Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research

Size: px
Start display at page:

Download "Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research"

Transcription

1 Graphical Even Models and Causal Even Models Chris Meek Microsof Research

2 Graphical Models Defines a join disribuion P X over a se of variables X = X 1,, X n A graphical model M =< G, Θ > G =< X, E > is a direced acyclic graph. Θ = {Θ 1,, Θ n } where Θ i defines he condiional disribuion P(X i π i ) where π i are he parens of X i in G. Learning: Assume we see many draws from P X. X 1 X 2 X 3 P X 1 = f 1 X 1, Θ 1 P X 2 = f 2 X 2, Θ 2 P X 3 X 1, X 2 = f 3 (X 3, X 1, X 2, Θ 3 )

3 Graphical Models Explaining away ype reasoning Wha is probabiliy of Burglary given AlarmSound? Wha is probabiliy of Burglary given AlarmSound and a NewsRepor of an earhquake? Earhquake? Burglary? NewsRepor? AlarmSound?

4 Graphical Models Explaining away ype reasoning Wha is probabiliy of Burglary given AlarmSound? Wha is probabiliy of Burglary given AlarmSound and a NewsRepor of an earhquake? Wha if he NewsRepor said he earhquake was afer he Alarm wen off?

5 Ouline Temporal Even Sequences Graphical Even Models Learning Graphical Even Models Learning Causal Dependencies Causal Even Model Graphical Even Models

6 Modeling emporal even sreams A emporal even sream is a ime-samped sream of labeled evens. This ype of daa is pervasive: daacener even logs, search queries, Wan o model: Wha evens will happen when, based on wha evens have happened when.

7 Temporal Even Sequences: Even Logs from a Daacener LinkFail SQLTimeou CDriveFail LinkFail SQLTimeou LinkFail HomailAuhFail LinkFail QueueOverflow SQLTimeou QueueOverflow QueueOverflow QueueOverflow CDriveFail QueueOverflow ReimageFail SendTech 2:15 pm 2:30 pm 2:45 pm 3:00 pm L is he se of possible evens (i.e., hings ha can happen) D = 1, l 1, 2, l 2, 3, l 3, n, l n where l L and i < i+1

8 Marked poin processes Trea daa as a realizaion of a marked poin process: x = 1, l 1,, n, l n Forward in ime likelihood: p x = n i=1 p( i, l i h i ) where he hisory h i = h i (x) = 1, l 1,, i 1, l i 1 Any p( i, l i h i ) can be represened via condiional inensiies λ l i h i : p i, l i h i = l l l=l λ l i h i i e i λ 0 l τ h i dτ

9 Proof skech Given pdf p() define: λ p() 1 0 p τ dτ P() Then, Calculus: P = λ 1 P P = 1 e 0 λ τ dτ λ τ dτ p = λ e 0 Given p, l = p p(l ) define λ l λ p l Then p, l = p p l = λ l e l 0 λl τ dτ

10 Condiional inensiies p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

11 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

12 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

13 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

14 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

15 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

16 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

17 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

18 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

19 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

20 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

21 Condiional inensiies λ h λ h p i, l i h i = l λ l i h l l=l i i e i 0 λ l τ h i dτ

22 Condiional inensiies λ h λ h 1) Behavior of differen even ypes specified separaely 2) Highlighs dependency of each even ypes on hisory

23 Even Sequence Noaion Example: L = {a, b, c} D = 1, l 1, n, l n e.g., 1, a, 3, b, 3 = 5, a, 8, c h i = h(, D) is he hisory up o i h 3 = 1, a, 3, b, (5, a) h A is he filered hisory for A L D a = { 1, a, 5, a }

24 Graphical Even Models A Graphical Even Model (GEM) is a pair G, Θ Verices for each even ype L = a, b, c Edges represen poenial dependencies Θ l Θ parameerizes inensiy funcion for l λ a h, Θ a λ b h, Θ b λ c h, Θ c = λ a h πa, Θ a = λ b h πb, Θ b = λ c h πc, Θ c

25 Learning Graphical Even Models Specify funcional form(s) for inensiies λ l wih separae parameers for each even Likelihood facors according o L so we can learn each inensiy funcion separaely. Bayesians also require facorizaion of prior Search over space of direced graphs Add/remove parens ha improve he score

26 Piecewise-Consan CIMs (PCIM) Idea: resric λ l i h i o be piecewise consan in for all even sequences A sae funcion σ(, h) maps hisories o a discree se of saes Σ A PCIM is a pair M = S, Θ where Srucure S= σ l, h, Σ l l L Parameers Θ = Θ l l L and Θ l = λ ls s Σl

27 Piecewise-Consan CIMs σ a (, h) σ b (, h) σ c (, h) a: b: c: Sae Funcions (coloring) λ a ( ) = 0 λ a ( ) = 0.1 λ a ( ) = 10. λ c ( ) = 10

28 Piecewise-Consan CIM A PCIM (CIM) M = S, Θ (where Θ = {Θ 1,, Θ L } and Θ l = λ ls s Σl ) has likelihood c(l,s) p D M = λ ls e λ ls d(l,s) l L s Σ l c(l, s) is he coun of even l when σ l, h = s in D d(l, s) is he oal duraion of σ l, h = s in D

29 Piecewise-Consan CIM Produc of Gammas is conjugae prior, even hough he likelihood isn a produc of exponenials! p λ ls α ls, β ls = β ls α λ ls 1 Γ α ls e β ls λ ls ls Closed-form poserior: p λ ls α ls, β ls, D, S = p λ ls α ls + c(l, s), β ls + d(l, s) Closed-form marginal likelihood: p D S = γ ls D ls α ls γ ls D = β ls Γ α ls Γ α ls + c(l, s) β ls + d(l, s) α ls+c(l,s)

30 Piecewise-Consan CIM Defining PCIM Srucures Example Le B = f 1, h,, f n (, ) where f i, h is a basis sae funcion (BSF) A family of srucures S(B) is obained by combining BSFs. We use decision rees bu one could use decision graphs. no σ l, h = r λ lr f i, h = s i? no σ l, h = s λ ls yes f j, h = s j? yes σ l, h = λ l

31 Piecewise-Consan CIM Example Types of basis sae funcions f, h Even-ype specific sae funcions f, h = f(, h l ) depends only on he hisory of a specific even ype Windowed sae funcions f, h = f, h s, e depends only on he hisory during a window relaive o ime. Hisorical sae funcions f, h depends on he las evens ha have happened bu no heir imes.

32 Piecewise-Consan CIM σ a (, h) σ b (, h) σ c (, h)

33 Piecewise-Consan CIM:Learning We use a Bayesian Model selecion approach o choose S S B For each l L Sar wih empy decision ree (i.e.,, h σ l, h = k) For each leaf in decision ree Evaluae each possible spli (f B, s) Choose spli ha mos improves he marginal likelihood Alernaively one could use MCMC o average over S B.

34 Example: λ RebooFail decision ree false IniReboo [30 min] rue 216 Even ypes λ = 0 false SuccReboo [30min] rue false Unhealh VersionCheck [30 min] rue λ = 0 λ = 3.36 false Healhy VersionCheck [30 min] rue λ = 41.4 λ = 0

35 Learning Causal Graphical Models Direced Acyclic Assumpion (DAG) causal model can be represened by a direced acyclic graph G = X, E Daa Assumpion: world is described by some P X and he observed world is some P O O X Reliable Informaion Assumpion (Reliable) he world provides reliable informaion abou independencies among observed variables O X. I(A, C, B) means A is independen of B given C

36 Learning Causal Graphical Models Assumpions ha connec observed world P and causal model G Causal Markov Assumpion (CMA): If d G A, B, C I P A, B, C Noe 1: d G (A, B, C) is d-separaion: a verex separaion crierion Noe 2: A graphical model non-causal Markov w.r.. P X i defines Causal Faihfulness Assumpion (CFA): If I P A, B, C d G (A, B, C)

37 Learning Causal Graphical Models Learning Scenarios Complee daa: All variables observed (X = O) Causal sufficiency: No pair of observed variables have unobserved common ancesors. General case: O X Goal: In each learning scenario, use independence facs o idenify causal informaion common o every graph wih hose independencies/separaion facs.

38 Learning Causal Graphical Models Manra: Correlaion does no imply causaion Complee daa: Indisinguishable A B A B General case: Also indisinguishable H H H A B A B A B

39 Learning Causal Graphical Models Ineresing general case resul Under he assumpions DAG, Reliable, CMA and CFA If he only independence facs we observe o hold are I A,, B, I A, C, D, I(B, C, D) hen C is a cause of D. A C D B

40 Learning Causal GEMs Sep 1: Change he separaion crierion from d-separaion o δ-separaion δ(a, C, B) in G = L, E if and only if d(a, C, B) in G B where G B = L, E B and E B = l 1, l 2 E l 1 B Sep 2: Change from independence ess o facorizaion (process independence) ess Sep 3: Assume analog of CMA, CFA, Reliable Sep 4: Prove hings

41 Learning Causal GEMs Learning Scenarios Complee daa: All variables observed (X = O) Resul: Can recover he srucure. Causal sufficiency: No pair of observed variables have unobserved common ancesors. Resul: Can recover he srucure over O. (all causes) General case: O X In Progress: Some sufficien condiions for cause Some sufficien condiions for non-cause Some sufficien condiions for exisence of unmeasured common cause

42 Open Issues Characerize wha one can learn in he general case Jusificaion of using Process Independence o learn cause (e.g., compleeness of δ-separaion) Principled approaches o esing process independence saemens. Consisency of score learning for process independence. Relaxing assumpions such as he reliabiliy assumpion

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency)

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency) Foundaions of Saisical Inference Julien Beresycki Lecure 2 - Sufficiency, Facorizaion, Minimal sufficiency Deparmen of Saisics Universiy of Oxford MT 2016 Julien Beresycki (Universiy of Oxford BS2a MT

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Y. Xiang, Learning Bayesian Networks 1

Y. Xiang, Learning Bayesian Networks 1 Learning Bayesian Neworks Objecives Acquisiion of BNs Technical conex of BN learning Crierion of sound srucure learning BN srucure learning in 2 seps BN CPT esimaion Reference R.E. Neapolian: Learning

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Random Processes 1/24

Random Processes 1/24 Random Processes 1/24 Random Process Oher Names : Random Signal Sochasic Process A Random Process is an exension of he concep of a Random variable (RV) Simples View : A Random Process is a RV ha is a Funcion

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Answers to QUIZ

Answers to QUIZ 18441 Answers o QUIZ 1 18441 1 Le P be he proporion of voers who will voe Yes Suppose he prior probabiliy disribuion of P is given by Pr(P < p) p for 0 < p < 1 You ake a poll by choosing nine voers a random,

More information

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence CS 188 Fall 2018 Inroducion o Arificial Inelligence Wrien HW 9 Sol. Self-assessmen due: Tuesday 11/13/2018 a 11:59pm (submi via Gradescope) For he self assessmen, fill in he self assessmen boxes in your

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Inference of Sparse Gene Regulatory Network from RNA-Seq Time Series Data

Inference of Sparse Gene Regulatory Network from RNA-Seq Time Series Data Inference of Sparse Gene Regulaory Nework from RNA-Seq Time Series Daa Alireza Karbalayghareh and Tao Hu Texas A&M Universiy December 16, 2015 Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Stochastic Structural Dynamics. Lecture-6

Stochastic Structural Dynamics. Lecture-6 Sochasic Srucural Dynamics Lecure-6 Random processes- Dr C S Manohar Deparmen of Civil Engineering Professor of Srucural Engineering Indian Insiue of Science Bangalore 560 0 India manohar@civil.iisc.erne.in

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Transform Techniques. Moment Generating Function

Transform Techniques. Moment Generating Function Transform Techniques A convenien way of finding he momens of a random variable is he momen generaing funcion (MGF). Oher ransform echniques are characerisic funcion, z-ransform, and Laplace ransform. Momen

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Causal Reasoning for Events in Continuous Time: A Decision Theoretic Approach

Causal Reasoning for Events in Continuous Time: A Decision Theoretic Approach Causal Reasoning for Evens in Coninuous Time: A Decision Theoreic Approach Vanessa Didelez School of Mahemaics Universiy of Brisol Vanessa.Didelez@brisol.ac.uk Absrac The dynamics of evens occurring in

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Temporal probability models

Temporal probability models Temporal probabiliy models CS194-10 Fall 2011 Lecure 25 CS194-10 Fall 2011 Lecure 25 1 Ouline Hidden variables Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic

More information

Speech and Language Processing

Speech and Language Processing Speech and Language rocessing Lecure 4 Variaional inference and sampling Informaion and Communicaions Engineering Course Takahiro Shinozaki 08//5 Lecure lan (Shinozaki s par) I gives he firs 6 lecures

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

Self assessment due: Monday 4/29/2019 at 11:59pm (submit via Gradescope)

Self assessment due: Monday 4/29/2019 at 11:59pm (submit via Gradescope) CS 188 Spring 2019 Inroducion o Arificial Inelligence Wrien HW 10 Due: Monday 4/22/2019 a 11:59pm (submi via Gradescope). Leave self assessmen boxes blank for his due dae. Self assessmen due: Monday 4/29/2019

More information

Stochastic models and their distributions

Stochastic models and their distributions Sochasic models and heir disribuions Couning cusomers Suppose ha n cusomers arrive a a grocery a imes, say T 1,, T n, each of which akes any real number in he inerval (, ) equally likely The values T 1,,

More information

CS Homework Week 2 ( 2.25, 3.22, 4.9)

CS Homework Week 2 ( 2.25, 3.22, 4.9) CS3150 - Homework Week 2 ( 2.25, 3.22, 4.9) Dan Li, Xiaohui Kong, Hammad Ibqal and Ihsan A. Qazi Deparmen of Compuer Science, Universiy of Pisburgh, Pisburgh, PA 15260 Inelligen Sysems Program, Universiy

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Logic in computer science

Logic in computer science Logic in compuer science Logic plays an imporan role in compuer science Logic is ofen called he calculus of compuer science Logic plays a similar role in compuer science o ha played by calculus in he physical

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error Filering Turbulen Signals Using Gaussian and non-gaussian Filers wih Model Error June 3, 3 Nan Chen Cener for Amosphere Ocean Science (CAOS) Couran Insiue of Sciences New York Universiy / I. Ouline Use

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Christos Papadimitriou & Luca Trevisan November 22, 2016

Christos Papadimitriou & Luca Trevisan November 22, 2016 U.C. Bereley CS170: Algorihms Handou LN-11-22 Chrisos Papadimiriou & Luca Trevisan November 22, 2016 Sreaming algorihms In his lecure and he nex one we sudy memory-efficien algorihms ha process a sream

More information

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy Answer 4 of he following 5 quesions. 1. Consider a pure-exchange economy wih sochasic endowmens. The sae of he economy in period, 0,1,..., is he hisory of evens s ( s0, s1,..., s ). The iniial sae is given.

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

Failure of the work-hamiltonian connection for free energy calculations. Abstract

Failure of the work-hamiltonian connection for free energy calculations. Abstract Failure of he work-hamilonian connecion for free energy calculaions Jose M. G. Vilar 1 and J. Miguel Rubi 1 Compuaional Biology Program, Memorial Sloan-Keering Cancer Cener, 175 York Avenue, New York,

More information

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011 2229-12 School and Workshop on Marke Microsrucure: Design, Efficiency and Saisical Regulariies 21-25 March 2011 Some mahemaical properies of order book models Frederic ABERGEL Ecole Cenrale Paris Grande

More information

Economics 8105 Macroeconomic Theory Recitation 6

Economics 8105 Macroeconomic Theory Recitation 6 Economics 8105 Macroeconomic Theory Reciaion 6 Conor Ryan Ocober 11h, 2016 Ouline: Opimal Taxaion wih Governmen Invesmen 1 Governmen Expendiure in Producion In hese noes we will examine a model in which

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Part III: Chap. 2.5,2.6 & 12

Part III: Chap. 2.5,2.6 & 12 Survival Analysis Mah 434 Fall 2011 Par III: Chap. 2.5,2.6 & 12 Jimin Ding Mah Dep. www.mah.wusl.edu/ jmding/mah434/index.hml Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 1/14 Jimin Ding,

More information

Homework 4 SOLUTION EE235, Summer 2012

Homework 4 SOLUTION EE235, Summer 2012 Homework 4 SOLUTION EE235, Summer 202. Causal and Sable. These are impulse responses for LTI sysems. Which of hese LTI sysem impulse responses represen BIBO sable sysems? Which sysems are causal? (a) h()

More information

22. Inbreeding. related measures: = coefficient of kinship, a measure of relatedness of individuals of a population; panmictic index, P = 1 F;

22. Inbreeding. related measures: = coefficient of kinship, a measure of relatedness of individuals of a population; panmictic index, P = 1 F; . Inbreeding Inbreeding: maing beween relaives. has predicable consequences for gene and genoype frequencies; increases he frequency of homozygous genoypes a he expense of heerozygous genoypes; hus decreases

More information

Math 10C: Relations and Functions PRACTICE EXAM

Math 10C: Relations and Functions PRACTICE EXAM Mah C: Relaions and Funcions PRACTICE EXAM. Cailin rides her bike o school every day. The able of values shows her disance from home as ime passes. An equaion ha describes he daa is: ime (minues) disance

More information

Lecture 4 Notes (Little s Theorem)

Lecture 4 Notes (Little s Theorem) Lecure 4 Noes (Lile s Theorem) This lecure concerns one of he mos imporan (and simples) heorems in Queuing Theory, Lile s Theorem. More informaion can be found in he course book, Bersekas & Gallagher,

More information

Decentralized Stochastic Control with Partial History Sharing: A Common Information Approach

Decentralized Stochastic Control with Partial History Sharing: A Common Information Approach 1 Decenralized Sochasic Conrol wih Parial Hisory Sharing: A Common Informaion Approach Ashuosh Nayyar, Adiya Mahajan and Demoshenis Tenekezis arxiv:1209.1695v1 [cs.sy] 8 Sep 2012 Absrac A general model

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Math 105 Second Midterm March 16, 2017

Math 105 Second Midterm March 16, 2017 Mah 105 Second Miderm March 16, 2017 UMID: Insrucor: Iniials: Secion: 1. Do no open his exam unil you are old o do so. 2. Do no wrie your name anywhere on his exam. 3. This exam has 9 pages including his

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Demodulation of Digitally Modulated Signals

Demodulation of Digitally Modulated Signals Addiional maerial for TSKS1 Digial Communicaion and TSKS2 Telecommunicaion Demodulaion of Digially Modulaed Signals Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping November

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Adaptation and Synchronization over a Network: stabilization without a reference model

Adaptation and Synchronization over a Network: stabilization without a reference model Adapaion and Synchronizaion over a Nework: sabilizaion wihou a reference model Travis E. Gibson (gibson@mi.edu) Harvard Medical School Deparmen of Pahology, Brigham and Women s Hospial 55 h Conference

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Explore 2 Proving the Vertical Angles Theorem

Explore 2 Proving the Vertical Angles Theorem Explore 2 Proving he Verical Angles Theorem The conjecure from he Explore abou verical angles can be proven so i can be saed as a heorem. The Verical Angles Theorem If wo angles are verical angles, hen

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Internet Traffic Modeling for Efficient Network Research Management Prof. Zhili Sun, UniS Zhiyong Liu, CATR

Internet Traffic Modeling for Efficient Network Research Management Prof. Zhili Sun, UniS Zhiyong Liu, CATR Inerne Traffic Modeling for Efficien Nework Research Managemen Prof. Zhili Sun, UniS Zhiyong Liu, CATR UK-China Science Bridge Workshop 13-14 December 2011, London Ouline Inroducion Background Classical

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information