Read textbook CHAPTER 1.4, Apps B&D

Size: px
Start display at page:

Download "Read textbook CHAPTER 1.4, Apps B&D"

Transcription

1 Lecture 2 Read textbook CHAPTER 1.4, Apps B&D Today: Derive EOMs & Linearization undamental equation of motion for mass-springdamper system (1DO). Linear and nonlinear system. Examples of derivation of EOMs Appendix A Equivalence of principles of conservation of mechanical energy and conservation of linear momentum. Appendix B: Linearization ork problems: Chapter 1: 5, 8, 13, 14, 15, 20, 43, 44, 56 1

2 Kinetics of 1-DO Lecture 2 ME617 mechanical systems The fundamental elements in a mechanical system and the process to set a coordinate system and derive an equation of motion. LINEARIZATION included. Luis San Andres Texas A&M University M K C 2014 Luis San Andres 2

3 A system with an elastic element (linear spring)

4 Linear elastic element (spring-like) ree length l s static deflection Applied force on spring K=d/d s deflection Notes: a) Spring element is regarded as massless b) Applied force is STATIC c) Spring reacts with a force proportional to deflection, s = -K s and stores potential energy d) K = stiffness coefficient [N/m or lbf/in] is constant Balance of static forces s =-K s s 4

5 Statics of system with elastic & mass elements

6 Linear spring + added weight ree length l s static deflection Reaction force from spring K=d/d static deflection s Notes: a) Block has weight = Mg Balance of static forces b) Block is regarded as a point mass =s = K s s 6

7 Dynamics of system with elastic & mass elements Derive the equation of motion (EOM) for the system

8 Linear spring + weight (mass x g ) + force (t) (t) Reaction force from spring ree length l + (t) s SEP s+x(t) + K=d/d dynamic deflection X+s Notes: a) Coordinate X describing motion has origin at Static Equilibrium Position (SEP) b) or free body diagram, assume state of motion, for example X(t)>0 c) Then, state Newton s equation of motion d) Assume no lateral (side motions) ree Body diagram acceleration M Ax = + - spring + M spring 8

9 Derive the equation of motion ree length l + s SEP X(t) s+x(t) M Ax = + - spring spring = K(X+s ) M Ax = + K(X+s) BD: X>0 + M spring M Ax = ( -Ks) + KX Cancel terms from force balance at SEP to get M Ax = + KX M Ax + K X= (t) Note: Motions from SEP A X 2 d X dt 2 X 9

10 Another choice of coordinate system + Coordinate y has origin at free length of spring element. ree length l BD: y>0 + y(t) M Ay = + - spring spring = Ky M Ay = + K y eight (static force) remains in equation M spring M Ay + K y= + (t) A y 2 d y 2 dt y 10

11 EOM in two coordinate systems + M Ay + K y = + (t) (1) ree length l y(t) s X(t) SEP A y 2 d y y 2 dt M Ax + K X= (t) (2) y = X+ s y X spring = Ky = K(X+ s ) Coordinate y has origin at free length of spring element. X has origin at SEP. A X 2 d X 2 dt X (?) Are Eqs. (1) and (2) the same? (?) Do Eqs. (1) and (2) represent the same system? (?) Does the weight disappear? (?) Can I just cancel the weight? 11

12 K-M system with dissipative element (a viscous dashpot) Derive the equation of motion (EOM) for the system

13 Recall: a linear elastic element ree length l s s s static deflection s Applied force on spring K=d/d s deflection Notes: a) Spring element is regarded as massless b) K = stiffness coefficient is constant c) Spring reacts with a force proportional to deflection and stores potential energy 13

14 (Linear) viscous damper element V velocity Applied force on damper D=d/dV velocity V Notes: a) Dashpot element (damper) is regarded as massless b) D = damping coefficient [N/(m/s) or lbf/(in/s) ] is constant c) A damper needs velocity to work; otherwise it can not dissipate mechanical energy d) Under static conditions (no motion), a damper does NOT react with a force 14

15 Spring + Damper + Added weight ree length l static deflection s SEP Reaction force from spring K=d/d s static deflection Notes: a) Block has weight = Mg and is regarded as a point mass. b) eight applied very slowly static condition. c) Damper does NOT react to a static action, i.e. D =0 SEP: static equilibrium position Balance of static forces =s = K s s 15

16 Spring + Damper + eight + force (t) (t) Reaction force from spring L-s + s X(t) SEP spring K=d/d dynamic deflection X+s Notes: a) Coordinate X describes motion from Static Equilibrium Position (SEP) b) or free body diagram, assume a state of motion X(t)>0 c) State Newton s equation of motion d) Assumed no lateral (side motions) ree Body diagram M spring acceleration + damper M Ax = + - damper -spring 16

17 Equation of motion: spring-damper-mass + M Ax = + (t) - damper -spring L-s K D X(t) SEP A V X X 2 d X dt 2 X dx X dt damper = D VX spring = K(X+ s ) M Ax = + K(X+s) D VX BD: X>0 + M M Ax = ( -Ks) + KX - DVX Cancel terms from force balance at SEP to get M Ax = + KX D VX spring damper Notes: Motions from SEP M Ax + DVX + K X = (t) EOM: M X DX K X t () 17

18 Simple nonlinear mechanical system Derive the equation of motion (EOM) for the system and linearize EOM about SEP

19 Recall a linear spring element ree length l s s s static deflection s Applied force on spring K=d/d s deflection Notes: a) Spring element is regarded as massless b) K = stiffness coefficient is constant c) Spring reacts with a force proportional to deflection and stores potential energy 19

20 A nonlinear spring element ree length l s static deflection Applied force on spring s K K 1 3 static deflection 3 Notes: a) Spring element is massless b) orce vs. deflection curve is NON linear c) K1 and K3 are material parameters [N/m, N/m 3 ]

21 Linear spring + added weight ree length l s static deflection Reaction force from spring s static deflection Notes: a) Block has weight = Mg b) Block is regarded as a point mass c) Static deflection s found from solving nonlinear equation: K K Balance of static forces 3 spring 1 s 3 s spring

22 Nonlinear spring + weight + force (t) ree length l (t) + SEP s+x(t) +s Reaction force from spring deflection X+s Notes: a) Coordinate X describing motion has origin at Static Equilibrium Position (SEP) b) or free body diagram, assume state of motion, for example X(t)>0 c) Then, state Newton s equation of motion d) Assume no lateral (side motions) ree Body diagram acceleration M Ax = + - spring + M spring

23 Nonlinear Equation of motion ree length l + SEP s+x(t) A MX () t spring 2 d X X X 2 dt 3 K X K X spring 1 s 3 s 3 M X K X K X () t 1 s 3 s BD: X>0 + M spring Expand RHS: M X () t K1 s X K3 s 3 s X 3 s X X M X K K K K X K X X () t 1 s 3 s 1 3 s 3 s Cancel terms from force balance at SEP to get M X K K X K X X s 3 s ( t) Notes: Motions are from SEP

24 Linearize equation of motion SEP ree length l + EOM is nonlinear: M X K K X K X X s+x(t) s 3 s ( t) Assume motions X(t) << s which means (t) << BD: X>0 + M spring to obtain the linear EOM: M X K X where the linearized stiffness is a function of the static condition e d K and set X 2 ~0, X 3 ~0 K () t K K 3K e s dspring Ke K13K3 s d d 2 s

25 Linear equation of motion SEP ree length l BD: X>0 + M spring + s+x(t) Stiffness (linear) Ke e () t 2 K e K 13K3 s M X K X s d K K 3 dspring Ke K13K3 s d deflection s d X s deflection

26 Read & rework Examples of derivation of EOMS for physical systems available on class URL site(s) 2014 Luis San Andres

Translational Mechanical Systems

Translational Mechanical Systems Translational Mechanical Systems Basic (Idealized) Modeling Elements Interconnection Relationships -Physical Laws Derive Equation of Motion (EOM) - SDOF Energy Transfer Series and Parallel Connections

More information

Dynamical Systems. Mechanical Systems

Dynamical Systems. Mechanical Systems EE/ME/AE324: Dynamical Systems Chapter 2: Modeling Translational Mechanical Systems Common Variables Used Assumes 1 DoF per mass, i.e., all motion scalar Displacement: x ()[ t [m] Velocity: dx() t vt ()

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-007 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal

More information

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. Chapter 3 Mechanical Systems A. Bazoune 3.1 INRODUCION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENS Any mechanical system consists

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

16.30/31, Fall 2010 Recitation # 13

16.30/31, Fall 2010 Recitation # 13 16.30/31, Fall 2010 Recitation # 13 Brandon Luders December 6, 2010 In this recitation, we tie the ideas of Lyapunov stability analysis (LSA) back to previous ways we have demonstrated stability - but

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocwmitedu 200 Dynamics and Control Spring 200 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts nstitute of Technology

More information

Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics September 1, 2005 Chapter

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODULE-II --- SINGLE DOF FREE S VTU-NPTEL-NMEICT Project Progress Report The Project on Development of Remaining Three Quadrants to NPTEL Phase-I under grant in aid NMEICT, MHRD, New Delhi SME Name : Course

More information

AN INTRODUCTION TO LAGRANGE EQUATIONS. Professor J. Kim Vandiver October 28, 2016

AN INTRODUCTION TO LAGRANGE EQUATIONS. Professor J. Kim Vandiver October 28, 2016 AN INTRODUCTION TO LAGRANGE EQUATIONS Professor J. Kim Vandiver October 28, 2016 kimv@mit.edu 1.0 INTRODUCTION This paper is intended as a minimal introduction to the application of Lagrange equations

More information

CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao

CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao Associate Professor Dept. of Civil Engineering SVCE, Sriperumbudur Difference between static loading and dynamic loading Degree

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

Modeling of a Mechanical System

Modeling of a Mechanical System Chapter 3 Modeling of a Mechanical System 3.1 Units Currently, there are two systems of units: One is the international system (SI) metric system, the other is the British engineering system (BES) the

More information

18.12 FORCED-DAMPED VIBRATIONS

18.12 FORCED-DAMPED VIBRATIONS 8. ORCED-DAMPED VIBRATIONS Vibrations A mass m is attached to a helical spring and is suspended from a fixed support as before. Damping is also provided in the system ith a dashpot (ig. 8.). Before the

More information

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website: Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6- Transduction Based on Changes in the Energy Stored in an Electrical Field Actuator Examples Microgrippers Normal force driving In-plane force driving» Comb-drive device F = εav d 1 ε oε F rwv

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions k 2 Wheels roll without friction k 1 Motion will not cause block to hit the supports

More information

PHYSICS 44 MECHANICS Homework Assignment II SOLUTION

PHYSICS 44 MECHANICS Homework Assignment II SOLUTION July 21, 23 PHYSICS 44 MECHANICS Homewk Assignment II SOLUTION Problem 1 AcartofmassM is placed on rails and attached to a wall with the help of a massless spring with constant k (as shown in the Figure

More information

ME 141. Lecture 11: Kinetics of particles: Energy method

ME 141. Lecture 11: Kinetics of particles: Energy method ME 4 Engineering Mechanics Lecture : Kinetics of particles: Energy method Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUE E-mail: sshakil@me.buet.ac.bd, shakil679@gmail.com ebsite: teacher.buet.ac.bd/sshakil

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

PHY 3221 Fall Homework Problems. Instructor: Yoonseok Lee. Submit only HW s. EX s are additional problems that I encourage you to work on.

PHY 3221 Fall Homework Problems. Instructor: Yoonseok Lee. Submit only HW s. EX s are additional problems that I encourage you to work on. PHY 3221 Fall 2012 Homework Problems Instructor: Yoonseok Lee Submit only HW s. EX s are additional problems that I encourage you to work on. Week 1: August 22-24, Due August 27 (nothing to submit) EX:

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Investigating Springs (Simple Harmonic Motion)

Investigating Springs (Simple Harmonic Motion) Investigating Springs (Simple Harmonic Motion) INTRODUCTION The purpose of this lab is to study the well-known force exerted by a spring The force, as given by Hooke s Law, is a function of the amount

More information

Dynamic Modelling of Mechanical Systems

Dynamic Modelling of Mechanical Systems Dynamic Modelling of Mechanical Systems Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering g IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD Hints of the Last Assignment

More information

Physics 101: Lecture 20 Elasticity and Oscillations

Physics 101: Lecture 20 Elasticity and Oscillations Exam III Physics 101: Lecture 20 Elasticity and Oscillations Today s lecture will cover Textbook Chapter 10.5-10.10 Tuned mass damper (pendulum) in Taipei 101 Physics 101: Lecture 20, Pg 1 Review Energy

More information

Ch 5 Work and Energy

Ch 5 Work and Energy Ch 5 Work and Energy Energy Provide a different (scalar) approach to solving some physics problems. Work Links the energy approach to the force (Newton s Laws) approach. Mechanical energy Kinetic energy

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)

More information

Unit WorkBook 4 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 4 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample 2018 UniCourse Ltd. A Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 8: Mechanical Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Translational

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION B Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A boy throws a rock with an initial velocity of 2.15 m/s at 30.0 above

More information

2.003 Engineering Dynamics Problem Set 6 with solution

2.003 Engineering Dynamics Problem Set 6 with solution .00 Engineering Dynamics Problem Set 6 with solution Problem : A slender uniform rod of mass m is attached to a cart of mass m at a frictionless pivot located at point A. The cart is connected to a fixed

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Physics 121, April 3, Equilibrium and Simple Harmonic Motion. Physics 121. April 3, Physics 121. April 3, Course Information

Physics 121, April 3, Equilibrium and Simple Harmonic Motion. Physics 121. April 3, Physics 121. April 3, Course Information Physics 121, April 3, 2008. Equilibrium and Simple Harmonic Motion. Physics 121. April 3, 2008. Course Information Topics to be discussed today: Requirements for Equilibrium (a brief review) Stress and

More information

Lecture 6 mechanical system modeling equivalent mass gears

Lecture 6 mechanical system modeling equivalent mass gears M2794.25 Mechanical System Analysis 기계시스템해석 lecture 6,7,8 Dongjun Lee ( 이동준 ) Department of Mechanical & Aerospace Engineering Seoul National University Dongjun Lee Lecture 6 mechanical system modeling

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physics I 03.0.04 Conservation of Energy Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov03/physicsspring.html

More information

MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y

MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2014 2015 MATHEMATICAL PROBLEM SOLVING, MECHANICS AND MODELLING MTHA4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 AND 2 and

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Vibrational Motion. Chapter 5. P. J. Grandinetti. Sep. 13, Chem P. J. Grandinetti (Chem. 4300) Vibrational Motion Sep.

Vibrational Motion. Chapter 5. P. J. Grandinetti. Sep. 13, Chem P. J. Grandinetti (Chem. 4300) Vibrational Motion Sep. Vibrational Motion Chapter 5 P. J. Grandinetti Chem. 4300 Sep. 13, 2017 P. J. Grandinetti (Chem. 4300) Vibrational Motion Sep. 13, 2017 1 / 20 Simple Harmonic Oscillator Simplest model for harmonic oscillator

More information

Submit only HW s. EX s are additional problems that you are encouraged to work.

Submit only HW s. EX s are additional problems that you are encouraged to work. Submit only HW s. EX s are additional problems that you are encouraged to work. Note that these problems are subject to change no later than one week before due date. Week 1: January 7-9, Due January 16

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Giacomo Boffi. Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano

Giacomo Boffi.  Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 21, 2017 Outline of Structural Members Elastic-plastic Idealization

More information

20k rad/s and 2 10k rad/s,

20k rad/s and 2 10k rad/s, ME 35 - Machine Design I Summer Semester 0 Name of Student: Lab Section Number: FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Thursday, August nd, 0 Please show all your work for your solutions on the blank

More information

2.21 Rectilinear Motion: Uniform Acceleration Under a Constant Force. Motion of a Particle

2.21 Rectilinear Motion: Uniform Acceleration Under a Constant Force. Motion of a Particle 60 CHAPTER 2 Newtonian Mechanics: Rectilinear Motion of a Particle Motion of a Particle F=ma is the fundamental equation of motion for a particle subject to the influ ence of a net force, F. We emphasize

More information

Math 1302, Week 8: Oscillations

Math 1302, Week 8: Oscillations Math 302, Week 8: Oscillations T y eq Y y = y eq + Y mg Figure : Simple harmonic motion. At equilibrium the string is of total length y eq. During the motion we let Y be the extension beyond equilibrium,

More information

Lecture 31. EXAMPLES: EQUATIONS OF MOTION USING NEWTON AND ENERGY APPROACHES

Lecture 31. EXAMPLES: EQUATIONS OF MOTION USING NEWTON AND ENERGY APPROACHES Lecture 31. EXAMPLES: EQUATIONS OF MOTION USING NEWTON AND ENERGY APPROACHES Figure 5.29 (a) Uniform beam moving in frictionless slots and attached to ground via springs at A and B. The vertical force

More information

Aircraft Dynamics First order and Second order system

Aircraft Dynamics First order and Second order system Aircraft Dynamics First order and Second order system Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Aircraft dynamic

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009 NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION Professor G.G.Ross Oxford University Hilary Term 009 This course of twelve lectures covers material for the paper CP4: Differential Equations, Waves and

More information

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17 Lesson 5 Physics 168 1 C. B.-Champagne Luis Anchordoqui 2 2 Work Done by a Constant Force distance moved times component of force in direction of displacement W = Fd cos 3 Work Done by a Constant Force

More information

Unforced Mechanical Vibrations

Unforced Mechanical Vibrations Unforced Mechanical Vibrations Today we begin to consider applications of second order ordinary differential equations. 1. Spring-Mass Systems 2. Unforced Systems: Damped Motion 1 Spring-Mass Systems We

More information

Rigid Body Kinetics :: Virtual Work

Rigid Body Kinetics :: Virtual Work Rigid Body Kinetics :: Virtual Work Work-energy relation for an infinitesimal displacement: du = dt + dv (du :: total work done by all active forces) For interconnected systems, differential change in

More information

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics Work done by multiple forces Work done by multiple forces no normal work tractor work friction work total work = W T +W f = +10 kj no weight work Work-Energy: Finding the Speed total work = W T +W f =

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

Section 11.1 What is a Differential Equation?

Section 11.1 What is a Differential Equation? 1 Section 11.1 What is a Differential Equation? Example 1 Suppose a ball is dropped from the top of a building of height 50 meters. Let h(t) denote the height of the ball after t seconds, then it is known

More information

Physics 101: Lecture 20 Elasticity and Oscillations

Physics 101: Lecture 20 Elasticity and Oscillations Exam III Physics 101: Lecture 20 Elasticity and Oscillations Today s lecture will cover Textbook Chapter 10.5-10.10 Tuned mass damper (pendulum) in Taipei 101 Physics 101: Lecture 20, Pg 1 Review Energy

More information

General Response of Second Order System

General Response of Second Order System General Response of Second Order System Slide 1 Learning Objectives Learn to analyze a general second order system and to obtain the general solution Identify the over-damped, under-damped, and critically

More information

Mechanics IV: Oscillations

Mechanics IV: Oscillations Mechanics IV: Oscillations Chapter 4 of Morin covers oscillations, including damped and driven oscillators in detail. Also see chapter 10 of Kleppner and Kolenkow. For more on normal modes, see any book

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

XXIX Applications of Differential Equations

XXIX Applications of Differential Equations MATHEMATICS 01-BNK-05 Advanced Calculus Martin Huard Winter 015 1. Suppose that the rate at which a population of size yt at time t changes is proportional to the amount present. This gives rise to the

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 20 JJ II. Home Page. Title Page.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 20 JJ II. Home Page. Title Page. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics Fall 2015 Lecture 20 Page 1 of 31 1. No quizzes during Thanksgiving week. There will be recitation according to the regular

More information

Chapter 6 Applications of Newton s Laws. Copyright 2010 Pearson Education, Inc.

Chapter 6 Applications of Newton s Laws. Copyright 2010 Pearson Education, Inc. Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects Circular Motion 6-1 Frictional Forces Friction has its basis

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Energy Considerations

Energy Considerations Physics 42200 Waves & Oscillations Lecture 4 French, Chapter 3 Spring 2016 Semester Matthew Jones Energy Considerations The force in Hooke s law is = Potential energy can be used to describe conservative

More information

Mobility and Impedance Methods. Professor Mike Brennan

Mobility and Impedance Methods. Professor Mike Brennan Mobility and Impedance Methods Professor Mike Brennan ibration control ibration Problem Understand problem Modelling (Mobility and Impedance Methods) Solve Problem Measurement Mobility and Impedance The

More information

Forces and two masses.

Forces and two masses. Forces and two masses. Atwood's Machine frictionless, massless pulley +a +a M 1 M 2 Atwood's Machine frictionless, massless pulley +a T +a m 1 a=t m 1 g 1 M 1 M 2 T m 2 a=m 2 g T 2 w 1 =m 1 g w 2 =m 2

More information

Math 2250 Lab 08 Lab Section: Class ID: Name/uNID: Due Date: 3/23/2017

Math 2250 Lab 08 Lab Section: Class ID: Name/uNID: Due Date: 3/23/2017 Math 2250 Lab 08 Lab Section: Class ID: Name/uNID: Due Date: 3/23/2017 TA: Instructions: Unless stated otherwise, please show all your work and explain your reasoning when necessary, as partial credit

More information

7. Vibrations DE2-EA 2.1: M4DE. Dr Connor Myant

7. Vibrations DE2-EA 2.1: M4DE. Dr Connor Myant DE2-EA 2.1: M4DE Dr Connor Myant 7. Vibrations Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents Introduction...

More information

Examination paper for TMA4195 Mathematical Modeling

Examination paper for TMA4195 Mathematical Modeling Department of Mathematical Sciences Examination paper for TMA4195 Mathematical Modeling Academic contact during examination: Elena Celledoni Phone: 48238584, 73593541 Examination date: 11th of December

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 8 Kinetics of a particle: Work and Energy (Chapter 14) - 14.1-14.3 W. Wang 2 Kinetics

More information

Chapter 2 Vibration Dynamics

Chapter 2 Vibration Dynamics Chapter 2 Vibration Dynamics In this chapter, we review the dynamics of vibrations and the methods of deriving the equations of motion of vibrating systems. The Newton Euler and Lagrange methods are the

More information

Chapter 5 Work and Energy

Chapter 5 Work and Energy Chapter 5 Work and Energy Work and Kinetic Energy Work W in 1D Motion: by a Constant orce by a Varying orce Kinetic Energy, KE: the Work-Energy Theorem Mechanical Energy E and Its Conservation Potential

More information

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable.

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable. 1.1 Signals and Systems Signals convey information. Systems respond to (or process) information. Engineers desire mathematical models for signals and systems in order to solve design problems efficiently

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY SPRING SEMESTER 207 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it What is an Oscillation? Oscillation

More information

Imaginary. Axis. Real. Axis

Imaginary. Axis. Real. Axis Name ME6 Final. I certify that I upheld the Stanford Honor code during this exam Monday December 2, 25 3:3-6:3 p.m. ffl Print your name and sign the honor code statement ffl You may use your course notes,

More information

CONSERVATIVE FORCES, POTENTIAL ENERGY AND CONSERVATION OF ENERGY

CONSERVATIVE FORCES, POTENTIAL ENERGY AND CONSERVATION OF ENERGY CONSERVATIVE FORCES, POTENTIAL ENERGY AND CONSERVATION OF ENERGY Today s Objectives: Students will be able to: 1. Use the concept of conservative forces and determine the potential energy of such forces.

More information

WEEKS 8-9 Dynamics of Machinery

WEEKS 8-9 Dynamics of Machinery WEEKS 8-9 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2011 Mechanical Vibrations, Singiresu S. Rao, 2010 Mechanical Vibrations: Theory and

More information

1-DOF Forced Harmonic Vibration. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 8 Fall 2011

1-DOF Forced Harmonic Vibration. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 8 Fall 2011 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 8 Fall 2011 Harmonic Forcing Functions Transient vs. Steady Vibration Follow Palm, Sect. 4.1, 4.9 and 4.10 Harmonic forcing

More information

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

More information

Simple Harmonic Motion

Simple Harmonic Motion Physics 7B-1 (A/B) Professor Cebra Winter 010 Lecture 10 Simple Harmonic Motion Slide 1 of 0 Announcements Final exam will be next Wednesday 3:30-5:30 A Formula sheet will be provided Closed-notes & closed-books

More information

Imaginary. Axis. Real. Axis

Imaginary. Axis. Real. Axis Name ME6 Final. I certify that I upheld the Stanford Honor code during this exam Monday December 2, 2005 3:30-6:30 p.m. ffl Print your name and sign the honor code statement ffl You may use your course

More information

Outline of parts 1 and 2

Outline of parts 1 and 2 to Harmonic Loading http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March, 6 Outline of parts and of an Oscillator

More information

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering System Modeling Lecture-2 Emam Fathy Department of Electrical and Control Engineering email: emfmz@yahoo.com 1 Types of Systems Static System: If a system does not change with time, it is called a static

More information

Figure XP3.1 (a) Mass in equilibrium, (b) Freebody diagram, (c) Kinematic constraint relation Example Problem 3.1 Figure XP3.1 illustrates a mass m

Figure XP3.1 (a) Mass in equilibrium, (b) Freebody diagram, (c) Kinematic constraint relation Example Problem 3.1 Figure XP3.1 illustrates a mass m LECTURE 7. MORE VIBRATIONS ` Figure XP3.1 (a) Mass in equilibrium, (b) Freebody diagram, (c) Kinematic constraint relation Example Problem 3.1 Figure XP3.1 illustrates a mass m that is in equilibrium and

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information