Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc.

Size: px
Start display at page:

Download "Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc."

Transcription

1 Statistical Tools for Multivariate Six Sigma Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc. 1

2 The Challenge The quality of an item or service usually depends on more than one characteristic. When the characteristics are not independent, considering each characteristic separately can give a misleading estimate of overall performance. 2

3 The Solution Proper analysis of data from such processes requires the use of multivariate statistical techniques. 3

4 Outline Multivariate SPC Multivariate control charts Multivariate capability analysis Data exploration and modeling Principal components analysis (PCA) Partial least squares (PLS) Neural network classifiers Design of experiments (DOE) Multivariate optimization 4

5 Example #1 Textile fiber Characteristic #1: tensile strength ± 1 Characteristic #2: diameter ±

6 Sample Data n = 100 6

7 X Individuals Chart - strength X Chart for strength CTR = UCL = LCL = Observation 7

8 X Individuals Chart - diameter X Chart for diameter CTR = 1.05 UCL = 1.06 LCL = Observation 8

9 frequency Capability Analysis - strength Process Capability for strength LSL = 114.0, Nominal = 115.0, USL = Normal Mean= Std. Dev.= DPM = Cp = 1.41 Pp = 1.40 Cpk = 1.38 Ppk = 1.36 K = strength 9

10 frequency Capability Analysis - diameter Process Capability for diameter LSL = 1.04, Nominal = 1.05, USL = 1.06 DPM = Normal Mean= Std. Dev.= Cp = 1.41 Pp = 1.36 Cpk = 1.39 Ppk = 1.35 K = diameter 10

11 strength Scatterplot Plot of strength vs diameter correlation = diameter 11

12 Multivariate Normal Distribution Multivariate Normal Distribution strength diameter 12

13 strength Control Ellipse Control Ellipse diameter 13

14 Multivariate Capability Determines joint probability of being within the specification limits on all characteristics Observed Estimated Estimated Variable Beyond Spec. Beyond Spec. DPM strength 0.0% % diameter 0.0% % Joint 0.0% %

15 Multivariate Capability Multivariate Normal Distribution DPM = strength diameter 15

16 diameter Capability Ellipse % Capability Ellipse MCP = strength 16

17 Mult. Capability Indices Defined to give the same DPM as in the univariate case. Capability Indices Index Estimate MCP 1.27 MCR DPM Z SQL

18 empirical data Test for Normality P-Values Shapiro-Wilk strength diameter Probability Plot strength diameter normal distribution 18

19 More than 2 Characteristics Calculate T-squared: T 2 i ( x x) 1 S i ( x i x) where S = sample covariance matrix x = vector of sample means 19

20 T-Squared T-Squared Chart 30 Multivariate Control Chart UCL = Observation 20

21 T-Squared Decomposition Subtracts the value of T-squared if each variable is removed. T-Squared Decomposition Relative Contribution to T-Squared Signal Observation T-Squared diameter strength Large values indicate that a variable has an important contribution. 21

22 rnormal(100,10,1) Control Ellipsoid Control Ellipsoid diameter strength 22

23 T-Squared Multivariate EWMA Chart Multivariate EWMA Control Chart UCL = 11.25, lambda = 0.2 Largest strength diameter Observation 23

24 Gen. Variance Generalized Variance Chart Plots the determinant of the variance-covariance matrix for data that is sampled in subgroups. (X 1.E-7) Generalized Variance Chart UCL = 3.281E-7 CL = E-8 LCL = Subgroup 24

25 Data Exploration and Modeling When the number of variables is large, the dimensionality of the problem often makes it difficult to determine the underlying relationships. Reduction of dimensionality can be very helpful. 25

26 Example #2 26

27 Matrix Plot MPG City MPG Highway Engine Size Horsepow er Fueltank Passengers Length Wheelbase Width U Turn Space Weight 27

28 Analysis Methods Predicting certain characteristics based on others (regression and ANOVA) Separating items into groups (classification) Detecting unusual items 28

29 Multiple Regression MPG City = *Engine Size *Horsepower *Passengers *Length *Wheelbase *Width *U Turn Space *Weight Standard T Parameter Estimate Error Statistic P-Value CONSTANT Engine Size Horsepower Passengers Length Wheelbase Width U Turn Space Weight R-squared = percent R-squared (adjusted for d.f.) = percent Standard Error of Est. = Mean absolute error =

30 Principal Components The goal of a principal components analysis (PCA) is to construct k linear combinations of the p variables X that contain the greatest variance. C1 a11x1 a12x 2... a1 p X p C2 a21x1 a22x 2... a2 p X p C k a X a X... k1 1 k 2 2 a kp X p 30

31 Eigenvalue Scree Plot Shows the number of significant components. 6 5 Scree Plot Component 31

32 Percentage Explained Principal Components Analysis Component Percent of Cumulative Number Eigenvalue Variance Percentage

33 Components Table of Component Weights Component Component 1 2 Engine Size Horsepower Passengers Length Wheelbase Width U Turn Space Weight First component *Engine Size *Horsepower *Passengers *Length *Wheelbase *Width *U Turn Space *Weight Second component *Engine Size *Horsepower *Passengers *Length *Wheelbase *Width *U Turn Space *Weight 33

34 C_2 Interpretation Plot of C_2 vs C_ Type Compact Large Midsize Small Sporty Van C_1 34

35 Principal Component Regression MPG City = *size *unsportiness Standard T Parameter Estimate Error Statistic P-Value CONSTANT size unsportiness R-squared = percent R-squared (adjusted for d.f.) = percent Standard Error of Est. = Mean absolute error =

36 Partial Least Squares (PLS) Similar to PCA, except that it finds components that minimize the variance in both the X s and the Y s. May be used with many X variables, even exceeding n. 36

37 Percent variation Component Extraction Starts with number of components equal to the minimum of p and (n-1). Model Comparison Plot X Y Number of components 37

38 Engine Size Horsepower Passengers Length Wheelbase Width U Turn Space Weight Stnd. coefficient Coefficient Plot PLS Coefficient Plot MPG City MPG Highway Fueltank

39 Model in Original Units MPG City = *Engine Size *Horsepower *Passengers *Length *Wheelbase *Width *U Turn Space *Weight 39

40 Classification Principal components can also be used to classify new observations. A useful method for classification is a Bayesian classifier, which can be expressed as a neural network. 40

41 unsportiness 6 Types of Automobiles Plot of unsportiness vs size Type Compact Large Midsize Small Sporty Van size 41

42 Neural Networks Input layer Pattern layer Summation layer Output layer (2 variables) (93 cases) (6 neurons) (6 groups) 42

43 Bayesian Classifier Begins with prior probabilities for membership in each group Uses a Parzen-like density estimator of the density function for each group g j ( X ) 1 n j n j i 1 exp X X 2 i 2 43

44 Options The prior probabilities may be determined in several ways. A training set is usually used to find a good value for. 44

45 Output Number of cases in training set: 93 Number of cases in validation set: 0 Spacing parameter used: (optimized by jackknifing during training) Training Set Percent Correctly Type Members Classified Compact Large Midsize Small Sporty Van Total

46 unsportiness Classification Regions Classification Plot sigma = Type Compact Large Midsize Small Sporty Van size 46

47 unsportiness Changing Sigma Classification Plot sigma = 0.3 Type Compact Large Midsize Small Sporty Van size 47

48 unsportiness Overlay Plot Classification Plot sigma = 0.3 Type Compact Large Midsize Small Sporty Van size 48

49 unsportiness Outlier Detection 5 Control Ellipse size 49

50 unsportiness Cluster Analysis Cluster Scatterplot Method of k-means,squared Euclidean Cluster Centroids size 50

51 Design of Experiments When more than one characteristic is important, finding the optimal operating conditions usually requires a tradeoff of one characteristic for another. One approach to finding a single solution is to use desirability functions. 51

52 Example #3 Myers and Montgomery (2002) describe an experiment on a chemical process: Response variable Conversion percentage Goal maximize Thermal activity Maintain between 55 and 60 Input factor Low High time 8 minutes 17 minutes temperature 160 C 210 C catalyst 1.5% 3.5% 52

53 Experiment run time temperature catalyst conversion activity (minutes ) (degrees C ) (percent )

54 Step #1: Model Conversion Standardized Pareto Chart for conversion AC C:catalyst CC B:temperature BB BC AA AB A:time Standardized effect 54

55 catalyst Step #2: Optimize Conversion Goal: maximize conversion Optimum value = Factor Low High Optimum time temperature catalyst Contours of Estimated Response Surface temperature= time conversion

56 Step #3: Model Activity Standardized Pareto Chart for activity A:time C:catalyst AA AB B:temperature BC BB CC AC Standardized effect 56

57 catalyst Step #4: Optimize Activity Goal: maintain activity at 57.5 Optimum value = 57.5 Factor Low High Optimum time temperature catalyst Contours of Estimated Response Surface temperature=210.0 activity time 57

58 Desirability, d Step #5: Select Desirability Fcns. Maximize Desirability Function for Maximization s = 0.2 s = s = 1 s = s = 8 0 Low Predicted response High 58

59 Des irability, d Desirability Function Hit Target 1 Desirability Function for Hitting Target s = 0.1 t = 0.1 s = 1 t = 1 s = 5 t = Low Target Predicted response High 59

60 Combined Desirability m I I I 1/ I d 1d 2 d m j j D m where m = # of factors and 0 I j 5. D ranges from 0 to 1. 60

61 Example Optimum value = Factor Low High Optimum time temperature catalyst Weights Weights Response Low High Goal First Second Impact conversion Maximize activity Response Optimum conversion activity

62 catalyst Desirability Contours Contours of Estimated Response Surface temperature= time Desirability

63 Desirability Desirability Surface Estimated Response Surface temperature= time catalyst 63

64 catalyst Overlaid Contours Overlay Plot temperature=210.0 conversion activity time 64

65 References Johnson, R.A. and Wichern, D.W. (2002). Applied Multivariate Statistical Analysis. Upper Saddle River: Prentice Hall.Mason, R.L. and Young, J.C. (2002). Mason and Young (2002). Multivariate Statistical Process Control with Industrial Applications. Philadelphia: SIAM. Montgomery, D. C. (2005). Introduction to Statistical Quality Control, 5th edition. New York: John Wiley and Sons. Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology: Process and Product optimization Using Designed Experiments, 2nd edition. New York: John Wiley and Sons. 65

66 PowerPoint Slides Available at: 66

Principal Components. Summary. Sample StatFolio: pca.sgp

Principal Components. Summary. Sample StatFolio: pca.sgp Principal Components Summary... 1 Statistical Model... 4 Analysis Summary... 5 Analysis Options... 7 Scree Plot... 8 Component Weights... 9 D and 3D Component Plots... 10 Data Table... 11 D and 3D Component

More information

Factor Analysis. Summary. Sample StatFolio: factor analysis.sgp

Factor Analysis. Summary. Sample StatFolio: factor analysis.sgp Factor Analysis Summary... 1 Data Input... 3 Statistical Model... 4 Analysis Summary... 5 Analysis Options... 7 Scree Plot... 9 Extraction Statistics... 10 Rotation Statistics... 11 D and 3D Scatterplots...

More information

Multivariate T-Squared Control Chart

Multivariate T-Squared Control Chart Multivariate T-Squared Control Chart Summary... 1 Data Input... 3 Analysis Summary... 4 Analysis Options... 5 T-Squared Chart... 6 Multivariate Control Chart Report... 7 Generalized Variance Chart... 8

More information

Principal component analysis

Principal component analysis Principal component analysis Motivation i for PCA came from major-axis regression. Strong assumption: single homogeneous sample. Free of assumptions when used for exploration. Classical tests of significance

More information

Multivariate Capability Analysis Using Statgraphics. Presented by Dr. Neil W. Polhemus

Multivariate Capability Analysis Using Statgraphics. Presented by Dr. Neil W. Polhemus Multivariate Capability Analysis Using Statgraphics Presented by Dr. Neil W. Polhemus Multivariate Capability Analysis Used to demonstrate conformance of a process to requirements or specifications that

More information

Unsupervised Learning Methods

Unsupervised Learning Methods Structural Health Monitoring Using Statistical Pattern Recognition Unsupervised Learning Methods Keith Worden and Graeme Manson Presented by Keith Worden The Structural Health Monitoring Process 1. Operational

More information

Canonical Correlations

Canonical Correlations Canonical Correlations Summary The Canonical Correlations procedure is designed to help identify associations between two sets of variables. It does so by finding linear combinations of the variables in

More information

Table of Contents. Multivariate methods. Introduction II. Introduction I

Table of Contents. Multivariate methods. Introduction II. Introduction I Table of Contents Introduction Antti Penttilä Department of Physics University of Helsinki Exactum summer school, 04 Construction of multinormal distribution Test of multinormality with 3 Interpretation

More information

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

More information

Sample Control Chart Calculations. Here is a worked example of the x and R control chart calculations.

Sample Control Chart Calculations. Here is a worked example of the x and R control chart calculations. Sample Control Chart Calculations Here is a worked example of the x and R control chart calculations. Step 1: The appropriate characteristic to measure was defined and the measurement methodology determined.

More information

Multiple Variable Analysis

Multiple Variable Analysis Multiple Variable Analysis Revised: 10/11/2017 Summary... 1 Data Input... 3 Analysis Summary... 3 Analysis Options... 4 Scatterplot Matrix... 4 Summary Statistics... 6 Confidence Intervals... 7 Correlations...

More information

Quality. Statistical Process Control: Control Charts Process Capability DEG/FHC 1

Quality. Statistical Process Control: Control Charts Process Capability DEG/FHC 1 Quality Statistical Process Control: Control Charts Process Capability DEG/FHC 1 SPC Traditional view: Statistical Process Control (SPC) is a statistical method of separating variation resulting from special

More information

Polynomial Regression

Polynomial Regression Polynomial Regression Summary... 1 Analysis Summary... 3 Plot of Fitted Model... 4 Analysis Options... 6 Conditional Sums of Squares... 7 Lack-of-Fit Test... 7 Observed versus Predicted... 8 Residual Plots...

More information

MULTIVARIATE ANALYSIS OF VARIANCE

MULTIVARIATE ANALYSIS OF VARIANCE MULTIVARIATE ANALYSIS OF VARIANCE RAJENDER PARSAD AND L.M. BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 lmb@iasri.res.in. Introduction In many agricultural experiments,

More information

21.1 Traditional Monitoring Techniques Extensions of Statistical Process Control Multivariate Statistical Techniques

21.1 Traditional Monitoring Techniques Extensions of Statistical Process Control Multivariate Statistical Techniques 1 Process Monitoring 21.1 Traditional Monitoring Techniques 21.2 Quality Control Charts 21.3 Extensions of Statistical Process Control 21.4 Multivariate Statistical Techniques 21.5 Control Performance

More information

Nonlinear Regression. Summary. Sample StatFolio: nonlinear reg.sgp

Nonlinear Regression. Summary. Sample StatFolio: nonlinear reg.sgp Nonlinear Regression Summary... 1 Analysis Summary... 4 Plot of Fitted Model... 6 Response Surface Plots... 7 Analysis Options... 10 Reports... 11 Correlation Matrix... 12 Observed versus Predicted...

More information

MULTIVARIATE HOMEWORK #5

MULTIVARIATE HOMEWORK #5 MULTIVARIATE HOMEWORK #5 Fisher s dataset on differentiating species of Iris based on measurements on four morphological characters (i.e. sepal length, sepal width, petal length, and petal width) was subjected

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

On Line Computation of Process Capability Indices

On Line Computation of Process Capability Indices International Journal of Statistics and Applications 01, (5): 80-93 DOI: 10.593/j.statistics.01005.06 On Line Computation of Process Capability Indices J. Subramani 1,*, S. Balamurali 1 Department of Statistics,

More information

CHAPTER 6 A STUDY ON DISC BRAKE SQUEAL USING DESIGN OF EXPERIMENTS

CHAPTER 6 A STUDY ON DISC BRAKE SQUEAL USING DESIGN OF EXPERIMENTS 134 CHAPTER 6 A STUDY ON DISC BRAKE SQUEAL USING DESIGN OF EXPERIMENTS 6.1 INTRODUCTION In spite of the large amount of research work that has been carried out to solve the squeal problem during the last

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/term

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Experimental design. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Experimental design. Matti Hotokka Department of Physical Chemistry Åbo Akademi University Experimental design Matti Hotokka Department of Physical Chemistry Åbo Akademi University Contents Elementary concepts Regression Validation Hypotesis testing ANOVA PCA, PCR, PLS Clusters, SIMCA Design

More information

Discriminant Analysis

Discriminant Analysis Discriminant Analysis V.Čekanavičius, G.Murauskas 1 Discriminant analysis one categorical variable depends on one or more normaly distributed variables. Can be used for forecasting. V.Čekanavičius, G.Murauskas

More information

A Multivariate Process Variability Monitoring Based on Individual Observations

A Multivariate Process Variability Monitoring Based on Individual Observations www.ccsenet.org/mas Modern Applied Science Vol. 4, No. 10; October 010 A Multivariate Process Variability Monitoring Based on Individual Observations Maman A. Djauhari (Corresponding author) Department

More information

Data reduction for multivariate analysis

Data reduction for multivariate analysis Data reduction for multivariate analysis Using T 2, m-cusum, m-ewma can help deal with the multivariate detection cases. But when the characteristic vector x of interest is of high dimension, it is difficult

More information

Outline Week 1 PCA Challenge. Introduction. Multivariate Statistical Analysis. Hung Chen

Outline Week 1 PCA Challenge. Introduction. Multivariate Statistical Analysis. Hung Chen Introduction Multivariate Statistical Analysis Hung Chen Department of Mathematics https://ceiba.ntu.edu.tw/972multistat hchen@math.ntu.edu.tw, Old Math 106 2009.02.16 1 Outline 2 Week 1 3 PCA multivariate

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

S* Control Chart in Screw Quality Assessment

S* Control Chart in Screw Quality Assessment Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 11 (2017), pp. 7879-7887 Research India Publications http://www.ripublication.com S* Control Chart in Screw Quality Assessment

More information

Statistical Process Control

Statistical Process Control S6 Statistical Process Control PowerPoint presentation to accompany Heizer and Render Operations Management, 10e Principles of Operations Management, 8e PowerPoint slides by Jeff Heyl S6-1 Statistical

More information

How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion

How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion by Dr. Neil W. Polhemus July 28, 2005 Introduction When fitting statistical models, it is usually assumed that the error variance is the

More information

Introduction to Principal Component Analysis (PCA)

Introduction to Principal Component Analysis (PCA) Introduction to Principal Component Analysis (PCA) NESAC/BIO NESAC/BIO Daniel J. Graham PhD University of Washington NESAC/BIO MVSA Website 2010 Multivariate Analysis Multivariate analysis (MVA) methods

More information

Retrospective Hotelling s T 2 Control Chart for Automotive Stamped Parts: a Case Study

Retrospective Hotelling s T 2 Control Chart for Automotive Stamped Parts: a Case Study Retrospective Hotelling s T Control Chart for Automotive Stamped Parts: a Case Study Muzalwana A. Talib 1,*, Susila Munisamy 1, Shamsuddin Ahmed 1 Department of Applied Statistics, Faculty of Economics

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 2 2 MACHINE LEARNING Overview Definition pdf Definition joint, condition, marginal,

More information

Assignment 7 (Solution) Control Charts, Process capability and QFD

Assignment 7 (Solution) Control Charts, Process capability and QFD Assignment 7 (Solution) Control Charts, Process capability and QFD Dr. Jitesh J. Thakkar Department of Industrial and Systems Engineering Indian Institute of Technology Kharagpur Instruction Total No.

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

1. Density and properties Brief outline 2. Sampling from multivariate normal and MLE 3. Sampling distribution and large sample behavior of X and S 4.

1. Density and properties Brief outline 2. Sampling from multivariate normal and MLE 3. Sampling distribution and large sample behavior of X and S 4. Multivariate normal distribution Reading: AMSA: pages 149-200 Multivariate Analysis, Spring 2016 Institute of Statistics, National Chiao Tung University March 1, 2016 1. Density and properties Brief outline

More information

On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator

On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator JAMES D. WILLIAMS GE Global Research, Niskayuna, NY 12309 WILLIAM H. WOODALL and JEFFREY

More information

2 D wavelet analysis , 487

2 D wavelet analysis , 487 Index 2 2 D wavelet analysis... 263, 487 A Absolute distance to the model... 452 Aligned Vectors... 446 All data are needed... 19, 32 Alternating conditional expectations (ACE)... 375 Alternative to block

More information

Y (Nominal/Categorical) 1. Metric (interval/ratio) data for 2+ IVs, and categorical (nominal) data for a single DV

Y (Nominal/Categorical) 1. Metric (interval/ratio) data for 2+ IVs, and categorical (nominal) data for a single DV 1 Neuendorf Discriminant Analysis The Model X1 X2 X3 X4 DF2 DF3 DF1 Y (Nominal/Categorical) Assumptions: 1. Metric (interval/ratio) data for 2+ IVs, and categorical (nominal) data for a single DV 2. Linearity--in

More information

PRINCIPAL COMPONENTS ANALYSIS (PCA)

PRINCIPAL COMPONENTS ANALYSIS (PCA) PRINCIPAL COMPONENTS ANALYSIS (PCA) Introduction PCA is considered an exploratory technique that can be used to gain a better understanding of the interrelationships between variables. PCA is performed

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Final Year STATISTICS. Time : 03 Hours Maximum Marks : 100

M.Sc. (Final) DEGREE EXAMINATION, MAY Final Year STATISTICS. Time : 03 Hours Maximum Marks : 100 (DMSTT21) M.Sc. (Final) DEGREE EXAMINATION, MAY - 2013 Final Year STATISTICS Paper - I : Statistical Quality Control Time : 03 Hours Maximum Marks : 100 Answer any Five questions All questions carry equal

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Quality Control & Statistical Process Control (SPC)

Quality Control & Statistical Process Control (SPC) Quality Control & Statistical Process Control (SPC) DR. RON FRICKER PROFESSOR & HEAD, DEPARTMENT OF STATISTICS DATAWORKS CONFERENCE, MARCH 22, 2018 Agenda Some Terminology & Background SPC Methods & Philosophy

More information

How To: Analyze a Split-Plot Design Using STATGRAPHICS Centurion

How To: Analyze a Split-Plot Design Using STATGRAPHICS Centurion How To: Analyze a SplitPlot Design Using STATGRAPHICS Centurion by Dr. Neil W. Polhemus August 13, 2005 Introduction When performing an experiment involving several factors, it is best to randomize the

More information

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 20 Number 30 THE PROCESS CAPABILITY STUDY OF PRESSING PROCESS FOR FORCE CLOSED Katarína

More information

Principal Component Analysis

Principal Component Analysis I.T. Jolliffe Principal Component Analysis Second Edition With 28 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition Acknowledgments List of Figures List of Tables

More information

Solutions to Problems 1,2 and 7 followed by 3,4,5,6 and 8.

Solutions to Problems 1,2 and 7 followed by 3,4,5,6 and 8. DSES-423 Quality Control Spring 22 Solution to Homework Assignment #2 Solutions to Problems 1,2 and 7 followed by 3,4,,6 and 8. 1. The cause-and-effect diagram below was created by a department of the

More information

MYT decomposition and its invariant attribute

MYT decomposition and its invariant attribute Abstract Research Journal of Mathematical and Statistical Sciences ISSN 30-6047 Vol. 5(), 14-, February (017) MYT decomposition and its invariant attribute Adepou Aibola Akeem* and Ishaq Olawoyin Olatuni

More information

Announcements (repeat) Principal Components Analysis

Announcements (repeat) Principal Components Analysis 4/7/7 Announcements repeat Principal Components Analysis CS 5 Lecture #9 April 4 th, 7 PA4 is due Monday, April 7 th Test # will be Wednesday, April 9 th Test #3 is Monday, May 8 th at 8AM Just hour long

More information

Principal Component Analysis, A Powerful Scoring Technique

Principal Component Analysis, A Powerful Scoring Technique Principal Component Analysis, A Powerful Scoring Technique George C. J. Fernandez, University of Nevada - Reno, Reno NV 89557 ABSTRACT Data mining is a collection of analytical techniques to uncover new

More information

STATISTICS 407 METHODS OF MULTIVARIATE ANALYSIS TOPICS

STATISTICS 407 METHODS OF MULTIVARIATE ANALYSIS TOPICS STATISTICS 407 METHODS OF MULTIVARIATE ANALYSIS TOPICS Principal Component Analysis (PCA): Reduce the, summarize the sources of variation in the data, transform the data into a new data set where the variables

More information

The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart

The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart Obafemi, O. S. 1 Department of Mathematics and Statistics, Federal Polytechnic, Ado-Ekiti, Ekiti State, Nigeria

More information

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Introduction Edps/Psych/Stat/ 584 Applied Multivariate Statistics Carolyn J Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN c Board of Trustees,

More information

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 29 Multivariate Linear Regression- Model

More information

Application Note. The Optimization of Injection Molding Processes Using Design of Experiments

Application Note. The Optimization of Injection Molding Processes Using Design of Experiments The Optimization of Injection Molding Processes Using Design of Experiments Problem Manufacturers have three primary goals: 1) produce goods that meet customer specifications; 2) improve process efficiency

More information

ASSIGNMENT - 1 M.Sc. DEGREE EXAMINATION, MAY 2019 Second Year STATISTICS. Statistical Quality Control MAXIMUM : 30 MARKS ANSWER ALL QUESTIONS

ASSIGNMENT - 1 M.Sc. DEGREE EXAMINATION, MAY 2019 Second Year STATISTICS. Statistical Quality Control MAXIMUM : 30 MARKS ANSWER ALL QUESTIONS ASSIGNMENT - 1 Statistical Quality Control (DMSTT21) Q1) a) Explain the role and importance of statistical quality control in industry. b) Explain control charts for variables. Write the LCL, UCL for X,

More information

7. Variable extraction and dimensionality reduction

7. Variable extraction and dimensionality reduction 7. Variable extraction and dimensionality reduction The goal of the variable selection in the preceding chapter was to find least useful variables so that it would be possible to reduce the dimensionality

More information

Mechanical Engineering 101

Mechanical Engineering 101 Mechanical Engineering 101 University of California, Berkeley Lecture #1 1 Today s lecture Statistical Process Control Process capability Mean shift Control charts eading: pp. 373-383 .Precision 3 Process

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Computing Probability Integrals of a Bivariate Normal Distribution. Saeed Maghsoodloo and Chien-Lung Huang 1. Author reference address:

Computing Probability Integrals of a Bivariate Normal Distribution. Saeed Maghsoodloo and Chien-Lung Huang 1. Author reference address: Computing Probability Integrals of a Bivariate Normal Distribution by Saeed Maghsoodloo and Chien-Lung Huang 1 Author reference address: Dr. Saeed Maghsoodloo Department of Industrial Engineering Auburn

More information

Introduction to multivariate analysis Outline

Introduction to multivariate analysis Outline Introduction to multivariate analysis Outline Why do a multivariate analysis Ordination, classification, model fitting Principal component analysis Discriminant analysis, quickly Species presence/absence

More information

Response Surface Methodology

Response Surface Methodology Response Surface Methodology Process and Product Optimization Using Designed Experiments Second Edition RAYMOND H. MYERS Virginia Polytechnic Institute and State University DOUGLAS C. MONTGOMERY Arizona

More information

Distribution-Free Monitoring of Univariate Processes. Peihua Qiu 1 and Zhonghua Li 1,2. Abstract

Distribution-Free Monitoring of Univariate Processes. Peihua Qiu 1 and Zhonghua Li 1,2. Abstract Distribution-Free Monitoring of Univariate Processes Peihua Qiu 1 and Zhonghua Li 1,2 1 School of Statistics, University of Minnesota, USA 2 LPMC and Department of Statistics, Nankai University, China

More information

6348 Final, Fall 14. Closed book, closed notes, no electronic devices. Points (out of 200) in parentheses.

6348 Final, Fall 14. Closed book, closed notes, no electronic devices. Points (out of 200) in parentheses. 6348 Final, Fall 14. Closed book, closed notes, no electronic devices. Points (out of 200) in parentheses. 0 11 1 1.(5) Give the result of the following matrix multiplication: 1 10 1 Solution: 0 1 1 2

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Short Answer Questions: Answer on your separate blank paper. Points are given in parentheses.

Short Answer Questions: Answer on your separate blank paper. Points are given in parentheses. ISQS 6348 Final exam solutions. Name: Open book and notes, but no electronic devices. Answer short answer questions on separate blank paper. Answer multiple choice on this exam sheet. Put your name on

More information

A User's Guide To Principal Components

A User's Guide To Principal Components A User's Guide To Principal Components J. EDWARD JACKSON A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Brisbane Toronto Singapore Contents Preface Introduction 1. Getting

More information

Statistical quality control (SQC)

Statistical quality control (SQC) Statistical quality control (SQC) The application of statistical techniques to measure and evaluate the quality of a product, service, or process. Two basic categories: I. Statistical process control (SPC):

More information

Discrimination of Dyed Cotton Fibers Based on UVvisible Microspectrophotometry and Multivariate Statistical Analysis

Discrimination of Dyed Cotton Fibers Based on UVvisible Microspectrophotometry and Multivariate Statistical Analysis Discrimination of Dyed Cotton Fibers Based on UVvisible Microspectrophotometry and Multivariate Statistical Analysis Elisa Liszewski, Cheryl Szkudlarek and John Goodpaster Department of Chemistry and Chemical

More information

Statistical Quality Control, IE 3255 March Homework #6 Due: Fri, April points

Statistical Quality Control, IE 3255 March Homework #6 Due: Fri, April points Statistical Quality Control, IE 355 March 30 007 Homework #6 Due: Fri, April 6 007 00 points Use Ecel, Minitab and a word processor to present quality answers to the following statistical process control

More information

Principal Components Analysis. Sargur Srihari University at Buffalo

Principal Components Analysis. Sargur Srihari University at Buffalo Principal Components Analysis Sargur Srihari University at Buffalo 1 Topics Projection Pursuit Methods Principal Components Examples of using PCA Graphical use of PCA Multidimensional Scaling Srihari 2

More information

The SAS System 18:28 Saturday, March 10, Plot of Canonical Variables Identified by Cluster

The SAS System 18:28 Saturday, March 10, Plot of Canonical Variables Identified by Cluster The SAS System 18:28 Saturday, March 10, 2018 1 The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=2 Maxiter=10 Converge=0.02 Initial Seeds Cluster SepalLength SepalWidth PetalLength PetalWidth 1

More information

Dimension Reduction and Classification Using PCA and Factor. Overview

Dimension Reduction and Classification Using PCA and Factor. Overview Dimension Reduction and Classification Using PCA and - A Short Overview Laboratory for Interdisciplinary Statistical Analysis Department of Statistics Virginia Tech http://www.stat.vt.edu/consult/ March

More information

MANOVA MANOVA,$/,,# ANOVA ##$%'*!# 1. $!;' *$,$!;' (''

MANOVA MANOVA,$/,,# ANOVA ##$%'*!# 1. $!;' *$,$!;' ('' 14 3! "#!$%# $# $&'('$)!! (Analysis of Variance : ANOVA) *& & "#!# +, ANOVA -& $ $ (+,$ ''$) *$#'$)!!#! (Multivariate Analysis of Variance : MANOVA).*& ANOVA *+,'$)$/*! $#/#-, $(,!0'%1)!', #($!#$ # *&,

More information

PRODUCT yield plays a critical role in determining the

PRODUCT yield plays a critical role in determining the 140 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 18, NO. 1, FEBRUARY 2005 Monitoring Defects in IC Fabrication Using a Hotelling T 2 Control Chart Lee-Ing Tong, Chung-Ho Wang, and Chih-Li Huang

More information

Techniques for Improving Process and Product Quality in the Wood Products Industry: An Overview of Statistical Process Control

Techniques for Improving Process and Product Quality in the Wood Products Industry: An Overview of Statistical Process Control 1 Techniques for Improving Process and Product Quality in the Wood Products Industry: An Overview of Statistical Process Control Scott Leavengood Oregon State University Extension Service The goal: $ 2

More information

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University Chemometrics Matti Hotokka Physical chemistry Åbo Akademi University Linear regression Experiment Consider spectrophotometry as an example Beer-Lamberts law: A = cå Experiment Make three known references

More information

Data Analyses in Multivariate Regression Chii-Dean Joey Lin, SDSU, San Diego, CA

Data Analyses in Multivariate Regression Chii-Dean Joey Lin, SDSU, San Diego, CA Data Analyses in Multivariate Regression Chii-Dean Joey Lin, SDSU, San Diego, CA ABSTRACT Regression analysis is one of the most used statistical methodologies. It can be used to describe or predict causal

More information

Discriminant analysis and supervised classification

Discriminant analysis and supervised classification Discriminant analysis and supervised classification Angela Montanari 1 Linear discriminant analysis Linear discriminant analysis (LDA) also known as Fisher s linear discriminant analysis or as Canonical

More information

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author...

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author... From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. Contents About This Book... xiii About The Author... xxiii Chapter 1 Getting Started: Data Analysis with JMP...

More information

CLASSICAL NORMAL-BASED DISCRIMINANT ANALYSIS

CLASSICAL NORMAL-BASED DISCRIMINANT ANALYSIS CLASSICAL NORMAL-BASED DISCRIMINANT ANALYSIS EECS 833, March 006 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@gs.u.edu 864-093 Overheads and resources available at http://people.u.edu/~gbohling/eecs833

More information

Ø Set of mutually exclusive categories. Ø Classify or categorize subject. Ø No meaningful order to categorization.

Ø Set of mutually exclusive categories. Ø Classify or categorize subject. Ø No meaningful order to categorization. Statistical Tools in Evaluation HPS 41 Dr. Joe G. Schmalfeldt Types of Scores Continuous Scores scores with a potentially infinite number of values. Discrete Scores scores limited to a specific number

More information

Explaining Correlations by Plotting Orthogonal Contrasts

Explaining Correlations by Plotting Orthogonal Contrasts Explaining Correlations by Plotting Orthogonal Contrasts Øyvind Langsrud MATFORSK, Norwegian Food Research Institute. www.matforsk.no/ola/ To appear in The American Statistician www.amstat.org/publications/tas/

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Multivariate Statistics (I) 2. Principal Component Analysis (PCA)

Multivariate Statistics (I) 2. Principal Component Analysis (PCA) Multivariate Statistics (I) 2. Principal Component Analysis (PCA) 2.1 Comprehension of PCA 2.2 Concepts of PCs 2.3 Algebraic derivation of PCs 2.4 Selection and goodness-of-fit of PCs 2.5 Algebraic derivation

More information

Statistical Quality Design & Control Fall 2003 Odette School of Business University of Windsor

Statistical Quality Design & Control Fall 2003 Odette School of Business University of Windsor Name (print, please) ID Statistical Quality Design & Control 7-5 Fall Odette School of Business University of Windsor Midterm Exam Solution Wednesday, October 15, 5: 6:5 pm Instructor: Mohammed Fazle Baki

More information

Visualizing Tests for Equality of Covariance Matrices Supplemental Appendix

Visualizing Tests for Equality of Covariance Matrices Supplemental Appendix Visualizing Tests for Equality of Covariance Matrices Supplemental Appendix Michael Friendly and Matthew Sigal September 18, 2017 Contents Introduction 1 1 Visualizing mean differences: The HE plot framework

More information

Total Quality Management (TQM)

Total Quality Management (TQM) Total Quality Management (TQM) Use of statistical techniques for controlling and improving quality and their integration in the management system Statistical Process Control (SPC) Univariate and multivariate

More information

Multi-Variate-Attribute Quality Control (MVAQC)

Multi-Variate-Attribute Quality Control (MVAQC) by Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy July 2014 Department of Mechanical Engineering The University of Melboune Abstract When the number of quality

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

Research Article Robust Multivariate Control Charts to Detect Small Shifts in Mean

Research Article Robust Multivariate Control Charts to Detect Small Shifts in Mean Mathematical Problems in Engineering Volume 011, Article ID 93463, 19 pages doi:.1155/011/93463 Research Article Robust Multivariate Control Charts to Detect Small Shifts in Mean Habshah Midi 1, and Ashkan

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Statistics Toolbox 6. Apply statistical algorithms and probability models

Statistics Toolbox 6. Apply statistical algorithms and probability models Statistics Toolbox 6 Apply statistical algorithms and probability models Statistics Toolbox provides engineers, scientists, researchers, financial analysts, and statisticians with a comprehensive set of

More information

Fast and Robust Discriminant Analysis

Fast and Robust Discriminant Analysis Fast and Robust Discriminant Analysis Mia Hubert a,1, Katrien Van Driessen b a Department of Mathematics, Katholieke Universiteit Leuven, W. De Croylaan 54, B-3001 Leuven. b UFSIA-RUCA Faculty of Applied

More information

Alternatives to Difference Scores: Polynomial Regression and Response Surface Methodology. Jeffrey R. Edwards University of North Carolina

Alternatives to Difference Scores: Polynomial Regression and Response Surface Methodology. Jeffrey R. Edwards University of North Carolina Alternatives to Difference Scores: Polynomial Regression and Response Surface Methodology Jeffrey R. Edwards University of North Carolina 1 Outline I. Types of Difference Scores II. Questions Difference

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information