcion defined on u 2 (s 2, s 1 )db s1 db s2 s2 u n (s n,..., s 1 )db s1... db sn +... S n (T ) := {(s 1,, s n ) [, T ] n : < s 1 <... < s n < T } Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

11 The Algorihm Wiener Chaos Expansion Muliple Wiener Inegrals If u n L 2 (S n (T )), we se J n (u n ) := T sn s2 u n (s n,, s 1 )db s1 db sn, H n := vec ( J n (u n ) : u n L 2 (S n (T )) ) We have E [ J n (u n ) 2] = sn s2 sn E [J n (u n )J m (u m )] = δ nm u 2 n(s n,..., s 1 )ds 1... ds n s2 u n (s n,..., s 1 )u m (s n,..., s 1 )ds 1... ds n Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

12 The Algorihm Wiener Chaos Expansion Muliple Wiener Inegrals To summarize, wih H = R, L 2 (Ω, F, P) = n H n Noaions : for F L 2 (Ω, F, P) P n (F) = J n (u n ) is he projecion of F on H n, C p (F) denoes he chaos decomposiion of F up o order p p p C p (F) = E[F] + P k (F) = E[F ] + J k (u k ) = E[F] + k=1 T u 1 (s 1 )db s k=1 T s2 u p (s p,..., s 1 )db s1... db sp E [ F 2] = E [F ] 2 + n 1 E [ P n (F ) 2] Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

13 The Algorihm Wiener Chaos Expansion Hermie polynomials The Hermie polynomials are defined by he expansion e x 2 /2 = H n (x) n n! = K n (x) n n n H 2 (x) = x 2 1, K 1 (x) = 1 ( x 2 1 ). 2 ( n! ) Kn is an orhonormal basis of L 2 (R, µ) n µ normal disribuion N (, 1) Le (g n ) n 1 be an orhonormal basis of L 2 (, T ) H n is he closure of he vecor field spanned by ( ) T ni! K ni g i (s)db s : (n i ) i 1 := n i = n i 1 i 1 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

14 The Algorihm Wiener Chaos Expansion Hermie polynomials Le Λ be he se of all sequences of inegers (n i ) i 1 such ha n = i 1 n i < + The se ( ) T ni! K ni g i (s)db s : n = (n i ) i 1 Λ i 1 is an orhonormal basis of L 2 (Ω, F, P) For F L 2 (Ω, F, P), F = E[F] + k 1 n =k d n k ( ) T K ni g i (s)db s i 1 dk n = n! E F ( T K ni i 1 g i (s)db s ), n! = i 1 n i! Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

15 The Algorihm Generaor independen of (Y, Z ) We consider he BSDE Y = ξ + A simple BSDE T The soluion is given by T f (s) ds Z s db s, T T Y = E (F F ) f (s) ds, Z = D E (F F ), F = ξ + f (s) ds Compue Y and Z wih he decomposiion F = E[F] + k 1 n =k d n k ( ) T K ni g i (s)db s i 1 dk n = n! E F ( T K ni i 1 g i (s)db s ), n! = i 1 n i! Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

16 The Algorihm Generaor independen of (Y, Z ) Choice of he basis We choose an orhonormal basis of L 2 (, T ) for which compuaions are easy The firs N funcions, g 1,..., g N, are given by g i () = ( i i 1 ) 1/2 1 ]i 1, i ](), i = i T N = ih, i = 1,..., n We complee hese funcions ino an orhonormal basis of L 2 (, T ), (g i ) i 1 We can consider he Haar basis on each inerval ( i 1, i ) Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

17 The Algorihm Generaor independen of (Y, Z ) Approximaion of F We consider a finie numbers of chaos p p F C p (F) = E [F ] + dk n k=1 n =k i 1 We work only wih he funcions g 1,..., g N p F C p (F ) Cp N (F ) = E [F] + k=1 n =k p = E [F] + ( ) T K ni g i (s)db s d n k dk n k=1 n =k i=1 ( n ) T K ni g i (s)db s i=1 n K ni (G i ) dk n = n 1!... n N! E [F K n1 (G 1 )... K nn (G N )] wih he noaions n = (n 1,..., n N ), G i = ( i i 1 ) 1/2 ( ) B i B i 1 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

18 The Algorihm Generaor independen of (Y, Z ) Approximaion of F Roughly speaking, we consider ha H k is generaed by Exemple For p = 2, C N 2 (F) = E [F ] + {K n1 (G 1 )... K nn (G N ) : n n N = k} N j=1 d e j 1 K 1(G j ) + j 1 N d e ij 2 K 1(G i )K 1 (G j ) + j=1 i=1 where (e j ) 1 j N is he canonical basis of R N, and e ij = e i + e j. For j = 1,, N and i = 1,, j 1 d e j 1 = E(FK 1(G j )), d e ij 2 = E(FK 1(G i )K 1 (G j )), d 2e j 2 = 2E(FK 2 (G j )). N j=1 d 2e j 2 K 2(G j ), Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

19 The Algorihm Generaor independen of (Y, Z ) Approximaion of (Y, Z ): coninuous ime For 1 r N and r 1 < r, wih n(r) = (n 1,..., n r ) E ( C N p (F) ) = E [F ] + Y p,n p k=1 n(r) =k d n k ( ) ( ) nr K r 1 2 B B r 1 n i<r i (G i ) Knr, h r 1 ( = E C N p F ) r 1 h f ( i 1 ) ( r 1 )f ( r 1 ), Z p,n = D E ( C N p (F ) ) = h 1/2 p k=1 n(r) =k n r > d n k i=1 ( ) nr 1 ( ) K r 1 2 B B n i<r i (G i ) K r 1 nr 1. h r 1 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

20 The Algorihm Generaor independen of (Y, Z ) Approximaion of (Y, Z ): coninuous ime Y p,n is coninuous on [, T ] To define Z p,n we se Case p = 2, for 1 r N, Y 2,N r = E[F] + Z 2,N r = h 1/2 ( r j=1 Y p,n = E[F ] = d Z p,n = lim Z p,n = d e 1 1 = E[F B h]. h h d e j 1 K 1(G j ) + j 1 r d e ij 2 K 1(G i )K 1 (G j ) + j=1 i=1 d er 1 + d 2er 2 K 1 (G r ) + r 1 i=1 d e ir 2 K 1(G i ) ). r j=1 d 2e j 2 K 2(G j ), Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

21 The Algorihm Generaor independen of (Y, Z ) The Algorihm Saring from M rajecories of he BM B, we ge M rajecories of F We compue d = Ê [F ] = 1 M M m=1 F m d n k = n!ê [FK n 1 (G 1 )... K nn (G N )] = n! 1 M We ge M rajecories of (Y, Z ) Y p,n,m r = d + Z p,n,m r = h 1/2 p k=1 n(r) =k p k=1 n(r) =k n r > d n k d n k M F m K n1 (G1 m )... K nn (GN m ) m=1 i r K n i (G m i ) h r f m ( i 1 ), i=1 i<r K n i (G m i ) K nr 1 (G m r ). Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

22 The Algorihm The general case A BSDE wih a generaor We consider now he BSDE Y = ξ + T f (s, Y s, Z s )ds T Z s db s, T. We assume ha f : [, T ] R R d R is Lipschiz f (, y, z) f (, y, z ) L f ( y y + z z ). The algorihm consiss in wo seps The Picard scheme o remove he generaor The previous approximaion Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

23 The Algorihm The general case Picard Ieraions (Y, Z ) = (, ) and for q T Y q+1 = ξ + f ( s, Ys q, Zs q ) T ds Zs q+1 db s, T. Le ( Y q,p,n, Z q,p,n) be he approximaion of (Y q, Z q ) ( Y,p,N, Z,p,N) = (, ) F q,p,n = ξ + T f (s, Y q,p,n s, Zs q,p,n )ds Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

24 The Algorihm The general case Previous Approximaion We consruc, wih he explici formulas, for r =,..., N Y q+1,p,n r Z q+1,p,n r = E ( Cp N ( F q,p,n ) ) r ( F r h f = D r Y q+1,p,n r i=1 i 1, Y q,p,n i 1 = D r E ( Cp N ( F q,p,n ) ) F r Saring wih M rajecories of B he coefficiens of he Wiener expansions are compued by Mone-Carlo we obain M rajecories of he process ( Y q,p,n,m, Z q,p,n,m) ), Z q,p,n i 1 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

25 Numerical Examples Simulaion of BSDEs and Wiener Chaos Expansions Numerical Examples Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

26 Numerical Examples Linear Driver - Financial Benchmark Linear Driver - Financial Benchmark Black-Scholes model in dimension d = 1 Linear generaor f (, y, z) = ry S = S e (r 1 2 σ2 )+σw, [, T ]. We consider a Discree Down and Ou Barrier Call opion The parameers are ξ = (S T K ) + 1 n [,N]Sn L r =.1, σ =.2, T = 1, K =.9, L =.85, S = 1, N = 2 By a variance reducion Mone Carlo mehod Y = , δ = Z σs =.8327 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

27 Numerical Examples Linear Driver - Financial Benchmark Linear Driver - Financial Benchmark Evoluion of Y_ Evoluion of dela_ 134e e e e 3.64 ref y_app log(m) ref dela_app log(m) Figure : Evoluion of Y q,p,n,m and δ := Z q,p,n,m w.r.. log(m) when N = 2, p = 2, σs q = 5 -Discree Down and Ou Barrier Call opion Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

28 Numerical Examples Non linear driver - Financial Benchmark Non linear driver - Financial Benchmark Black-Scholes model in dimension d = 5 i = 1,, 5 S i = S i e (µi (σi ) 2 2 )+σ i B i. The correlaion marix of B is given by B i, B j = C i,j = ρ1 i j + 1 i=j, 1 4 < ρ < 1 The borrowing rae R is higher han he bond one r The driver is given by f (, y, z) = ry θ z + (R r)(y where θ = θ := Σ 1 (µ r1), Σ ij = σ i L ij, C = LL 5 (Σ 1 z) i ) We consider a Pu Baske Opion : ξ = (K i=1 Si T ) + i=1 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

29 Numerical Examples Non linear driver - Financial Benchmark Non linear driver - Financial Benchmark Comparison wih resuls from É. Gobe & C. Labar 21 CPU ime = 166 when M = 5 and N = 2 Evoluion of Y_ Evoluion of dela_(1) 2.1 ref y_app 2. 45e 3 49e e e e log(m) ref dela_app 65e log(m) Figure : Evoluion of Y q,p,n,m and δ (1) w.r.. log(m) when N = 2, p = 2, q = 5, d = 5 - Baske Pu opion wih differen ineres and borrowing raes. Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

30 Numerical Examples Non linear driver - Financial Benchmark Non linear driver - Financial Benchmark We ry his example in dimension d = 1 The price and he δ are obained in 5 minues Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

31 Numerical Examples Non Linear Driver & Pah Dependen Terminal Condiion Non Linear Driver & Pah Dependen ξ The example is he following : d = 1 ξ = sup T B f (, y, z) = cos(y) Comparison beween p = 2 and p = 3 for N = 2 and M = 1 5 Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

32 Numerical Examples Non Linear Driver & Pah Dependen Terminal Condiion Non Linear Driver & Pah Dependen ξ ieraions CPU ime p = p = Table : Evoluion of Y q,p,n,m w.r.. Picard s ieraions, M = 1 5, N = 2 and CPU ime ieraions CPU ime p = p = Table : Evoluion of Z q,p,n,m w.r.. Picard s ieraions, M = 1 5, N = 2 and CPU ime Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

33 Numerical Examples Non Linear Driver & Pah Dependen Terminal Condiion + + Non Linear Driver & Pah Dependen ξ Convergence in M Evoluion of Y^q_ Evoluion of Z^q_ M=1^3 M=1^4 M=1^5.9 + M=1^3 M=1^4 M=1^ ieraions ieraions Figure : Evoluion of Y q,p,n,m and Z q,p,n,m w.r.. q and M when N = 2, p = 2, ξ = sup T B s, f (, y, z) = cos(y). Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

34 Numerical Examples Non Linear Driver & Pah Dependen Terminal Condiion Non Linear Driver & Pah Dependen ξ Convergence in N Evoluion of Y^q_ Evoluion of Z^q_ N=1 N=2 N=3 N= N=1 N=2 N=3.9 N= ieraions ieraions Figure : Evoluion of Y q,p,n,m and Z q,p,n,m w.r.. N when M = 1 5, p = 2 - ξ = sup T B s, f (, y, z) = cos(y) Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

35 Numerical Examples Non Linear Driver & Pah Dependen Terminal Condiion Conclusion The complexiy of he algorihm is he following O ( K i M p (N d) p+1) This algorihm is raher fas even when he dimension of he underlying BM is grea easy o implemen Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

36 Error Analysis Simulaion of BSDEs and Wiener Chaos Expansions Error Analysis Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

37 Error Analysis Convergence Resuls Spliing he error We wan o conrol he error [ E = E Y Y q,p,n sup T 2 + T Of course, we spli he error ino hree pars E = E q + E q,p + E q,p,n ] Z Z q,p,n 2 d Y Y q,p,n = Y Y q + Y q Y q,p + Y q,p Y q,p,n A erm is missing : Y q,p,n Y q,p,n,m which comes from "Mone Carlo expecaions" The firs par is very easy : E q C(T, L f ) 2 q, C(T, L f ) is explici Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

38 Error Analysis Convergence Resuls A lo of regulariy The generaor f smooh : f C b ξ is smooh in he Malliavin sense : ξ D Hölder coninuiy : E[D (r) s 1,,s r ξ] E[D (r) 1,, r ξ] K ξ ( s 1 1 α ξ + + s r r α ξ ) The Malliavin derivaives belongs o L p Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

39 Error Analysis Convergence Resuls Example X soluion o he SDE X = x + wih b and σ C wih bounded derivaives g : R n R C p b(x s ) ds + σ(x s ) db s, Regulariy assumpion rue ξ = g(x T ) ( ) T ξ = g X s ds Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

40 Error Analysis Convergence Resuls Error coming from a finie number of chaos We invesigae now E q,p relaed o Y q Y q,p. Proposiion Under h regulariy assumpion E q+1,p C T (T + 1)L 2 f E q,p + K p + 1 where K depends on he derivaives of f and ξ and T. Corollary We have E q,p A p + 1, A = K (C T (T + 1)L 2 f )q 1 C T (T + 1)L 2 f 1. Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

41 Error Analysis Convergence Resuls Error coming from a finie number of chaos We deduce from his resul ha lim q + lim Y q,p = Y. p + When T is small, C T (T + 1)L 2 f < 1, A does no depend on q and lim p + lim Y q,p = Y. q + The algorihm breaks he srucure of BSDEs Le us wrie (Y q+1,p, Z q+1,p ) in a backward way ( T = C p (ξ) + C p f ( s, Ys q,p Y q+1,p T + f (s, Y q,p s, Zs q,p )ds ), Zs q,p ) T ds T Zs q+1,p db s f ( s, Y q,p s, Zs q,p ) ds Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

42 Error Analysis Convergence Resuls Error coming from a finie number of chaos If lim q Y q,p exiss, hen one has Y,p = C p (ξ) + C p ( T T + f (s, Y,p s f ( s, Y,p s T, Zs,p )ds ), Zs,p ) T ds Zs,p db s f ( s, Y,p s The erminal condiion involves all he rajecory of he soluion. We were able o solve his BSDE only when T is small, Zs,p ) ds Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

43 Error Analysis Error coming from he runcaion of he basis Error coming from he runcaion of he basis Proposiion Under he regulariy assumpion, ) 2αξ 1 E q+1,p,n C 1 T (T + 1)L 2 f E q,p,n + K 1 ( T N where C 1 is a scalar and K 1 depends on he derivaives of f and ξ. Moreover, E q,p,n A 1 ( T N ) 2αξ 1, A 1 = K 1 T (T + 1)e T (C 1T (T + 1)L 2 f )q 1 C 1 T (T + 1)L 2 f 1 As before, he consan T (T + 1) appears Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

44 Error Analysis Global error Proposiion Under he regulariy assumpion, wih Convergence resul E C2 q + A ( ) 2αξ 1 T p A 1 N A = K (C T (T + 1)L 2 f )q 1 C T (T + 1)L 2 f 1 A 1 = K 1 T (T + 1)e T (C 1T (T + 1)L 2 f )q 1 C 1 T (T + 1)L 2 f 1 Corollary In paricular, lim lim q p lim Y q,p,n = Y N Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

45 Error Analysis Global error Perspecives Try o weaken he regulariy assumpion Undersand for large p and T he BSDE Y,p = C p (ξ) + C p ( T T + f (s, Y,p s f ( s, Y,p s T, Zs,p )ds ), Zs,p ) T ds Zs,p db s f ( s, Y,p s This mehod works also for he dynamic programing equaion, Zs,p ) ds Y = E (Y + h F ) + hf (, Y, Z ), Z = h 1 E (Y +h (B +h B ) F ) Numerical simulaions are no so good Error analysis Ph. Briand & C. Labar (Univ. Savoie) Simulaion of BSDEs and Wiener Chaos Expansions Rennes, May 22-24, / 46

46 Thank you for your aenion

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Sochasic Analysis Seminar Oxford, June 1, 213 Inroducion

More information

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions Time discreizaion of quadraic and superquadraic Markovian BSDEs wih unbounded erminal condiions Adrien Richou Universié Bordeaux 1, INRIA équipe ALEA Oxford framework Le (Ω, F, P) be a probabiliy space,

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions Recalls and basic resuls on BSDEs Uniqueness resul Links wih PDEs On he uniqueness of soluions o quadraic BSDEs wih convex generaors and unbounded erminal condiions IRMAR, Universié Rennes 1 Châeau de

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability,

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability, Backward Sochasic Differenial Equaions and Applicaions Alexander Seinicke Universiy of Graz Vienna Seminar in Mahemaical Finance and Probabiliy, 6-20-2017 1 / 31 1 Wha is a BSDE? SDEs - he differenial

More information

Chapter 14 Wiener Processes and Itô s Lemma. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull

Chapter 14 Wiener Processes and Itô s Lemma. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull Chaper 14 Wiener Processes and Iô s Lemma Copyrigh John C. Hull 014 1 Sochasic Processes! Describes he way in which a variable such as a sock price, exchange rae or ineres rae changes hrough ime! Incorporaes

More information

AMartingaleApproachforFractionalBrownian Motions and Related Path Dependent PDEs

AMartingaleApproachforFractionalBrownian Motions and Related Path Dependent PDEs AMaringaleApproachforFracionalBrownian Moions and Relaed Pah Dependen PDEs Jianfeng ZHANG Universiy of Souhern California Join work wih Frederi VIENS Mahemaical Finance, Probabiliy, and PDE Conference

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Quadratic and Superquadratic BSDEs and Related PDEs

Quadratic and Superquadratic BSDEs and Related PDEs Quadraic and Superquadraic BSDEs and Relaed PDEs Ying Hu IRMAR, Universié Rennes 1, FRANCE hp://perso.univ-rennes1.fr/ying.hu/ ITN Marie Curie Workshop "Sochasic Conrol and Finance" Roscoff, March 21 Ying

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient

Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient 1/34 Exisence and uniqueness of soluion for mulidimensional BSDE wih local condiions on he coefficien EL HASSAN ESSAKY Cadi Ayyad Universiy Mulidisciplinary Faculy Safi, Morocco ITN Roscof, March 18-23,

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0.

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0. Advanced Financial Models Example shee 3 - Michaelmas 217 Michael Tehranchi Problem 1. Le f : [, R be a coninuous (non-random funcion and W a Brownian moion, and le σ 2 = f(s 2 ds and assume σ 2

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

1. Introduction. Journal of Numerical Mathematics and Stochastics, 10(1) : 45-57, A.SGHIR 1, D.SEGHIR 2, and S. HADIRI 2

1. Introduction. Journal of Numerical Mathematics and Stochastics, 10(1) : 45-57, A.SGHIR 1, D.SEGHIR 2, and S. HADIRI 2 Journal of Numerical Mahemaics and Sochasics, 1(1) : 5-57, 218 hp://www.jnmas.org/jnmas1-.pdf JNM@S Euclidean Press, LLC Online: ISSN 2151-232 Numerical Mehods for Cerain Classes of Markovian Backward

More information

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs Backward doubly sochasic di erenial equaions wih quadraic growh and applicaions o quasilinear SPDEs Badreddine MANSOURI (wih K. Bahlali & B. Mezerdi) Universiy of Biskra Algeria La Londe 14 sepember 2007

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM Communicaions on Sochasic Analysis Vol. 1, No. 3 (27) 473-483 EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM P. SUNDAR AND HONG YIN Absrac. The backward sochasic Lorenz

More information

arxiv: v1 [math.pr] 28 Nov 2016

arxiv: v1 [math.pr] 28 Nov 2016 Backward Sochasic Differenial Equaions wih Nonmarkovian Singular Terminal Values Ali Devin Sezer, Thomas Kruse, Alexandre Popier Ocober 15, 2018 arxiv:1611.09022v1 mah.pr 28 Nov 2016 Absrac We solve a

More information

Empirical Process Theory

Empirical Process Theory Empirical Process heory 4.384 ime Series Analysis, Fall 27 Reciaion by Paul Schrimpf Supplemenary o lecures given by Anna Mikusheva Ocober 7, 28 Reciaion 7 Empirical Process heory Le x be a real-valued

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation A proof of Io's formula using a di Tile formula Auhor(s) Fujia, Takahiko; Kawanishi, Yasuhi Sudia scieniarum mahemaicarum H Ciaion 15-134 Issue 8-3 Dae Type Journal Aricle Tex Version auhor URL hp://hdl.handle.ne/186/15878

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Singular perturbation control problems: a BSDE approach

Singular perturbation control problems: a BSDE approach Singular perurbaion conrol problems: a BSDE approach Join work wih Francois Delarue Universié de Nice and Giuseppina Guaeri Poliecnico di Milano Le Mans 8h of Ocober 215 Conference in honour of Vlad Bally

More information

arxiv:quant-ph/ v1 5 Jul 2004

arxiv:quant-ph/ v1 5 Jul 2004 Numerical Mehods for Sochasic Differenial Equaions Joshua Wilkie Deparmen of Chemisry, Simon Fraser Universiy, Burnaby, Briish Columbia V5A 1S6, Canada Sochasic differenial equaions (sdes) play an imporan

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Couplage du principe des grandes déviations et de l homogénisation dans le cas des EDP paraboliques: (le cas constant)

Couplage du principe des grandes déviations et de l homogénisation dans le cas des EDP paraboliques: (le cas constant) Couplage du principe des grandes déviaions e de l homogénisaion dans le cas des EDP paraboliques: (le cas consan) Alioune COULIBALY U.F.R Sciences e Technologie Universié Assane SECK de Ziguinchor Probabilié

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

Approximation of backward stochastic variational inequalities

Approximation of backward stochastic variational inequalities Al. I. Cuza Universiy of Iaşi, România 10ème Colloque Franco-Roumain de Mahémaiques Appliquées Augus 27, 2010, Poiiers, France Shor hisory & moivaion Re eced Sochasic Di erenial Equaions were rs sudied

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation Mos Probable Phase Porrais of Sochasic Differenial Equaions and Is Numerical Simulaion Bing Yang, Zhu Zeng and Ling Wang 3 School of Mahemaics and Saisics, Huazhong Universiy of Science and Technology,

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Stochastic Modelling in Finance - Solutions to sheet 8

Stochastic Modelling in Finance - Solutions to sheet 8 Sochasic Modelling in Finance - Soluions o shee 8 8.1 The price of a defaulable asse can be modeled as ds S = µ d + σ dw dn where µ, σ are consans, (W ) is a sandard Brownian moion and (N ) is a one jump

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Option pricing and implied volatilities in a 2-hypergeometric stochastic volatility model

Option pricing and implied volatilities in a 2-hypergeometric stochastic volatility model Opion pricing and implied volailiies in a 2-hypergeomeric sochasic volailiy model Nicolas Privaul Qihao She Division of Mahemaical Sciences School of Physical and Mahemaical Sciences Nanyang Technological

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Singular control of SPDEs and backward stochastic partial diffe. reflection

Singular control of SPDEs and backward stochastic partial diffe. reflection Singular conrol of SPDEs and backward sochasic parial differenial equaions wih reflecion Universiy of Mancheser Join work wih Bern Øksendal and Agnès Sulem Singular conrol of SPDEs and backward sochasic

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

III. Module 3. Empirical and Theoretical Techniques

III. Module 3. Empirical and Theoretical Techniques III. Module 3. Empirical and Theoreical Techniques Applied Saisical Techniques 3. Auocorrelaion Correcions Persisence affecs sandard errors. The radiional response is o rea he auocorrelaion as a echnical

More information

Optimal Investment under Dynamic Risk Constraints and Partial Information

Optimal Investment under Dynamic Risk Constraints and Partial Information Opimal Invesmen under Dynamic Risk Consrains and Parial Informaion Wolfgang Puschögl Johann Radon Insiue for Compuaional and Applied Mahemaics (RICAM) Ausrian Academy of Sciences www.ricam.oeaw.ac.a 2

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations arxiv:mah/07002v [mah.pr] 3 Dec 2006 Local Sric Comparison Theorem and Converse Comparison Theorems for Refleced Backward Sochasic Differenial Equaions Juan Li and Shanjian Tang Absrac A local sric comparison

More information

Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values

Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values Backward Sochasic Differenial Equaions wih Nonmarkovian Singular Terminal Values Ali Sezer, Thomas Kruse, Alexandre Popier, Ali Sezer To cie his version: Ali Sezer, Thomas Kruse, Alexandre Popier, Ali

More information

A FAMILY OF MARTINGALES GENERATED BY A PROCESS WITH INDEPENDENT INCREMENTS

A FAMILY OF MARTINGALES GENERATED BY A PROCESS WITH INDEPENDENT INCREMENTS Theory of Sochasic Processes Vol. 14 3), no. 2, 28, pp. 139 144 UDC 519.21 JOSEP LLUÍS SOLÉ AND FREDERIC UTZET A FAMILY OF MARTINGALES GENERATED BY A PROCESS WITH INDEPENDENT INCREMENTS An explici procedure

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations arxiv:mah/0602323v1 [mah.pr] 15 Feb 2006 Dual Represenaion as Sochasic Differenial Games of Backward Sochasic Differenial Equaions and Dynamic Evaluaions Shanjian Tang Absrac In his Noe, assuming ha he

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 2, May 2013, pp. 209 227 ISSN 0364-765X (prin) ISSN 1526-5471 (online) hp://dx.doi.org/10.1287/moor.1120.0562 2013 INFORMS On Boundedness of Q-Learning Ieraes

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type EMS SCM join meeing Barcelona, May 28-30, 2015 On sochasic parial differenial equaions of parabolic ype Isván Gyöngy School of Mahemaics and Maxwell Insiue Edinburgh Universiy 1 I. Filering problem II.

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Lecture 6: Wiener Process

Lecture 6: Wiener Process Lecure 6: Wiener Process Eric Vanden-Eijnden Chapers 6, 7 and 8 offer a (very) brief inroducion o sochasic analysis. These lecures are based in par on a book projec wih Weinan E. A sandard reference for

More information

Ordinary differential equations. Phys 750 Lecture 7

Ordinary differential equations. Phys 750 Lecture 7 Ordinary differenial equaions Phys 750 Lecure 7 Ordinary Differenial Equaions Mos physical laws are expressed as differenial equaions These come in hree flavours: iniial-value problems boundary-value problems

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Branching diffusion representation of semilinear PDEs and Monte Carlo approximation

Branching diffusion representation of semilinear PDEs and Monte Carlo approximation Branching diffusion represenaion of semilinear PDEs and Mone Carlo approximaion Pierre Henry-Labordère Nadia Oudjane Xiaolu Tan Nizar Touzi December 22, 207 Xavier Warin Absrac We provide a represenaion

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Generalized Chebyshev polynomials

Generalized Chebyshev polynomials Generalized Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 86 Roma, Ialy email: c.cesarano@unineunouniversiy.ne ABSTRACT

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Lecture 4: Processes with independent increments

Lecture 4: Processes with independent increments Lecure 4: Processes wih independen incremens 1. A Wienner process 1.1 Definiion of a Wienner process 1.2 Reflecion principle 1.3 Exponenial Brownian moion 1.4 Exchange of measure (Girsanov heorem) 1.5

More information

7 The Itô/Stratonovich dilemma

7 The Itô/Stratonovich dilemma 7 The Iô/Sraonovich dilemma The dilemma: wha does he idealizaion of dela-funcion-correlaed noise mean? ẋ = f(x) + g(x)η() η()η( ) = κδ( ). (1) Previously, we argued by a limiing procedure: aking noise

More information

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas Mah 527 Lecure 6: Hamilon-Jacobi Equaion: Explici Formulas Sep. 23, 2 Mehod of characerisics. We r o appl he mehod of characerisics o he Hamilon-Jacobi equaion: u +Hx, Du = in R n, u = g on R n =. 2 To

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k)

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k) Ger sgorin Circle Chaper 9 Approimaing Eigenvalues Per-Olof Persson persson@berkeley.edu Deparmen of Mahemaics Universiy of California, Berkeley Mah 128B Numerical Analysis (Ger sgorin Circle) Le A be

More information

Weak error analysis via functional Itô calculus

Weak error analysis via functional Itô calculus Weak error analysis via funcional Iô calculus Mihály Kovács and Felix Lindner arxiv:163.8756v2 [mah.pr] 14 Jun 216 Absrac We consider auonomous sochasic ordinary differenial equaions SDEs and weak approximaions

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information