Lecture 3: Functions of Symmetric Matrices

Size: px
Start display at page:

Download "Lecture 3: Functions of Symmetric Matrices"

Transcription

1 Lecture 3: Functions of Symmetric Matrices Yilin Mo July 2, Recap 1 Bayes Estimator: (a Initialization: (b Correction: f(x 0 Y 1 = f(x 0 f(x k Y k = αf(y k x k f(x k Y k 1, where ( 1 α = f(y k x k f(x k Y k 1 d x k The MMSE estimation can be derived as ˆx = E(x k Y k = x k f(x k Y k d x k (c Prediction: f(x k+1 Y k = f(x k+1 x k f(x k Y k d x k 2 Kalman Filter: (a Initialization: (b Prediction: ˆx 0 1 = 0, P 0 1 = Σ (1 ˆx k+1 k = Aˆx k k, P k+1 k = AP k k A T + Q (2 (c Correction: ˆx k+1 k+1 = ˆx k+1 k + P k+1 k C T (CP k+1 k C T + R 1 (y k+1 C ˆx k+1 k, (3 P k+1 k+1 = P k+1 k P k+1 k C T (CP k+1 k C T + R 1 CP k+1 k (4 1

2 3 Linear Estimator: (a Initialization: (b Prediction: ˆx 0 1 = 0 ˆx k+1 k = Aˆx k k (c Correction: ˆx k+1 k+1 = ˆx k+1 k + K k+1 ( yk+1 C ˆx k+1 k Estimation error covariance of the linear filter satisfies: P 0 1 = Σ, P k+1 k = AP k k A T + Q, P k+1 k+1 = (I K k+1 CP k+1 k (I K k+1 C T + K k+1 RK k+1 2 Kalman Filtering with Intermittent Observations: Problem Formulation Suppose the sensor send its measurements through an erasure channel: Sensor γ k KF Figure 1: Kalman Filtering with Intermittent Observations Let γ k be a binary variable, such that γ k = 0 implies that the KF does not receive y k and γ k = 1 implies that the KF receives y k We assume that γ k is an iid Bernoulli random variable with P (γ k = 1 = λ, which is independent from x 0, {w k }, {v k } Hence, the information that the KF has at time k is γ 0,, γ k, γ 0 y 0,, γ k y k The optimal estimator is a time varying KF: 1 Initialization: ˆx 0 1 = 0, P 0 1 = Σ (5 2 Prediction: ˆx k+1 k = Aˆx k k, P k+1 k = AP k k A T + Q (6 2

3 3 Correction: ˆx k+1 k+1 = ˆx k+1 k + γ k+1 P k+1 k C T (CP k+1 k C T + R 1 (y k+1 C ˆx k+1 k, (7 P k+1 k+1 = P k+1 k γ k+1 P k+1 k C T (CP k+1 k C T + R 1 CP k+1 k (8 To simplify notations, we define Furthermore, define P k P k k h(x AXA T + Q, g(x h(x h(xc T (Ch(XC T + R 1 Ch(X As a result, P k = { h(p k 1 if γ k = 0 g(p k 1 if γ k = 1 h is called a Lyapunov equation and g is called a discrete-time algebraic Riccati equation 3 Properties of Discrete-time Algebraic Riccati Equation 31 Symmetric Matrix Let S n be the space of real symmetric n by n matrices S n is a linear space with dimension n(n + 1/2 Definition 1 S n + S n is the set of all positive semidefinite matrices S n ++ S n is the set of all positive definite matrices 1 For any X, Y S n +, α, β 0, αx + βy S n + S n + is a convex cone 2 S n + ( S n + = {0} S n + induces a partial order on S n : 1 0 S n + = X X X Y = X Y S n + 2 S n + ( S n + = {0} implies that if X Y and Y X, then X = Y 3 Convexity implies that if X Y and Y Z, then X Z 3

4 However, it is not a total order: Neither X Y nor Y X X = 0, Y = [ ] Theorem 1 If the sequence {X k } is monotonically increasing, ie, X k+1 X k, and there exists an M, such that for all k, X k M, then the following entrywise limit is well-defined Proof Diagonal Elements: lim X k = X k X k+1 (i, i X k (i, i implies that the diagonal element X k+1 (i, i X k (i, i Hence, X k (i, i is increasing and is bounded by M(i, i Therefore X k (i, i converges Off-diagonal Elements: Consider k 1 k 2, then X k1 X k2, which implies that all principal minor is non-negative, ie, X k1 (i, j X k2 (i, j 2 X k1 (i, i X k2 (i, i X k1 (j, j X k2 (j, j Use Cauchy Criterion to prove that the off-diagonal elements also converge 32 Functions on S n Definition 2 A function f : S n S n is monotonically increasing if for any X Y, f(x f(y A function f is decreasing if f is increasing Definition 3 A function f : S n S n is convex if for any X, Y and α, β > 0, α + β = 1, the following inequality holds αf(x + βf(y f(αx + βy A function f is concave if f is convex Some functions: 1 Affine function: h(x = AXA T + Q h(x is increasing, convex and concave 2 Inverse function: f(x = X 1 f(x is decreasing and convex on S n ++ 4

5 Proof Consider X, Y S n ++ There exists an orthogonal matrix Q 1, such that Q 1 XQ T 1 = Λ X, where Λ X is a diagonal matrix Define Λ 1/2 X as the square root of Λ X Hence, Q 1 Λ X Q T 1 Q 1 Λ X Q T 1 = X Let X 1/2 = Q 1 Λ 1/2 X QT 1 Then there exists another orthogonal matrix Q 2, such that Q 2 X 1/2 Y X 1/2 Q T 2 = Λ Y, On the other hand Q 2 X 1/2 XX 1/2 Q T 2 = I The proof can be done by using the matrix Q 2 X 1/2 to diagonalize both X and Y and use the fact that 1/x is decreasing and concave on R + 3 Discrete-time algebraic Riccati equation: Matrix Inversion Lemma: Therefore, (A + UCV 1 = A 1 A 1 U(C 1 + V A 1 U 1 V A 1 (9 g(x = [ (h(x 1 + C T R 1 C ] 1 g(x is increasing, concave and non-negative on S n + (why? Another way of thinking: Consider the update equation of a linear filter: ϕ(x, K = (I KCh(X(I KC T + KRK T = K(Ch(XC T + RK T KCh(X h(xc T K T + h(x Define K = h(xc T (Ch(XC T + R 1, then Thus ϕ(x, K = g(x + (K K (Ch(XC T + R(K K T g(x = min ϕ(x, K K Fix K, ϕ(x, K is increasing and affine Thus, g(x is increasing, concave and non-negative on S n + (why? 5

Lecture 5: Control Over Lossy Networks

Lecture 5: Control Over Lossy Networks Lecture 5: Control Over Lossy Networks Yilin Mo July 2, 2015 1 Classical LQG Control The system: x k+1 = Ax k + Bu k + w k, y k = Cx k + v k x 0 N (0, Σ), w k N (0, Q), v k N (0, R). Information available

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Kalman Filtering with Intermittent Observations*

Kalman Filtering with Intermittent Observations* Kalman Filtering with Intermittent Observations* Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Michael I. Jordan, Shankar S. Sastry Department of Electrical Engineering and Computer

More information

Kalman Filtering with Intermittent Observations: Tail Distribution and Critical Value

Kalman Filtering with Intermittent Observations: Tail Distribution and Critical Value 1 Kalman Filtering with Intermittent Observations: Tail Distribution and Critical Value Yilin Mo and Bruno Sinopoli Abstract In this paper we analyze the performance of Kalman filtering for linear Gaussian

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form: 0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything

More information

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator Kalman Filtering Namrata Vaswani March 29, 2018 Notes are based on Vincent Poor s book. 1 Kalman Filter as a causal MMSE estimator Consider the following state space model (signal and observation model).

More information

Kalman filtering with intermittent heavy tailed observations

Kalman filtering with intermittent heavy tailed observations Kalman filtering with intermittent heavy tailed observations Sabina Zejnilović Abstract In large wireless sensor networks, data can experience loss and significant delay which from the aspect of control

More information

Static Problem Set 2 Solutions

Static Problem Set 2 Solutions Static Problem Set Solutions Jonathan Kreamer July, 0 Question (i) Let g, h be two concave functions. Is f = g + h a concave function? Prove it. Yes. Proof: Consider any two points x, x and α [0, ]. Let

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

A Stochastic Online Sensor Scheduler for Remote State Estimation with Time-out Condition

A Stochastic Online Sensor Scheduler for Remote State Estimation with Time-out Condition A Stochastic Online Sensor Scheduler for Remote State Estimation with Time-out Condition Junfeng Wu, Karl Henrik Johansson and Ling Shi E-mail: jfwu@ust.hk Stockholm, 9th, January 2014 1 / 19 Outline Outline

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

A Solution Method for Semidefinite Variational Inequality with Coupled Constraints

A Solution Method for Semidefinite Variational Inequality with Coupled Constraints Communications in Mathematics and Applications Volume 4 (2013), Number 1, pp. 39 48 RGN Publications http://www.rgnpublications.com A Solution Method for Semidefinite Variational Inequality with Coupled

More information

Speech Recognition Lecture 7: Maximum Entropy Models. Mehryar Mohri Courant Institute and Google Research

Speech Recognition Lecture 7: Maximum Entropy Models. Mehryar Mohri Courant Institute and Google Research Speech Recognition Lecture 7: Maximum Entropy Models Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.com This Lecture Information theory basics Maximum entropy models Duality theorem

More information

Time Varying Optimal Control with Packet Losses.

Time Varying Optimal Control with Packet Losses. Time Varying Optimal Control with Packet Losses. Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Shankar S. Sastry Department of Electrical Engineering and Computer Sciences University

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

1 The theoretical constructions

1 The theoretical constructions Linear Transformations and Matrix Representations Samuel R Buss - Spring 003 Revision (Corrections appreciated!) These notes review the topics I lectured on while covering sections 4, 4, and 5 of the textbook

More information

Common-Knowledge / Cheat Sheet

Common-Knowledge / Cheat Sheet CSE 521: Design and Analysis of Algorithms I Fall 2018 Common-Knowledge / Cheat Sheet 1 Randomized Algorithm Expectation: For a random variable X with domain, the discrete set S, E [X] = s S P [X = s]

More information

Chapter 2 BASIC PRINCIPLES. 2.1 Introduction. 2.2 Gradient Information

Chapter 2 BASIC PRINCIPLES. 2.1 Introduction. 2.2 Gradient Information Chapter 2 BASIC PRINCIPLES 2.1 Introduction Nonlinear programming is based on a collection of definitions, theorems, and principles that must be clearly understood if the available nonlinear programming

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

Linear Algebra Lecture Notes-II

Linear Algebra Lecture Notes-II Linear Algebra Lecture Notes-II Vikas Bist Department of Mathematics Panjab University, Chandigarh-64 email: bistvikas@gmail.com Last revised on March 5, 8 This text is based on the lectures delivered

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

2 2 + x =

2 2 + x = Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +

More information

Kalman Filtering with Intermittent Observations: Tail Distribution and Critical Value

Kalman Filtering with Intermittent Observations: Tail Distribution and Critical Value Kalman Filtering with Intermittent Observations: Tail Distribution and Critical Value Yilin Mo, Student Member, IEEE, and Bruno Sinopoli, Member, IEEE Abstract In this paper we analyze the performance

More information

False Data Injection Attacks in Control Systems

False Data Injection Attacks in Control Systems False Data Injection Attacks in Control Systems Yilin Mo, Bruno Sinopoli Department of Electrical and Computer Engineering, Carnegie Mellon University First Workshop on Secure Control Systems Bruno Sinopoli

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

14 Lecture 14 Local Extrema of Function

14 Lecture 14 Local Extrema of Function 14 Lecture 14 Local Extrema of Function 14.1 Taylor s Formula with Lagrangian Remainder Term Theorem 14.1. Let n N {0} and f : (a,b) R. We assume that there exists f (n+1) (x) for all x (a,b). Then for

More information

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis, 5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

More information

Functions. Paul Schrimpf. October 9, UBC Economics 526. Functions. Paul Schrimpf. Definition and examples. Special types of functions

Functions. Paul Schrimpf. October 9, UBC Economics 526. Functions. Paul Schrimpf. Definition and examples. Special types of functions of Functions UBC Economics 526 October 9, 2013 of 1. 2. of 3.. 4 of Functions UBC Economics 526 October 9, 2013 of Section 1 Functions of A function from a set A to a set B is a rule that assigns to each

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

MATH 650. THE RADON-NIKODYM THEOREM

MATH 650. THE RADON-NIKODYM THEOREM MATH 650. THE RADON-NIKODYM THEOREM This note presents two important theorems in Measure Theory, the Lebesgue Decomposition and Radon-Nikodym Theorem. They are not treated in the textbook. 1. Closed subspaces

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

IEEE Copyright Statement:

IEEE Copyright Statement: IEEE Copyright Statement: Copyright [2004] IEEE. Reprinted from IEEE Transactions on Automatic Control, Special Issue on Networked Control Systems. September 2004. This material is posted here with permission

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012 (Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

More information

Dual Spaces. René van Hassel

Dual Spaces. René van Hassel Dual Spaces René van Hassel October 1, 2006 2 1 Spaces A little scheme of the relation between spaces in the Functional Analysis. FA spaces Vector space Topological Space Topological Metric Space Vector

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

Definition of convex function in a vector space

Definition of convex function in a vector space Convex functions Nonlinear optimization Instituto Superior Técnico and Carnegie Mellon University PhD course João Xavier TAs: Brian Swenson, Shanghang Zhang, Lucas Balthazar Convex functions Nonconvex

More information

Summary Notes on Maximization

Summary Notes on Maximization Division of the Humanities and Social Sciences Summary Notes on Maximization KC Border Fall 2005 1 Classical Lagrange Multiplier Theorem 1 Definition A point x is a constrained local maximizer of f subject

More information

Introduction and Math Preliminaries

Introduction and Math Preliminaries Introduction and Math Preliminaries Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Appendices A, B, and C, Chapter

More information

Networked Sensing, Estimation and Control Systems

Networked Sensing, Estimation and Control Systems Networked Sensing, Estimation and Control Systems Vijay Gupta University of Notre Dame Richard M. Murray California Institute of echnology Ling Shi Hong Kong University of Science and echnology Bruno Sinopoli

More information

Calculus and Maximization I

Calculus and Maximization I Division of the Humanities and Social Sciences Calculus and Maximization I KC Border Fall 2000 1 Maxima and Minima A function f : X R attains a global maximum or absolute maximum over X at x X if f(x )

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p.

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. Preface p. xiii Acknowledgment p. xix Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. 4 Bayes Decision p. 5

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

4. Convex Sets and (Quasi-)Concave Functions

4. Convex Sets and (Quasi-)Concave Functions 4. Convex Sets and (Quasi-)Concave Functions Daisuke Oyama Mathematics II April 17, 2017 Convex Sets Definition 4.1 A R N is convex if (1 α)x + αx A whenever x, x A and α [0, 1]. A R N is strictly convex

More information

Time and Event-based Sensor Scheduling for Networks with Limited Communication Resources

Time and Event-based Sensor Scheduling for Networks with Limited Communication Resources Proceedings of the 18th World Congress The International Federation of Automatic Control Time and Event-based Sensor Scheduling for Networks with Limited Communication Resources Ling Shi Karl Henrik Johansson

More information

EE514A Information Theory I Fall 2013

EE514A Information Theory I Fall 2013 EE514A Information Theory I Fall 2013 K. Mohan, Prof. J. Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2013 http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/

More information

Optimal control and estimation

Optimal control and estimation Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

SCHUR IDEALS AND HOMOMORPHISMS OF THE SEMIDEFINITE CONE

SCHUR IDEALS AND HOMOMORPHISMS OF THE SEMIDEFINITE CONE SCHUR IDEALS AND HOMOMORPHISMS OF THE SEMIDEFINITE CONE BABHRU JOSHI AND M. SEETHARAMA GOWDA Abstract. We consider the semidefinite cone K n consisting of all n n real symmetric positive semidefinite matrices.

More information

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B)

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B) MATH 217A HOMEWOK EIN PEASE 1. (Chap. 1, Problem 2. (a Let (, Σ, P be a probability space and {A i, 1 i n} Σ, n 2. Prove that P A i n P (A i P (A i A j + P (A i A j A k... + ( 1 n 1 P A i n P (A i P (A

More information

Monotone Function. Function f is called monotonically increasing, if. x 1 x 2 f (x 1 ) f (x 2 ) x 1 < x 2 f (x 1 ) < f (x 2 ) x 1 x 2

Monotone Function. Function f is called monotonically increasing, if. x 1 x 2 f (x 1 ) f (x 2 ) x 1 < x 2 f (x 1 ) < f (x 2 ) x 1 x 2 Monotone Function Function f is called monotonically increasing, if Chapter 3 x x 2 f (x ) f (x 2 ) It is called strictly monotonically increasing, if f (x 2) f (x ) Convex and Concave x < x 2 f (x )

More information

LQG CONTROL WITH MISSING OBSERVATION AND CONTROL PACKETS. Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Shankar Sastry

LQG CONTROL WITH MISSING OBSERVATION AND CONTROL PACKETS. Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Shankar Sastry LQG CONTROL WITH MISSING OBSERVATION AND CONTROL PACKETS Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Shankar Sastry Department of Electrical Engineering and Computer Sciences

More information

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write Lecture 3: Expected Value 1.) Definitions. If X 0 is a random variable on (Ω, F, P), then we define its expected value to be EX = XdP. Notice that this quantity may be. For general X, we say that EX exists

More information

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE. Sangho Kum and Gue Myung Lee. 1. Introduction

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE. Sangho Kum and Gue Myung Lee. 1. Introduction J. Korean Math. Soc. 38 (2001), No. 3, pp. 683 695 ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE Sangho Kum and Gue Myung Lee Abstract. In this paper we are concerned with theoretical properties

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 0: Vector spaces 0.1 Basic notation Here are some of the fundamental sets and spaces

More information

Algebra II. Paulius Drungilas and Jonas Jankauskas

Algebra II. Paulius Drungilas and Jonas Jankauskas Algebra II Paulius Drungilas and Jonas Jankauskas Contents 1. Quadratic forms 3 What is quadratic form? 3 Change of variables. 3 Equivalence of quadratic forms. 4 Canonical form. 4 Normal form. 7 Positive

More information

Gaussians. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Gaussians. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Gaussians Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Outline Univariate Gaussian Multivariate Gaussian Law of Total Probability Conditioning

More information

Continuity. Matt Rosenzweig

Continuity. Matt Rosenzweig Continuity Matt Rosenzweig Contents 1 Continuity 1 1.1 Rudin Chapter 4 Exercises........................................ 1 1.1.1 Exercise 1............................................. 1 1.1.2 Exercise

More information

Sensor Fusion, 2014 Lecture 1: 1 Lectures

Sensor Fusion, 2014 Lecture 1: 1 Lectures Sensor Fusion, 2014 Lecture 1: 1 Lectures Lecture Content 1 Course overview. Estimation theory for linear models. 2 Estimation theory for nonlinear models 3 Sensor networks and detection theory 4 Nonlinear

More information

Hamiltonian Mechanics

Hamiltonian Mechanics Chapter 3 Hamiltonian Mechanics 3.1 Convex functions As background to discuss Hamiltonian mechanics we discuss convexity and convex functions. We will also give some applications to thermodynamics. We

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2 Instructor: Farid Alizadeh Scribe: Xuan Li 9/17/2001 1 Overview We survey the basic notions of cones and cone-lp and give several

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

Definition 1.1. A partially ordered set (M, ) is a set M equipped with a binary relation, called a partial ordering, satisfying

Definition 1.1. A partially ordered set (M, ) is a set M equipped with a binary relation, called a partial ordering, satisfying 1 Zorn s Lemma Definition 1.1. A partially ordered set (M, ) is a set M equipped with a binary relation, called a partial ordering, satisfying (a) x x for every x M. (b) If x y and y x, then x = y. (c)

More information

Division of the Humanities and Social Sciences. Supergradients. KC Border Fall 2001 v ::15.45

Division of the Humanities and Social Sciences. Supergradients. KC Border Fall 2001 v ::15.45 Division of the Humanities and Social Sciences Supergradients KC Border Fall 2001 1 The supergradient of a concave function There is a useful way to characterize the concavity of differentiable functions.

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m Convex analysts may give one of two

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

Convex Analysis and Optimization Chapter 2 Solutions

Convex Analysis and Optimization Chapter 2 Solutions Convex Analysis and Optimization Chapter 2 Solutions Dimitri P. Bertsekas with Angelia Nedić and Asuman E. Ozdaglar Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Optimization Part 1 P. Agius L2.1, Spring 2008

Optimization Part 1 P. Agius L2.1, Spring 2008 Optimization Part 1 Contents Terms and definitions, formulating the problem Unconstrained optimization conditions FONC, SONC, SOSC Searching for the solution Which direction? What step size? Constrained

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Introduction to Convex Analysis Microeconomics II - Tutoring Class

Introduction to Convex Analysis Microeconomics II - Tutoring Class Introduction to Convex Analysis Microeconomics II - Tutoring Class Professor: V. Filipe Martins-da-Rocha TA: Cinthia Konichi April 2010 1 Basic Concepts and Results This is a first glance on basic convex

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Mathematical Economics: Lecture 16

Mathematical Economics: Lecture 16 Mathematical Economics: Lecture 16 Yu Ren WISE, Xiamen University November 26, 2012 Outline 1 Chapter 21: Concave and Quasiconcave Functions New Section Chapter 21: Concave and Quasiconcave Functions Concave

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 20 Subgradients Assumptions

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

PROOF OF ZADOR-GERSHO THEOREM

PROOF OF ZADOR-GERSHO THEOREM ZADOR-GERSHO THEOREM FOR VARIABLE-RATE VQ For a stationary source and large R, the least distortion of k-dim'l VQ with nth-order entropy coding and rate R or less is δ(k,n,r) m k * σ 2 η kn 2-2R = Z(k,n,R)

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

Image restoration: numerical optimisation

Image restoration: numerical optimisation Image restoration: numerical optimisation Short and partial presentation Jean-François Giovannelli Groupe Signal Image Laboratoire de l Intégration du Matériau au Système Univ. Bordeaux CNRS BINP / 6 Context

More information

Linear Algebra problems

Linear Algebra problems Linear Algebra problems 1. Show that the set F = ({1, 0}, +,.) is a field where + and. are defined as 1+1=0, 0+0=0, 0+1=1+0=1, 0.0=0.1=1.0=0, 1.1=1.. Let X be a non-empty set and F be any field. Let X

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Chapter 13. Convex and Concave. Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44

Chapter 13. Convex and Concave. Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44 Chapter 13 Convex and Concave Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44 Monotone Function Function f is called monotonically increasing, if x 1 x 2 f (x 1 ) f (x 2 ) It

More information

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema Chapter 7 Extremal Problems No matter in theoretical context or in applications many problems can be formulated as problems of finding the maximum or minimum of a function. Whenever this is the case, advanced

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Extensions of pure states

Extensions of pure states Extensions of pure M. Anoussis 07/ 2016 1 C algebras 2 3 4 5 C -algebras Definition Let A be a Banach algebra. An involution on A is a map a a on A s.t. (a + b) = a + b (λa) = λa, λ C a = a (ab) = b a

More information

Lecture 13 and 14: Bayesian estimation theory

Lecture 13 and 14: Bayesian estimation theory 1 Lecture 13 and 14: Bayesian estimation theory Spring 2012 - EE 194 Networked estimation and control (Prof. Khan) March 26 2012 I. BAYESIAN ESTIMATORS Mother Nature conducts a random experiment that generates

More information

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan

Lecture 3: Latent Variables Models and Learning with the EM Algorithm. Sam Roweis. Tuesday July25, 2006 Machine Learning Summer School, Taiwan Lecture 3: Latent Variables Models and Learning with the EM Algorithm Sam Roweis Tuesday July25, 2006 Machine Learning Summer School, Taiwan Latent Variable Models What to do when a variable z is always

More information

LECTURE 4 LECTURE OUTLINE

LECTURE 4 LECTURE OUTLINE LECTURE 4 LECTURE OUTLINE Relative interior and closure Algebra of relative interiors and closures Continuity of convex functions Closures of functions Reading: Section 1.3 All figures are courtesy of

More information