Unsupervised Learning Methods

Size: px
Start display at page:

Download "Unsupervised Learning Methods"

Transcription

1 Structural Health Monitoring Using Statistical Pattern Recognition Unsupervised Learning Methods Keith Worden and Graeme Manson Presented by Keith Worden The Structural Health Monitoring Process 1. Operational evaluation 2. Data acquisition & networking 3. Feature selection & extraction 4. Probabilistic decision making Outlier Analysis Statistical Process Control Projection Methods :2

2 Outline Novelty detection. Outlier analysis. Gaussian distribution. Novelty detection on an aircraft structure. Novelty detection is not damage detection. Statistical Process Control. Visualisation and projection methods. 3 Pattern Recognition Pattern Processing Probability Theory Novelty Detection Classification Regression Neural Networks 4

3 Novelty Detection Novelty detection is used to address Level One in Rytter s damage identification hierarchy. Level One: Damage Detection Level Two: Damage Location Level Three: Damage Assessment The method gives a qualitative indication that damage might be present in the structure. The method gives information about the probable position of the damage. The method gives an estimate of the extent and/or type of damage. Level Four: Prediction The method offers information about the safety of the structure (e.g. residual life). 5 Novelty Detection A novelty detection algorithm is required to simply indicate if the acquired data comes from the normal operating condition or not. Two-class problem. This can be done in an unsupervised manner in that labels do not need to be attached to the normal condition data which will be assumed to train the novelty detector. There are many novelty detection techniques, e.g. outlier analysis, kernel density estimation and auto-associative neural networks. All techniques fit a probability distribution to the normal condition data then assess the probability of the test data having been generated by the same mechanism. 6

4 Novelty Detection Sensor (Training Data from Unfaulted Structure) Sensor (Testing Data from Unknown Condition) Pre-Processing Feature Extraction Pre-Processing Feature Extraction Feature Component 2 Test Data Post-Processing Post-Processing Feature Component 1 Pattern Recognition (Novelty Detection) Decision (Undamaged) (Damaged) Testing Data Point Threshold 7 Novelty Measure Outlier Analysis Discordant outlier is data point which is surprisingly different from rest of data and therefore believed to be generated by an alternate mechanism to the other data. In damage detection, the data point is different to the data acquired from the normal operating condition of the structure and this is assumed to be due to the presence of damage. Outlier detection can be conducted for both univariate and multivariate data sets and is based upon deviation from a Gaussian distribution. 8

5 Outlier Analysis Gaussian Distribution Also known as the normal distribution. The most widely used model for the distribution of continuous variables. In the case of a single variable x, the Gaussian distribution can be written: px ( ) exp ( x) where is the mean and is the standard deviation. Gaussian distribution for Gaussian distribution for 0 and and 1 9 Outlier Analysis Gaussian Distribution For a D-dimensional vector x, the multivariate Gaussian distribution can be written: 1 1 T 1 px ( ) exp ( ) D/2 1/2 1 x μ 1x μ px T 1 2 p ( x) 2 exp ( ) ( ) D/2 1/2 x x (2 ) 2 where μ is a D -dimensional mean vector and is a D D where is a mean vector and is a covariance matrix. covariance matrix, and denotes the determinant of. Contours of constant probability density for 2- dimensional Gaussian distribution (a) general covariance matrix, (b) diagonal covariance matrix and (c) covariance matrix proportional to identity matrix. 10

6 Outlier Analysis Univariate test for discordancy: x zz where x x is is the the candidate outlier, outlier is and the mean and are the of mean the normal and standard condition deviation data and of is the it's training standard sample. deviation Multivariate test for discordancy (Mahalanobis distance): T 1 D2 x μt 1 x μ D ( x ) ( x ) where where x x is is the the candidate candidate outlier, outlier is the and mean μ and vector are the of mean the normal vector condition and covariance data and matrix is it's covariance of the training matrix sample. 11 Outlier Analysis The procedure for outlier analysis is as follows: Acquire training data (univariate or multivariate) from normal operating state of machine or structure. Pre-process data then extract features. Calculate Gaussian statistics for normal condition features. and in the univariate case and and in the multivariate case Acquire test data, pre-process and extract same features as previously. x in the univariate case and in the multivariate case x 2 ( z or D ) Calculate discordancy value and compare with statistically calculated threshold value. If greater than threshold, damage is inferred. 12

7 Outlier Analysis The threshold values are calculated using a Monte-Carlo approach based on extreme value statistics. Threshold is dependent upon the number of dimensions of the feature and the number of observations in the normal condition data set. The threshold can be calculated for a number of critical values (e.g. 1% and 0.1% tests of discordancy). 13 Novelty Detection on an Aircraft Structure Test Structure Experimental validation of SHM methodology based on novelty detection. Philosophy of programme was to develop methods which are robust enough to be successful on real aircraft structures. 14

8 Novelty Detection on an Aircraft Structure Data Capture Not possible to damage aircraft. Damage introduced in inspection panel. Base measurements transmissibilities. 4 sensors used in 2 pairs. Wing excited with white Gaussian excitation. 110 unfaulted transmissibilities and 10 from each fault recorded. 15 Novelty Detection on an Aircraft Structure Novelty Detection Two combined features capable of detecting all damage cases whilst correctly classifying unfaulted patterns. Robust to some extent. Outlier analysis results for feature from spectral lines of T12. Outlier analysis results for feature from spectral lines of T34. 16

9 Novelty (not Damage) Detection Novelty Detection has shown much promise in providing low-level damage detection strategies. Problem identifies if a machine or structure has deviated from normal condition. Deviation from normal condition does not always signify damage. Effect of using inappropriate normal condition set is potentially disastrous. Data from undamaged structure could be flagged as damage and data from damaged structure could go undetected. How do we make the damage detection process robust? 17 Novelty (not Damage) Detection Novelty detector trained on N1 data should easily classify T1 as novel. Feature Component 2 Feature Component 1 18

10 Novelty (not Damage) Detection Novelty detector trained on N1 data N3, N4 and N5 likely to be classed as novel. Feature Component 2 Feature Component 1 19 Novelty (not Damage) Detection Feature Component 2 Feature Component 1 Three main options for dealing with problem. Train novelty detectors using data from all normal conditions. Train novelty detector for each normal condition. Test against relevant detector. Transform feature to remove sensitivity to normal variation whilst retaining sensitivity to damage. 20

11 Statistical Process Control (SPC) SPC originated in chemical and process industries as a means of determining when a process leaves normal operation so that a remedial control action can be taken. Features are samples from time-series, in simplest case one has univariate measurements x(t). Simplest approach is to use outlier analysis with the normal condition set assembled from in-control samples. The samples are plotted on a chart the X-chart - with upper and lower control limits (UCL and LCL) set at k around the mean for in-control data. Note that setting k = 3 gives the 99.7% confidence limits for an assumed Gaussian in-control set. 21 SPC II This approach is not robust against process noise. Sensitivity is enhanced by averaging over blocks of N samples and plotting these on the chart the X-bar chart. UCL and LCL become k / N above and below mean of data and sensitivity is enhanced. As an example consider bookshelf data. In control undamaged state Nonlinear impacts damaged state 22

12 Other Control Charts S-chart monitors variance. Cumulative Sum or CUSUM chart. Exponentially Weighted Moving Average (EMWA) chart see Montgomery (1996) for details. There are multivariate versions of all the charts the multivariate version of the X-chart is essentially the multivariate outlier analysis described earlier. 23 Visualisation - Projection Methods It is very often useful to make a visual assessment of data. The SPC control charts are an excellent example of this; departures from control are immediately visible as points cross the control limits. For multivariate outlier analysis or SPC (MSPC), things are much more complicated as human physiology precludes visualisation of anything higher than 3-dimensional. The solution is to project data from the high-dimensional feature space into a low-dimensional (2 or 3D) space so that a plot can be made. Such projections lose information from the original data, alternatively one can think in terms of them only preserving certain information. 24

13 Principal Component Analysis (PCA) Mainstay of multivariate statistical analysis. PCA allows projection of data from p-dimensions to q- dimensions where q < p. An advantage of PCA is that the low-dimensional variables are uncorrelated. What PCA preserves is power, or alternatively variance. It is a linear transformation. Another linear projection method is Factor Analysis; this preserves (as far as possible) the covariance structure of the data. Factor analysis is a generalisation of PCA. Both algorithms have nonlinear variants. Another nonlinear projection method of interest is Sammon Mapping; this preserves (as far as possible) the metric distance between data points. 25 Example of PCA Actuator Bracing Restraints Test Piece Sensor Typical AE signal observed from Girder. Box Girder under test; under load generates acoustic emissions. 26

14 Example of PCA II Multivariate features are extracted in order to characterise AE bursts. Too many features to visualise, PCA reduces to 2D. 27 Example of PCA III Second principal component Cluster 1 Cluster 2 Cluster First principal component On subsequent analysis it was found that those observations in cluster 1 arose from crack related events, all those in cluster 2 from frictional processes away from the crack and all those in cluster 3 from crack-related events detected at a distance away from the sensor. Visualisation here has lead to an interpretation of the data. 28

15 Example of PCA IV Example of each of the three distinct AE signals. 29 Summary Unsupervised learning is the form of learning used when class labels for data are not known. It is appropriate to damage detection when only examples of the normal condition are known. Novelty detection methods test for deviation from a learned normal condition outlier analysis is one of the most straightforward but assumes a Gaussian normal condition. Novelty detection is not damage detection; one must take care that one is not inferring damage from a benign change. Statistical Process Control (SPC) techniques essentially implement outlier detection for time series data. Visualisation of data can be very informative; dimension reduction techniques like PCA are usually needed. 30

16 References V. Barnett and T. Lewis. Outliers in Statistical Data, 3 rd Edition. John Wiley and Sons, Chichester, G. Manson, K. Worden, K.M. Holford, R. Pullin, A. Martin and D.L. Tunnincliffe (D.L.) Visualisation and dimension reduction of acoustic emission data for damage detection Journal of Intelligent Material Systems and Structures 12 pp M. Markou, and S. Singh. Novelty detection: a review. Part 1: statistical approaches. Signal Processing, 83, pp , 2003a. M. Markou, and S. Singh. Novelty detection: a review. Part 2: neural network based approaches. Signal Processing, 83, pp , 2003b. D.C. Montgomery. Introduction to Statistical Quality Control, John Wiley & Sons, Inc., New York, S. Sharma. Applied Multivariate Techniques. John Wiley and Son, K. Worden. Structural fault detection using a novelty measure. Journal of Sound and Vibration, 201, pp , K. Worden, G. Manson and N.R.J. Fieller. Damage detection using outlier analysis. Journal of Sound and Vibration, 229 pp , K. Worden, G. Manson and D.J. Allman. Experimental validation of structural health monitoring methodology II: novelty detection on an aircraft wing. Journal of Sound and Vibration, 259 pp.344,

WILEY STRUCTURAL HEALTH MONITORING A MACHINE LEARNING PERSPECTIVE. Charles R. Farrar. University of Sheffield, UK. Keith Worden

WILEY STRUCTURAL HEALTH MONITORING A MACHINE LEARNING PERSPECTIVE. Charles R. Farrar. University of Sheffield, UK. Keith Worden STRUCTURAL HEALTH MONITORING A MACHINE LEARNING PERSPECTIVE Charles R. Farrar Los Alamos National Laboratory, USA Keith Worden University of Sheffield, UK WILEY A John Wiley & Sons, Ltd., Publication Preface

More information

Ph.D student in Structural Engineering, Department of Civil Engineering, Ferdowsi University of Mashhad, Azadi Square, , Mashhad, Iran

Ph.D student in Structural Engineering, Department of Civil Engineering, Ferdowsi University of Mashhad, Azadi Square, , Mashhad, Iran Alireza Entezami a, Hashem Shariatmadar b* a Ph.D student in Structural Engineering, Department of Civil Engineering, Ferdowsi University of Mashhad, Azadi Square, 9177948974, Mashhad, Iran b Associate

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION ABSTRACT Presented in this paper is an approach to fault diagnosis based on a unifying review of linear Gaussian models. The unifying review draws together different algorithms such as PCA, factor analysis,

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

Autoregressive Gaussian processes for structural damage detection

Autoregressive Gaussian processes for structural damage detection Autoregressive Gaussian processes for structural damage detection R. Fuentes 1,2, E. J. Cross 1, A. Halfpenny 2, R. J. Barthorpe 1, K. Worden 1 1 University of Sheffield, Dynamics Research Group, Department

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

COVER SHEET. Title: Detecting Damage on Wind Turbine Bearings using Acoustic Emissions and Gaussian Process Latent Variable Models

COVER SHEET. Title: Detecting Damage on Wind Turbine Bearings using Acoustic Emissions and Gaussian Process Latent Variable Models COVER SHEET NOTE: Please attach the signed copyright release form at the end of your paper and upload as a single pdf file This coversheet is intended for you to list your article title and author(s) name

More information

Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc.

Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc. Statistical Tools for Multivariate Six Sigma Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc. 1 The Challenge The quality of an item or service usually depends on more than one characteristic.

More information

VIBRATION-BASED DAMAGE DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS

VIBRATION-BASED DAMAGE DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS VIBRATION-BASED DAMAGE DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS A.M. Yan, G. Kerschen, P. De Boe, J.C Golinval University of Liège, Liège, Belgium am.yan@ulg.ac.be g.kerschen@ulg.ac.bet Abstract

More information

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland EnviroInfo 2004 (Geneva) Sh@ring EnviroInfo 2004 Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland Mikhail Kanevski 1, Michel Maignan 1

More information

The effect of environmental and operational variabilities on damage detection in wind turbine blades

The effect of environmental and operational variabilities on damage detection in wind turbine blades The effect of environmental and operational variabilities on damage detection in wind turbine blades More info about this article: http://www.ndt.net/?id=23273 Thomas Bull 1, Martin D. Ulriksen 1 and Dmitri

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Table of Contents. Multivariate methods. Introduction II. Introduction I

Table of Contents. Multivariate methods. Introduction II. Introduction I Table of Contents Introduction Antti Penttilä Department of Physics University of Helsinki Exactum summer school, 04 Construction of multinormal distribution Test of multinormality with 3 Interpretation

More information

Principal Component Analysis vs. Independent Component Analysis for Damage Detection

Principal Component Analysis vs. Independent Component Analysis for Damage Detection 6th European Workshop on Structural Health Monitoring - Fr..D.4 Principal Component Analysis vs. Independent Component Analysis for Damage Detection D. A. TIBADUIZA, L. E. MUJICA, M. ANAYA, J. RODELLAR

More information

Feature comparison in structural health monitoring of a vehicle crane

Feature comparison in structural health monitoring of a vehicle crane Shock and Vibration (28) 27 2 27 IOS Press Feature comparison in structural health monitoring of a vehicle crane J. Kullaa and T. Heine Helsinki Polytechnic Stadia, P.O. Box 421, FIN-99, Helsinki, Finland

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

The application of statistical pattern recognition methods for damage detection to field data

The application of statistical pattern recognition methods for damage detection to field data IOP PUBLISHING Smart Mater. Struct. 17 (2008) 065023 (12pp) SMART MATERIALS AND STRUCTURES doi:10.1088/0964-1726/17/6/065023 The application of statistical pattern recognition methods for damage detection

More information

Damage detection in a reinforced concrete slab using outlier analysis

Damage detection in a reinforced concrete slab using outlier analysis Damage detection in a reinforced concrete slab using outlier analysis More info about this article: http://www.ndt.net/?id=23283 Abstract Bilal A. Qadri 1, Dmitri Tcherniak 2, Martin D. Ulriksen 1 and

More information

Damage detection in the presence of outliers based on robust PCA Fahit Gharibnezhad 1, L.E. Mujica 2, Jose Rodellar 3 1,2,3

Damage detection in the presence of outliers based on robust PCA Fahit Gharibnezhad 1, L.E. Mujica 2, Jose Rodellar 3 1,2,3 Damage detection in the presence of outliers based on robust PCA Fahit Gharibnezhad 1, L.E. Mujica 2, Jose Rodellar 3 1,2,3 Escola Universitària d'enginyeria Tècnica Industrial de Barcelona,Department

More information

2 D wavelet analysis , 487

2 D wavelet analysis , 487 Index 2 2 D wavelet analysis... 263, 487 A Absolute distance to the model... 452 Aligned Vectors... 446 All data are needed... 19, 32 Alternating conditional expectations (ACE)... 375 Alternative to block

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

Intelligent Systems Statistical Machine Learning

Intelligent Systems Statistical Machine Learning Intelligent Systems Statistical Machine Learning Carsten Rother, Dmitrij Schlesinger WS2014/2015, Our tasks (recap) The model: two variables are usually present: - the first one is typically discrete k

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

DAMAGE ASSESSMENT OF REINFORCED CONCRETE USING ULTRASONIC WAVE PROPAGATION AND PATTERN RECOGNITION

DAMAGE ASSESSMENT OF REINFORCED CONCRETE USING ULTRASONIC WAVE PROPAGATION AND PATTERN RECOGNITION II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS C.A. Mota Soares et al. (Eds.) Lisbon, Portugal, July 18-21, 2005 DAMAGE ASSESSMENT OF REINFORCED CONCRETE USING ULTRASONIC WAVE PROPAGATION

More information

Multilevel Analysis of Continuous AE from Helicopter Gearbox

Multilevel Analysis of Continuous AE from Helicopter Gearbox Multilevel Analysis of Continuous AE from Helicopter Gearbox Milan CHLADA*, Zdenek PREVOROVSKY, Jan HERMANEK, Josef KROFTA Impact and Waves in Solids, Institute of Thermomechanics AS CR, v. v. i.; Prague,

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Benchmark Data for Structural Health Monitoring

Benchmark Data for Structural Health Monitoring Benchmark Data for Structural Health Monitoring Jyrki Kullaa To cite this version: Jyrki Kullaa. Benchmark Data for Structural Health Monitoring. Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck.

More information

Chemometrics: Classification of spectra

Chemometrics: Classification of spectra Chemometrics: Classification of spectra Vladimir Bochko Jarmo Alander University of Vaasa November 1, 2010 Vladimir Bochko Chemometrics: Classification 1/36 Contents Terminology Introduction Big picture

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Matching the dimensionality of maps with that of the data

Matching the dimensionality of maps with that of the data Matching the dimensionality of maps with that of the data COLIN FYFE Applied Computational Intelligence Research Unit, The University of Paisley, Paisley, PA 2BE SCOTLAND. Abstract Topographic maps are

More information

A methodology for fault detection in rolling element bearings using singular spectrum analysis

A methodology for fault detection in rolling element bearings using singular spectrum analysis A methodology for fault detection in rolling element bearings using singular spectrum analysis Hussein Al Bugharbee,1, and Irina Trendafilova 2 1 Department of Mechanical engineering, the University of

More information

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author...

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author... From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. Contents About This Book... xiii About The Author... xxiii Chapter 1 Getting Started: Data Analysis with JMP...

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

The generative approach to classification. A classification problem. Generative models CSE 250B

The generative approach to classification. A classification problem. Generative models CSE 250B The generative approach to classification The generative approach to classification CSE 250B The learning process: Fit a probability distribution to each class, individually To classify a new point: Which

More information

COMBINING A VIBRATION-BASED SHM-SCHEME AND AN AIRBORNE SOUND APPROACH FOR DAMAGE DETECTION ON WIND TURBINE ROTOR BLADES

COMBINING A VIBRATION-BASED SHM-SCHEME AND AN AIRBORNE SOUND APPROACH FOR DAMAGE DETECTION ON WIND TURBINE ROTOR BLADES 8th European Workshop On Structural Health Monitoring (EWSHM 2016), 5-8 July 2016, Spain, Bilbao www.ndt.net/app.ewshm2016 COMBINING A VIBRATION-BASED SHM-SCHEME AND AN AIRBORNE SOUND APPROACH FOR DAMAGE

More information

Statistics Toolbox 6. Apply statistical algorithms and probability models

Statistics Toolbox 6. Apply statistical algorithms and probability models Statistics Toolbox 6 Apply statistical algorithms and probability models Statistics Toolbox provides engineers, scientists, researchers, financial analysts, and statisticians with a comprehensive set of

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Quality Control & Statistical Process Control (SPC)

Quality Control & Statistical Process Control (SPC) Quality Control & Statistical Process Control (SPC) DR. RON FRICKER PROFESSOR & HEAD, DEPARTMENT OF STATISTICS DATAWORKS CONFERENCE, MARCH 22, 2018 Agenda Some Terminology & Background SPC Methods & Philosophy

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Machine Learning (CS 567) Lecture 5

Machine Learning (CS 567) Lecture 5 Machine Learning (CS 567) Lecture 5 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Finite Population Sampling and Inference

Finite Population Sampling and Inference Finite Population Sampling and Inference A Prediction Approach RICHARD VALLIANT ALAN H. DORFMAN RICHARD M. ROYALL A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 2. Overview of multivariate techniques 2.1 Different approaches to multivariate data analysis 2.2 Classification of multivariate techniques

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Parameter Estimation. Industrial AI Lab.

Parameter Estimation. Industrial AI Lab. Parameter Estimation Industrial AI Lab. Generative Model X Y w y = ω T x + ε ε~n(0, σ 2 ) σ 2 2 Maximum Likelihood Estimation (MLE) Estimate parameters θ ω, σ 2 given a generative model Given observed

More information

Structural Health Monitoring Using Statistical Pattern Recognition Techniques

Structural Health Monitoring Using Statistical Pattern Recognition Techniques Hoon Sohn Engineering Sciences & Applications Division, Engineering Analysis Group, M/S C926 e-mail: sohn@lanl.gov Charles R. Farrar Engineering Sciences & Applications Division, Engineering Analysis Group,

More information

Structural Health Monitoring and Damage Assessment Using Measured FRFs from Multiple Sensors, Part I: The Indicator of Correlation Criteria

Structural Health Monitoring and Damage Assessment Using Measured FRFs from Multiple Sensors, Part I: The Indicator of Correlation Criteria Key Engineering Materials Vols. 245-246 (2003) pp. 131-140 online at http://www.scientific.net Journal 2003 Citation Trans Tech (to Publications, be inserted by Switzerland the publisher) Copyright by

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Bayesian Classification Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps Analysis of Interest Rate Curves Clustering Using Self-Organising Maps M. Kanevski (1), V. Timonin (1), A. Pozdnoukhov(1), M. Maignan (1,2) (1) Institute of Geomatics and Analysis of Risk (IGAR), University

More information

Novelty Detection based on Extensions of GMMs for Industrial Gas Turbines

Novelty Detection based on Extensions of GMMs for Industrial Gas Turbines Novelty Detection based on Extensions of GMMs for Industrial Gas Turbines Yu Zhang, Chris Bingham, Michael Gallimore School of Engineering University of Lincoln Lincoln, U.. {yzhang; cbingham; mgallimore}@lincoln.ac.uk

More information

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis CS 3 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis AD March 11 AD ( March 11 1 / 17 Multivariate Gaussian Consider data { x i } N i=1 where xi R D and we assume they are

More information

Unsupervised Learning with Permuted Data

Unsupervised Learning with Permuted Data Unsupervised Learning with Permuted Data Sergey Kirshner skirshne@ics.uci.edu Sridevi Parise sparise@ics.uci.edu Padhraic Smyth smyth@ics.uci.edu School of Information and Computer Science, University

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV Aapo Hyvärinen Gatsby Unit University College London Part III: Estimation of unnormalized models Often,

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

An Introduction to Independent Components Analysis (ICA)

An Introduction to Independent Components Analysis (ICA) An Introduction to Independent Components Analysis (ICA) Anish R. Shah, CFA Northfield Information Services Anish@northinfo.com Newport Jun 6, 2008 1 Overview of Talk Review principal components Introduce

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Antti Honkela 1, Stefan Harmeling 2, Leo Lundqvist 1, and Harri Valpola 1 1 Helsinki University of Technology,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Motivating the Covariance Matrix

Motivating the Covariance Matrix Motivating the Covariance Matrix Raúl Rojas Computer Science Department Freie Universität Berlin January 2009 Abstract This note reviews some interesting properties of the covariance matrix and its role

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Introduction to Machine Learning Bayesian Classification Varun Chandola March 8, 017 1. {circular,large,light,smooth,thick}, malignant. {circular,large,light,irregular,thick}, malignant 3. {oval,large,dark,smooth,thin},

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

Machine Learning and Pattern Recognition Density Estimation: Gaussians

Machine Learning and Pattern Recognition Density Estimation: Gaussians Machine Learning and Pattern Recognition Density Estimation: Gaussians Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh 10 Crichton

More information

Keywords: Multimode process monitoring, Joint probability, Weighted probabilistic PCA, Coefficient of variation.

Keywords: Multimode process monitoring, Joint probability, Weighted probabilistic PCA, Coefficient of variation. 2016 International Conference on rtificial Intelligence: Techniques and pplications (IT 2016) ISBN: 978-1-60595-389-2 Joint Probability Density and Weighted Probabilistic PC Based on Coefficient of Variation

More information

Bayesian Inference for the Multivariate Normal

Bayesian Inference for the Multivariate Normal Bayesian Inference for the Multivariate Normal Will Penny Wellcome Trust Centre for Neuroimaging, University College, London WC1N 3BG, UK. November 28, 2014 Abstract Bayesian inference for the multivariate

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

Basic Statistical Tools

Basic Statistical Tools Structural Health Monitoring Using Statistical Pattern Recognition Basic Statistical Tools Presented by Charles R. Farrar, Ph.D., P.E. Los Alamos Dynamics Structural Dynamics and Mechanical Vibration Consultants

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

Feature extraction for one-class classification

Feature extraction for one-class classification Feature extraction for one-class classification David M.J. Tax and Klaus-R. Müller Fraunhofer FIRST.IDA, Kekuléstr.7, D-2489 Berlin, Germany e-mail: davidt@first.fhg.de Abstract. Feature reduction is often

More information

AUTOMATED TEMPLATE MATCHING METHOD FOR NMIS AT THE Y-12 NATIONAL SECURITY COMPLEX

AUTOMATED TEMPLATE MATCHING METHOD FOR NMIS AT THE Y-12 NATIONAL SECURITY COMPLEX AUTOMATED TEMPLATE MATCHING METHOD FOR NMIS AT THE Y-1 NATIONAL SECURITY COMPLEX J. A. Mullens, J. K. Mattingly, L. G. Chiang, R. B. Oberer, J. T. Mihalczo ABSTRACT This paper describes a template matching

More information

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Intelligent Data Analysis and Probabilistic Inference Lecture

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 24) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu October 2, 24 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 24) October 2, 24 / 24 Outline Review

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Review of the role of uncertainties in room acoustics

Review of the role of uncertainties in room acoustics Review of the role of uncertainties in room acoustics Ralph T. Muehleisen, Ph.D. PE, FASA, INCE Board Certified Principal Building Scientist and BEDTR Technical Lead Division of Decision and Information

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Non-linear Measure Based Process Monitoring and Fault Diagnosis

Non-linear Measure Based Process Monitoring and Fault Diagnosis Non-linear Measure Based Process Monitoring and Fault Diagnosis 12 th Annual AIChE Meeting, Reno, NV [275] Data Driven Approaches to Process Control 4:40 PM, Nov. 6, 2001 Sandeep Rajput Duane D. Bruns

More information

Vibration-Response-Based Damage Detection For Wind Turbine Blades Under Varying Environmental Conditions

Vibration-Response-Based Damage Detection For Wind Turbine Blades Under Varying Environmental Conditions Vibration-Response-Based Damage Detection For Wind Turbine Blades Under Varying Environmental Conditions Ana Gómez González Spilios D. Fassois Stochastic Mechanical Systems & Automation (SMSA) Laboratory

More information

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart 1 Motivation Imaging is a stochastic process: If we take all the different sources of

More information

Complexity: A New Axiom for Structural Health Monitoring?

Complexity: A New Axiom for Structural Health Monitoring? (FIRST PAGE OF ARTICLE) Complexity: A New Axiom for Structural Health Monitoring? C. FARRAR, K. WORDEN AND G. PARK ABSTRACT The basic purpose of the paper is simple; having proposed a set of axioms or

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space

Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space Journal of Robotics, Networking and Artificial Life, Vol., No. (June 24), 97-2 Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space Weigang Wen School

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians University of Cambridge Engineering Part IIB Module 4F: Statistical Pattern Processing Handout 2: Multivariate Gaussians.2.5..5 8 6 4 2 2 4 6 8 Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2 2 Engineering

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

Impeller Fault Detection for a Centrifugal Pump Using Principal Component Analysis of Time Domain Vibration Features

Impeller Fault Detection for a Centrifugal Pump Using Principal Component Analysis of Time Domain Vibration Features Impeller Fault Detection for a Centrifugal Pump Using Principal Component Analysis of Time Domain Vibration Features Berli Kamiel 1,2, Gareth Forbes 2, Rodney Entwistle 2, Ilyas Mazhar 2 and Ian Howard

More information

Notes on Latent Semantic Analysis

Notes on Latent Semantic Analysis Notes on Latent Semantic Analysis Costas Boulis 1 Introduction One of the most fundamental problems of information retrieval (IR) is to find all documents (and nothing but those) that are semantically

More information

Myoelectrical signal classification based on S transform and two-directional 2DPCA

Myoelectrical signal classification based on S transform and two-directional 2DPCA Myoelectrical signal classification based on S transform and two-directional 2DPCA Hong-Bo Xie1 * and Hui Liu2 1 ARC Centre of Excellence for Mathematical and Statistical Frontiers Queensland University

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Bagging and Other Ensemble Methods

Bagging and Other Ensemble Methods Bagging and Other Ensemble Methods Sargur N. Srihari srihari@buffalo.edu 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties as Constrained Optimization 3. Regularization and Underconstrained

More information