Measurement Errors and the Kalman Filter: A Unified Exposition

Size: px
Start display at page:

Download "Measurement Errors and the Kalman Filter: A Unified Exposition"

Transcription

1 Luiss Lab of European Economics LLEE Working Document no. 45 Measurement Errors and the Kalman Filter: A Unified Exposition Salvatore Nisticò February 2007 Outputs from LLEE research in progress, as well contributions from external scholars and draft reports based on LLEE conferences and lectures, are published under this series. Comments are welcome. Unless otherwise indicated, the views expressed are attributable only to the author(s), not to LLEE nor to any institutions of affiliation. Copyright 2007, Salvatore Nisticò Freely available for downloading at the LLEE website ( llee@luiss.it

2 Measurement Errors and the Kalman Filter: A Unified Exposition Salvatore Nisticò* LLEE Working Document No. 45 February 2007 Abstract Exploiting a result on Joint Normal Distributions, these note provides a derivation of the Kalman Filter within a unified framework that nests the three relevant cases regarding the dynamics of the measurement errors: non-correlation, mutual correlation with state disturbances and serial correlation. JEL classification: C10, C32 Key words: Kalman Filter, Linear Dynamic Systems, State-space Models. (*) Address for correspondence: Salvatore Nisticò, Università LUISS Guido Carli, Via Oreste Tommasini 1, Rome, Italy. Url: snistico@luiss.it

3 1 Introduction A widespread textbook about time series analysis (Harvey, 1989) and the fourth volume of the Handbook of Econometrics (Hamilton, 1994b), present the derivation of the formulas for recursively updating the linear projection of an unobservable vector of states of a dynamic system: the Kalman Filter. In both cases, the main assumption on which the methodology and the results depend, is that the measurement errors in the equation of the observables be uncorrelated at all lags and with respect to the residuals in the state equation. Exploiting three theorems about least squares linear projections and orthogonal regressions, Ljungqvist and Sargent (2000) later provide formulas for the case in which measurement errors and state disturbances are possibly mutually correlated. This case nests the one of serially correlated measurement errors explicitly reported in Hansen et al. (1994) insofar as the latter can be reduced to the former. These notes offer a bridge, extending the derivation in Harvey (1989) and Hamilton (1994b) to the more general case of mutually correlated measurement errors and statedisturbances, that include the results stated in Ljungqvist and Sargent (2000) and Hansen et al. (1994). Exploiting a result on Joint Normal Distributions (along Harvey, 1989, and Hamilton, 1994b), therefore, here I provide a unified framework within which the optimal forecast of an unobservable vector of states in t + 1, given observations at t, (rather than simply the update of past linear projections) is given a straightforward derivation. 2 A useful result on JND Assuming that two random vectors have joint multivariate normal distribution [ ] ([ ] [ ]) z1 µ1 Ω11 Ω 12 MV N, z 2 µ 2 Ω 21 Ω 22 (1) the properties of Joint Normal Distributions imply that both the marginal and the conditional distributions are also Gaussian. In particular, the conditional distribution 1

4 of z 1 given z 2 is normal with mean and co-variance matrix, respectively equal to and E[z 1 z 2 ] = µ 1 + Ω 12 Ω 1 22 (z 2 µ 2 ) (2) cov[z 1 z 2 ] = Ω 11 Ω 12 Ω 1 22 Ω 21 (3) Thus, equation (2) can be properly seen as reflecting the optimal forecast of z 1 on the basis of the observation of z 2, while equation (3) provides a measure of the Mean Squared Error (MSE) of such a forecast. 3 The Dynamic System A useful representation of most linear dynamic systems is the so-called state-space form, in which an equation describes the dynamics of the unobservable states of the system (ξ t ) and one accounts for the observable endogenous variables (y t ): ξ t+1 = F ξ t + η t+1 y t = Hξ t + ω t (4) where matrix F is assumed to have all eigenvalues within the unit circle and the vectors η t+1 and ω t collect state disturbances and measurement errors, respectively. The usual assumption about the joint distribution of the two error terms (that drives the results in Harvey, 1989 and Hamilton, 1994b) is that E[η t+s ω t] = E[η t η τ] = E[ω t ω τ] =, for all s and all t τ, with t, τ, s Z, while V η E[η t η t] and V ω E[ω t ω t]. Here I relax this assumption, assuming that the measurement errors and the state disturbances have a JND such that [ ] ([ ] [ ]) ηt+1 Vη V ηω MV N,. (5) ω t The aim is to show that merely applying the result recalled in Section 2 provides a straightforward derivation of the optimal forecast of the unobservable states at t + 1 conditional upon information held through t V ηω V ω ˆξ t+1 t E(ξ t+1 I t ) (6) 2

5 as well as the associated MSE P t+1 t E[(ξ t+1 ˆξ t+1 t )(ξ t+1 ˆξ t+1 t ) I t ] (7) where the information set I t is formally defined as collecting all the realizations observed through date t I t (y t, y t 1, y t 2,..., y 0 ). (8) The Kalman Filter is an algorithm that allows the recursive computation of such a forecast. Starting off with the unconditional mean and covariance matrix of the state vector, such an algorithm sequentially updates the past projections to account for the informational gains that occur along time as realizations of y t become observable. The conditional distribution of the states at t given I t 1 is therefore: ξ t I t 1 MV N(ˆξ t t 1, P t t 1 ). (9) Analogously, the optimal forecast two periods ahead and the corresponding MSE define the conditional distribution of ξ t+1 given I t 1 as ξ t+1 I t 1 MV N(ˆξ t+1 t 1, P t+1 t 1 ). (10) Here we have that ˆξ t+1 t 1 E(ξ t+1 I t 1 ) = E(F ξ t + η t+1 I t 1 ) = F ˆξ t t 1 (11) and P t+1 t 1 E[(ξ t+1 ˆξ t+1 t 1 )(ξ t+1 ˆξ t+1 t 1 ) I t 1 ] = E[(F (ξ t ˆξ t t 1 ) + η t+1 )(F (ξ t ˆξ t t 1 ) + η t+1 ) I t 1 ] = F P t t 1 F + V η, (12) where the cross-products are zero, since the state disturbances in t + 1 are correlated neither to past realizations of the states nor to their past optimal forecast: E(ξ t η t+1) = E(ˆξ t t 1 η t+1) =. 3

6 Turning to the observables y t, the optimal forecast given the information set at t 1 is while its MSE corresponds to ŷ t t 1 E(y t I t 1 ) = E(Hξ t + ω t I t 1 ) = H ˆξ t t 1 (13) Ω t t 1 E[(y t ŷ t t 1 )(y t ŷ t t 1 ) I t 1 ] = E[(H(ξ t ˆξ t t 1 ) + ω t )(H(ξ t ˆξ t t 1 ) + ω t ) I t 1 ] = HP t t 1 H + V ω. (14) Moreover, the cross-correlation between states and observables displays a meaningful term due to the assumption about the joint distribution of the error terms (as expressed by (5)): Σ t t 1 E[(ξ t+1 ˆξ t+1 t 1 )(y t ŷ t t 1 ) I t 1 ] = E[(F (ξ t ˆξ t t 1 ) + η t+1 )(H(ξ t ˆξ t t 1 ) + ω t ) I t 1 ] = F P t t 1 H + V ηω. (15) Given the results above, we are finally able to describe the joint distribution of the state-space representation (4) conditional upon information available at t 1, as [ ] ([ ] [ ]) ξt+1 I t 1 F ˆξt t 1 Pt+1 t 1 Σ t t 1 MV N y t I t 1 H ˆξ,. (16) t t 1 Ω t t 1 4 Applying the result on JND Σ t t 1 From the definition of the information set (8) follows that: [y t, I t 1 ] [y t, (y t 1, y t 2,..., y 0 )] I t. (17) This further implies (ξ t+1 I t 1 ) (y t I t 1 (yt ) ξ t+1, I t 1 I ) ξ t t+1, (18) which is normally distributed with mean ˆξ t+1 t and covariance matrix P t+1 t. These latter statistics are what we are in search of, and applying the result on JND to system (16) provides them both: ˆξ t+1 t = F ˆξ t t 1 + Σ t t 1 Ω 1 t t 1 (y t H ˆξ t t 1 ) = F ˆξ t t 1 + (F P t t 1 H + V ηω )(HP t t 1 H + V ω ) 1 (y t H ˆξ t t 1 ) (19) 4

7 P t+1 t = P t+1 t 1 Σ t t 1 Ω 1 t t 1 Σ t t 1 = F P t t 1 F + V η (F P t t 1 H + V ηω )(HP t t 1 H + V ω ) 1 (F P t t 1 H + V ηω ). (20) In the formulas above, the Kalman Gain matrix, which updates an available forecast through the informational gain provided by the observed forecast error y t H ˆξ t t 1, corresponds to the coefficient of the mentioned forecast error in equation (19): K t Σ t t 1 Ω 1 t t 1 = (F P t t 1H + V ηω )(HP t t 1 H + V ω ) 1. (21) 5 Two alternative assumptions about measurement errors 5.1 No serial nor mutual correlation. The assumption of no correlation whatsoever in the errors dynamics (as in Harvey, 1989, and Hamilton, 1994a and 1994b) is equivalent to assuming that V ηω =. This directly implies that the recursive formulas become: ˆξ t+1 t = F ˆξ t t 1 + F P t t 1 H (HP t t 1 H + V ω ) 1 (y t H ˆξ t t 1 ) (22) P t+1 t = F P t t 1 F + V η F P t t 1 H (HP t t 1 H + V ω ) 1 HP t t 1 F (23) which corresponds to equations (2.16) and (2.17) in Hamilton (1994b), and which imply a Kalman Gain Matrix equal to K t = F P t t 1 H (HP t t 1 H + V ω ) 1. (24) 5.2 Serially correlated measurement errors Let the dynamics of the measurement errors be described by a stationary Vector Auto-Regressive process of order one: ω t = Dω t 1 + ε t (25) where ε t V W N(, V ε ) and all the eigenvalues of matrix D are inside the unit circle. 5

8 Redefining the system in terms of the quasi-difference ȳ t y t+1 Dy t, the case of serially correlated measurement errors can be reduced to the general case addressed in Section 3. The new state-space model, in fact, can be written as: ξ t+1 = F ξ t + η t+1 ȳ t = (HF DH)ξ t + Hη t+1 + ε t+1 = Hξ t + ω t (26) in which the error term ω t is not serially correlated but it is with the state disturbance η t+1. As to the relevant covariance matrices, the transformation above is equivalent to assuming V η ω = V η H and V ω = HV η H + V ε. As a consequence, applying the results on JND directly yields: ˆξ t+1 t = F ˆξ t t 1 + (F P t t 1 H + V η H )( HP t t 1 H + HV η H + V ε ) 1 (ȳ t H ˆξ t t 1 ) (27) and the matrix-riccati-equation P t+1 t = F P t t 1 F + V η (F P t t 1 H + V η H )( HP t t 1 H + HV η H + V ε ) 1 ( HP t t 1 F + HV η ), (28) in which the Kalman Gain matrix takes the form K t = (F P t t 1 H + V η H )( HP t t 1 H + HV η H + V ε ) 1. (29) Equations (28) and (29) are equivalent to equations (101) and (99) in Hansen et al. (1994), up to some notational difference. 6 Conclusions Moving from a basic result about Joint Normal Distributions (along Harvey, 1989, and Hamilton, 1994b) these notes provide a straightforward derivation of the Kalman Filter for a general specification of the dynamics exhibited by a state-space model. It is shown that the proposed formulation nests the three relevant cases about measurement errors (serial-correlation, mutual correlation with state disturbances and noncorrelation), thus extending the derivation in Harvey (1989) and Hamilton (1994b) to include the results stated in Ljungqvist and Sargent (2000) and Hansen et al. (1994). 6

9 References [1] Hamilton, J.D., 1994a, Time Series Analysis. (Princeton University Press, Princeton, NJ). [2] Hamilton, J.D., 1994b, State-Space Models. In: R.F. Engle and D.L. Mc- Fadden, eds., Handbook of Econometrics, Vol.4 (North-Holland, Amsterdam) [3] Harvey, A.C., 1989, Forecasting, Structural Time Series Models and the Kalman Filter. (Cambridge University Press, Cambridge, UK). [4] Hansen, L.P., E.R. McGrattan, and T.J. Sargent, 1994, Mechanics of Forming and Estimating Dynamic Linear Economies. Federal Reserve Bank of Minneapolis, Staff Report 182 [5] Ljungqvist L. and T.J. Sargent, 2000, Recursive Macroeconomic Theory, (The MIT Press, Cambridge, Mass.) 7

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Open Economy Macroeconomics: Theory, methods and applications

Open Economy Macroeconomics: Theory, methods and applications Open Economy Macroeconomics: Theory, methods and applications Lecture 4: The state space representation and the Kalman Filter Hernán D. Seoane UC3M January, 2016 Today s lecture State space representation

More information

Chapter 6. Maximum Likelihood Analysis of Dynamic Stochastic General Equilibrium (DSGE) Models

Chapter 6. Maximum Likelihood Analysis of Dynamic Stochastic General Equilibrium (DSGE) Models Chapter 6. Maximum Likelihood Analysis of Dynamic Stochastic General Equilibrium (DSGE) Models Fall 22 Contents Introduction 2. An illustrative example........................... 2.2 Discussion...................................

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

Economic modelling and forecasting

Economic modelling and forecasting Economic modelling and forecasting 2-6 February 2015 Bank of England he generalised method of moments Ole Rummel Adviser, CCBS at the Bank of England ole.rummel@bankofengland.co.uk Outline Classical estimation

More information

A note on implementing the Durbin and Koopman simulation smoother

A note on implementing the Durbin and Koopman simulation smoother MPRA Munich Personal RePEc Archive A note on implementing the Durbin and Koopman simulation smoother Marek Jarocinski European Central Bank 24. October 2014 Online at http://mpra.ub.uni-muenchen.de/59466/

More information

SMOOTHIES: A Toolbox for the Exact Nonlinear and Non-Gaussian Kalman Smoother *

SMOOTHIES: A Toolbox for the Exact Nonlinear and Non-Gaussian Kalman Smoother * SMOOTHIES: A Toolbox for the Exact Nonlinear and Non-Gaussian Kalman Smoother * Joris de Wind September 2017 Abstract In this paper, I present a new toolbox that implements the exact nonlinear and non-

More information

Time-Varying Vector Autoregressive Models with Structural Dynamic Factors

Time-Varying Vector Autoregressive Models with Structural Dynamic Factors Time-Varying Vector Autoregressive Models with Structural Dynamic Factors Paolo Gorgi, Siem Jan Koopman, Julia Schaumburg http://sjkoopman.net Vrije Universiteit Amsterdam School of Business and Economics

More information

ARIMA Modelling and Forecasting

ARIMA Modelling and Forecasting ARIMA Modelling and Forecasting Economic time series often appear nonstationary, because of trends, seasonal patterns, cycles, etc. However, the differences may appear stationary. Δx t x t x t 1 (first

More information

Forecasting with ARMA

Forecasting with ARMA Forecasting with ARMA Eduardo Rossi University of Pavia October 2013 Rossi Forecasting Financial Econometrics - 2013 1 / 32 Mean Squared Error Linear Projection Forecast of Y t+1 based on a set of variables

More information

Università di Pavia. Forecasting. Eduardo Rossi

Università di Pavia. Forecasting. Eduardo Rossi Università di Pavia Forecasting Eduardo Rossi Mean Squared Error Forecast of Y t+1 based on a set of variables observed at date t, X t : Yt+1 t. The loss function MSE(Y t+1 t ) = E[Y t+1 Y t+1 t ]2 The

More information

Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems

Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems July 2001 Revised: December 2005 Ronald J. Balvers Douglas W. Mitchell Department of Economics Department

More information

Parameter Estimation for ARCH(1) Models Based on Kalman Filter

Parameter Estimation for ARCH(1) Models Based on Kalman Filter Applied Mathematical Sciences, Vol. 8, 2014, no. 56, 2783-2791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43164 Parameter Estimation for ARCH(1) Models Based on Kalman Filter Jelloul

More information

2.5 Forecasting and Impulse Response Functions

2.5 Forecasting and Impulse Response Functions 2.5 Forecasting and Impulse Response Functions Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables

More information

Part I State space models

Part I State space models Part I State space models 1 Introduction to state space time series analysis James Durbin Department of Statistics, London School of Economics and Political Science Abstract The paper presents a broad

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

July 31, 2009 / Ben Kedem Symposium

July 31, 2009 / Ben Kedem Symposium ing The s ing The Department of Statistics North Carolina State University July 31, 2009 / Ben Kedem Symposium Outline ing The s 1 2 s 3 4 5 Ben Kedem ing The s Ben has made many contributions to time

More information

Working Paper Series. A note on implementing the Durbin and Koopman simulation smoother. No 1867 / November Marek Jarocinski

Working Paper Series. A note on implementing the Durbin and Koopman simulation smoother. No 1867 / November Marek Jarocinski Working Paper Series Marek Jarocinski A note on implementing the Durbin and Koopman simulation smoother No 1867 / November 2015 Note: This Working Paper should not be reported as representing the views

More information

Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems

Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems July 2001 Ronald J. Balvers Douglas W. Mitchell Department of Economics Department of Economics P.O.

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

STRUCTURAL TIME-SERIES MODELLING

STRUCTURAL TIME-SERIES MODELLING 1: Structural Time-Series Modelling STRUCTURAL TIME-SERIES MODELLING Prajneshu Indian Agricultural Statistics Research Institute, New Delhi-11001 1. Introduction. ARIMA time-series methodology is widely

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

Title. Description. var intro Introduction to vector autoregressive models

Title. Description. var intro Introduction to vector autoregressive models Title var intro Introduction to vector autoregressive models Description Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference on vector autoregressive (VAR) models

More information

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations Ch 15 Forecasting Having considered in Chapter 14 some of the properties of ARMA models, we now show how they may be used to forecast future values of an observed time series For the present we proceed

More information

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t.

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t. ECO 513 Fall 2008 C.Sims KALMAN FILTER Model in the form 1. THE KALMAN FILTER Plant equation : s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. Var(ε t ) = Ω, Var(ν t ) = Ξ. ε t ν t and (ε t,

More information

A Gaussian IV estimator of cointegrating relations Gunnar Bårdsen and Niels Haldrup. 13 February 2006.

A Gaussian IV estimator of cointegrating relations Gunnar Bårdsen and Niels Haldrup. 13 February 2006. A Gaussian IV estimator of cointegrating relations Gunnar Bårdsen and Niels Haldrup 3 February 26. Abstract. In static single equation cointegration regression models the OLS estimator will have a non-standard

More information

A Simple Algorithm for Solving Ramsey Optimal Policy with Exogenous Forcing Variables

A Simple Algorithm for Solving Ramsey Optimal Policy with Exogenous Forcing Variables MPRA Munich Personal RePEc Archive A Simple Algorithm for Solving Ramsey Optimal Policy with Exogenous Forcing Variables Jean-Bernard Chatelain and Kirsten Ralf Paris School of Economics, Université Paris

More information

Principles of forecasting

Principles of forecasting 2.5 Forecasting Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables X t (m 1 vector). Let y t+1

More information

Research Division Federal Reserve Bank of St. Louis Working Paper Series

Research Division Federal Reserve Bank of St. Louis Working Paper Series Research Division Federal Reserve Bank of St Louis Working Paper Series Kalman Filtering with Truncated Normal State Variables for Bayesian Estimation of Macroeconomic Models Michael Dueker Working Paper

More information

A Simple Algorithm for Solving Ramsey Optimal Policy with Exogenous Forcing Variables

A Simple Algorithm for Solving Ramsey Optimal Policy with Exogenous Forcing Variables A Simple Algorithm for Solving Ramsey Optimal Policy with Exogenous Forcing Variables Jean-Bernard Chatelain and Kirsten Ralf arxiv:1708.07996v1 [q-fin.ec] 26 Aug 2017 June 20, 2018 Abstract This algorithm

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

Exogeneity and Causality

Exogeneity and Causality Università di Pavia Exogeneity and Causality Eduardo Rossi University of Pavia Factorization of the density DGP: D t (x t χ t 1, d t ; Ψ) x t represent all the variables in the economy. The econometric

More information

1 Class Organization. 2 Introduction

1 Class Organization. 2 Introduction Time Series Analysis, Lecture 1, 2018 1 1 Class Organization Course Description Prerequisite Homework and Grading Readings and Lecture Notes Course Website: http://www.nanlifinance.org/teaching.html wechat

More information

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Lawrence J Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Problem: the time series dimension of data is relatively

More information

Stock Prices, News, and Economic Fluctuations: Comment

Stock Prices, News, and Economic Fluctuations: Comment Stock Prices, News, and Economic Fluctuations: Comment André Kurmann Federal Reserve Board Elmar Mertens Federal Reserve Board Online Appendix November 7, 213 Abstract This web appendix provides some more

More information

Cointegration Lecture I: Introduction

Cointegration Lecture I: Introduction 1 Cointegration Lecture I: Introduction Julia Giese Nuffield College julia.giese@economics.ox.ac.uk Hilary Term 2008 2 Outline Introduction Estimation of unrestricted VAR Non-stationarity Deterministic

More information

1. Shocks. This version: February 15, Nr. 1

1. Shocks. This version: February 15, Nr. 1 1. Shocks This version: February 15, 2006 Nr. 1 1.3. Factor models What if there are more shocks than variables in the VAR? What if there are only a few underlying shocks, explaining most of fluctuations?

More information

Timevarying VARs. Wouter J. Den Haan London School of Economics. c Wouter J. Den Haan

Timevarying VARs. Wouter J. Den Haan London School of Economics. c Wouter J. Den Haan Timevarying VARs Wouter J. Den Haan London School of Economics c Wouter J. Den Haan Time-Varying VARs Gibbs-Sampler general idea probit regression application (Inverted Wishart distribution Drawing from

More information

ORTHOGONALITY TESTS IN LINEAR MODELS SEUNG CHAN AHN ARIZONA STATE UNIVERSITY ABSTRACT

ORTHOGONALITY TESTS IN LINEAR MODELS SEUNG CHAN AHN ARIZONA STATE UNIVERSITY ABSTRACT ORTHOGONALITY TESTS IN LINEAR MODELS SEUNG CHAN AHN ARIZONA STATE UNIVERSITY ABSTRACT This paper considers several tests of orthogonality conditions in linear models where stochastic errors may be heteroskedastic

More information

X n = c n + c n,k Y k, (4.2)

X n = c n + c n,k Y k, (4.2) 4. Linear filtering. Wiener filter Assume (X n, Y n is a pair of random sequences in which the first component X n is referred a signal and the second an observation. The paths of the signal are unobservable

More information

ARIMA Models. Richard G. Pierse

ARIMA Models. Richard G. Pierse ARIMA Models Richard G. Pierse 1 Introduction Time Series Analysis looks at the properties of time series from a purely statistical point of view. No attempt is made to relate variables using a priori

More information

TREND ESTIMATION AND THE HODRICK-PRESCOTT FILTER

TREND ESTIMATION AND THE HODRICK-PRESCOTT FILTER J. Japan Statist. Soc. Vol. 38 No. 1 2008 41 49 TREND ESTIMATION AND THE HODRICK-PRESCOTT FILTER Andrew Harvey* and Thomas Trimbur** The article analyses the relationship between unobserved component trend-cycle

More information

Volume 30, Issue 3. A note on Kalman filter approach to solution of rational expectations models

Volume 30, Issue 3. A note on Kalman filter approach to solution of rational expectations models Volume 30, Issue 3 A note on Kalman filter approach to solution of rational expectations models Marco Maria Sorge BGSE, University of Bonn Abstract In this note, a class of nonlinear dynamic models under

More information

FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure

FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure Frale C., Monteforte L. Computational and Financial Econometrics Limassol, October 2009 Introduction After the recent financial and economic

More information

Multivariate ARMA Processes

Multivariate ARMA Processes LECTURE 8 Multivariate ARMA Processes A vector y(t) of n elements is said to follow an n-variate ARMA process of orders p and q if it satisfies the equation (1) A 0 y(t) + A 1 y(t 1) + + A p y(t p) = M

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

A Robust Approach to Estimating Production Functions: Replication of the ACF procedure

A Robust Approach to Estimating Production Functions: Replication of the ACF procedure A Robust Approach to Estimating Production Functions: Replication of the ACF procedure Kyoo il Kim Michigan State University Yao Luo University of Toronto Yingjun Su IESR, Jinan University August 2018

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

1 First-order di erence equation

1 First-order di erence equation References Hamilton, J. D., 1994. Time Series Analysis. Princeton University Press. (Chapter 1,2) The task facing the modern time-series econometrician is to develop reasonably simple and intuitive models

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Generalized Method of Moments (GMM) Estimation

Generalized Method of Moments (GMM) Estimation Econometrics 2 Fall 2004 Generalized Method of Moments (GMM) Estimation Heino Bohn Nielsen of29 Outline of the Lecture () Introduction. (2) Moment conditions and methods of moments (MM) estimation. Ordinary

More information

Estimating and Identifying Vector Autoregressions Under Diagonality and Block Exogeneity Restrictions

Estimating and Identifying Vector Autoregressions Under Diagonality and Block Exogeneity Restrictions Estimating and Identifying Vector Autoregressions Under Diagonality and Block Exogeneity Restrictions William D. Lastrapes Department of Economics Terry College of Business University of Georgia Athens,

More information

New Information Response Functions

New Information Response Functions New Information Response Functions Caroline JARDET (1) Banque de France Alain MONFORT (2) CNAM, CREST and Banque de France Fulvio PEGORARO (3) Banque de France and CREST First version : February, 2009.

More information

CENTRE FOR APPLIED MACROECONOMIC ANALYSIS

CENTRE FOR APPLIED MACROECONOMIC ANALYSIS CENTRE FOR APPLIED MACROECONOMIC ANALYSIS The Australian National University CAMA Working Paper Series May, 2005 SINGLE SOURCE OF ERROR STATE SPACE APPROACH TO THE BEVERIDGE NELSON DECOMPOSITION Heather

More information

Inference in VARs with Conditional Heteroskedasticity of Unknown Form

Inference in VARs with Conditional Heteroskedasticity of Unknown Form Inference in VARs with Conditional Heteroskedasticity of Unknown Form Ralf Brüggemann a Carsten Jentsch b Carsten Trenkler c University of Konstanz University of Mannheim University of Mannheim IAB Nuremberg

More information

Nonlinear Parameter Estimation for State-Space ARCH Models with Missing Observations

Nonlinear Parameter Estimation for State-Space ARCH Models with Missing Observations Nonlinear Parameter Estimation for State-Space ARCH Models with Missing Observations SEBASTIÁN OSSANDÓN Pontificia Universidad Católica de Valparaíso Instituto de Matemáticas Blanco Viel 596, Cerro Barón,

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Reducing the Dimensionality of Linear Quadratic Control Problems*

Reducing the Dimensionality of Linear Quadratic Control Problems* Reducing the Dimensionality of Linear Quadratic Control Problems* February 2001 Ronald J. Balvers Douglas W. Mitchell Department of Economics Department of Economics P.O. Box 6025 P.O. Box 6025 West Virginia

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 3. Factor Models and Their Estimation Steve Yang Stevens Institute of Technology 09/12/2012 Outline 1 The Notion of Factors 2 Factor Analysis via Maximum Likelihood

More information

Bagging and Forecasting in Nonlinear Dynamic Models

Bagging and Forecasting in Nonlinear Dynamic Models DBJ Discussion Paper Series, No.0905 Bagging and Forecasting in Nonlinear Dynamic Models Mari Sakudo (Research Institute of Capital Formation, Development Bank of Japan, and Department of Economics, Sophia

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis

Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis Sílvia Gonçalves and Benoit Perron Département de sciences économiques,

More information

Equivalence of several methods for decomposing time series into permananent and transitory components

Equivalence of several methods for decomposing time series into permananent and transitory components Equivalence of several methods for decomposing time series into permananent and transitory components Don Harding Department of Economics and Finance LaTrobe University, Bundoora Victoria 3086 and Centre

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

The Estimation of Simultaneous Equation Models under Conditional Heteroscedasticity

The Estimation of Simultaneous Equation Models under Conditional Heteroscedasticity The Estimation of Simultaneous Equation Models under Conditional Heteroscedasticity E M. I and G D.A. P University of Alicante Cardiff University This version: April 2004. Preliminary and to be completed

More information

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets TIME SERIES AND FORECASTING Luca Gambetti UAB, Barcelona GSE 2014-2015 Master in Macroeconomic Policy and Financial Markets 1 Contacts Prof.: Luca Gambetti Office: B3-1130 Edifici B Office hours: email:

More information

Outline. Overview of Issues. Spatial Regression. Luc Anselin

Outline. Overview of Issues. Spatial Regression. Luc Anselin Spatial Regression Luc Anselin University of Illinois, Urbana-Champaign http://www.spacestat.com Outline Overview of Issues Spatial Regression Specifications Space-Time Models Spatial Latent Variable Models

More information

Decomposing the effects of the updates in the framework for forecasting

Decomposing the effects of the updates in the framework for forecasting Decomposing the effects of the updates in the framework for forecasting Zuzana Antoničová František Brázdik František Kopřiva Abstract In this paper, we develop a forecasting decomposition analysis framework

More information

Kalman Filter. Lawrence J. Christiano

Kalman Filter. Lawrence J. Christiano Kalman Filter Lawrence J. Christiano Background The Kalman filter is a powerful tool, which can be used in a variety of contexts. can be used for filtering and smoothing. To help make it concrete, we will

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Department of Economics. Working Papers

Department of Economics. Working Papers 10ISSN 1183-1057 SIMON FRASER UNIVERSITY Department of Economics Working Papers 08-07 "A Cauchy-Schwarz inequality for expectation of matrices" Pascal Lavergne November 2008 Economics A Cauchy-Schwarz

More information

Residuals in Time Series Models

Residuals in Time Series Models Residuals in Time Series Models José Alberto Mauricio Universidad Complutense de Madrid, Facultad de Económicas, Campus de Somosaguas, 83 Madrid, Spain. (E-mail: jamauri@ccee.ucm.es.) Summary: Three types

More information

Optimal Policy with Partial Information in a Forward-Looking Model: Certainty-Equivalence Redux

Optimal Policy with Partial Information in a Forward-Looking Model: Certainty-Equivalence Redux SWCE206.tex Optimal Policy with Partial Information in a Forward-Looking Model: Certainty-Equivalence Redux Lars E.O. Svensson and Michael Woodford First draft: January 1999 This version: June 2002 Abstract

More information

Nowcasting Norwegian GDP

Nowcasting Norwegian GDP Nowcasting Norwegian GDP Knut Are Aastveit and Tørres Trovik May 13, 2007 Introduction Motivation The last decades of advances in information technology has made it possible to access a huge amount of

More information

A primer on Structural VARs

A primer on Structural VARs A primer on Structural VARs Claudia Foroni Norges Bank 10 November 2014 Structural VARs 1/ 26 Refresh: what is a VAR? VAR (p) : where y t K 1 y t = ν + B 1 y t 1 +... + B p y t p + u t, (1) = ( y 1t...

More information

Estimation of Dynamic Regression Models

Estimation of Dynamic Regression Models University of Pavia 2007 Estimation of Dynamic Regression Models Eduardo Rossi University of Pavia Factorization of the density DGP: D t (x t χ t 1, d t ; Ψ) x t represent all the variables in the economy.

More information

Efficiency of repeated-cross-section estimators in fixed-effects models

Efficiency of repeated-cross-section estimators in fixed-effects models Efficiency of repeated-cross-section estimators in fixed-effects models Montezuma Dumangane and Nicoletta Rosati CEMAPRE and ISEG-UTL January 2009 Abstract PRELIMINARY AND INCOMPLETE Exploiting across

More information

ARMA Estimation Recipes

ARMA Estimation Recipes Econ. 1B D. McFadden, Fall 000 1. Preliminaries ARMA Estimation Recipes hese notes summarize procedures for estimating the lag coefficients in the stationary ARMA(p,q) model (1) y t = µ +a 1 (y t-1 -µ)

More information

Define y t+h t as the forecast of y t+h based on I t known parameters. The forecast error is. Forecasting

Define y t+h t as the forecast of y t+h based on I t known parameters. The forecast error is. Forecasting Forecasting Let {y t } be a covariance stationary are ergodic process, eg an ARMA(p, q) process with Wold representation y t = X μ + ψ j ε t j, ε t ~WN(0,σ 2 ) j=0 = μ + ε t + ψ 1 ε t 1 + ψ 2 ε t 2 + Let

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

1. Introduction. Hang Qian 1 Iowa State University

1. Introduction. Hang Qian 1 Iowa State University Users Guide to the VARDAS Package Hang Qian 1 Iowa State University 1. Introduction The Vector Autoregression (VAR) model is widely used in macroeconomics. However, macroeconomic data are not always observed

More information

Using all observations when forecasting under structural breaks

Using all observations when forecasting under structural breaks Using all observations when forecasting under structural breaks Stanislav Anatolyev New Economic School Victor Kitov Moscow State University December 2007 Abstract We extend the idea of the trade-off window

More information

Oil price and macroeconomy in Russia. Abstract

Oil price and macroeconomy in Russia. Abstract Oil price and macroeconomy in Russia Katsuya Ito Fukuoka University Abstract In this note, using the VEC model we attempt to empirically investigate the effects of oil price and monetary shocks on the

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

BOOTSTRAP PREDICTION INTERVALS IN STATE SPACE MODELS. Alejandro Rodriguez 1 and Esther Ruiz 2

BOOTSTRAP PREDICTION INTERVALS IN STATE SPACE MODELS. Alejandro Rodriguez 1 and Esther Ruiz 2 Working Paper 08-11 Departamento de Estadística Statistic and Econometric Series 04 Universidad Carlos III de Madrid March 2008 Calle Madrid, 126 28903 Getafe (Spain) Fax (34-91) 6249849 BOOTSTRAP PREDICTION

More information

Simultaneous Equations and Weak Instruments under Conditionally Heteroscedastic Disturbances

Simultaneous Equations and Weak Instruments under Conditionally Heteroscedastic Disturbances Simultaneous Equations and Weak Instruments under Conditionally Heteroscedastic Disturbances E M. I and G D.A. P Michigan State University Cardiff University This version: July 004. Preliminary version

More information

ADAPTIVE TIME SERIES FILTERS OBTAINED BY MINIMISATION OF THE KULLBACK-LEIBLER DIVERGENCE CRITERION

ADAPTIVE TIME SERIES FILTERS OBTAINED BY MINIMISATION OF THE KULLBACK-LEIBLER DIVERGENCE CRITERION ADAPTIVE TIME SERIES FILTERS OBTAINED BY MINIMISATION OF THE KULLBACK-LEIBLER DIVERGENCE CRITERION Elena L vovna Pervukhina 1, Jean-François Emmenegger 2 1 Sevastopol National Technical University, UKRAINE

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Class: Trend-Cycle Decomposition

Class: Trend-Cycle Decomposition Class: Trend-Cycle Decomposition Macroeconometrics - Spring 2011 Jacek Suda, BdF and PSE June 1, 2011 Outline Outline: 1 Unobserved Component Approach 2 Beveridge-Nelson Decomposition 3 Spectral Analysis

More information

Estimation of state space models with skewed shocks

Estimation of state space models with skewed shocks Estimation of state space models with skewed shocks Grzegorz Koloch April 30, 2012 Abstract This paper provides analytical formulae for the likelihood function, predictive densities and the filtration

More information

Stationarity and cointegration tests: Comparison of Engle - Granger and Johansen methodologies

Stationarity and cointegration tests: Comparison of Engle - Granger and Johansen methodologies MPRA Munich Personal RePEc Archive Stationarity and cointegration tests: Comparison of Engle - Granger and Johansen methodologies Faik Bilgili Erciyes University, Faculty of Economics and Administrative

More information

Examination paper for TMA4285 Time Series Models

Examination paper for TMA4285 Time Series Models Department of Mathematical Sciences Examination paper for TMA4285 Series Models Academic contact during examination: Professor Jarle Tufto Phone: 99 70 55 19 Examination date: December 8, 2016 Examination

More information

Structural VAR Models and Applications

Structural VAR Models and Applications Structural VAR Models and Applications Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 SVAR: Objectives Whereas the VAR model is able to capture efficiently the interactions between the different

More information

Nonstationary Time Series:

Nonstationary Time Series: Nonstationary Time Series: Unit Roots Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board Summer School in Financial Mathematics Faculty of Mathematics & Physics University of Ljubljana September

More information

VAR models with non-gaussian shocks

VAR models with non-gaussian shocks VAR models with non-gaussian shocks Ching-Wai (Jeremy) Chiu Haroon Mumtaz Gabor Pinter September 27, 2016 Motivation and aims Density of the residuals from a recursive VAR(13) (1960m1-2015m6) Motivation

More information

Discussion of Tests of Equal Predictive Ability with Real-Time Data by T. E. Clark and M.W. McCracken

Discussion of Tests of Equal Predictive Ability with Real-Time Data by T. E. Clark and M.W. McCracken Discussion of Tests of Equal Predictive Ability with Real-Time Data by T. E. Clark and M.W. McCracken Juri Marcucci Bank of Italy 5 th ECB Workshop on Forecasting Techniques Forecast Uncertainty in Macroeconomics

More information