Imaginary. Axis. Real. Axis


 Philomena Snow
 1 years ago
 Views:
Transcription
1 Name ME6 Final. I certify that I upheld the Stanford Honor code during this exam Monday December 2, 25 3:36:3 p.m. ffl Print your name and sign the honor code statement ffl You may use your course notes, homework, books, etc. ffl Write your answers on this handout ffl Where space is provided, show your work to get credit ffl If necessary, attach extra pages for scratch work ffl Best wishes for a fun vacation. Merry Christmas and Happy New Year! Page Value Score Total F. (2 pts.) Miscellaneous (a) ( pt.) What is your MeyerBriggs (human metrics) personality type? (b) ( pt.) Suppose you plan on teaching or TAing Dynamic Systems. Provide suggestions for improving the course. Specifically, what you would add, remove, or change in the course (e.g., content, homework, book, lectures, etc.)?
2 F.2 (3 pts.) Coupled motions of Wilburforce pendulum N N o Shown to the right is a rigid body B that is attached to a spring at B c, the mass center of B. The other end of the spring is attached to point N o which is fixed in a Newtonian reference frame N. The equations governing this model of the system are B m ẍ + k x x + k c = I + k c x + k = B c Quantity Symbol Type Mass of B m constant Central moment of inertia of B about vertical I constant Linear spring constant modeling extensional flexibility k x constant Linear spring constant modeling torsional flexibility k constant Linear spring constant modeling coupled flexibility k c constant Translational stretch of spring from equilibrium x dependent variable Rotational stretch of spring from equilibrium dependent variable (a) (2 pts.) Write the ODEs in the matrix form M Ẍ + B _X + KX =, where X =» x» m I» ẍ +»» _x _ + " k x k c k c k #» x (b) (9 pts.) The solution to the previous set of ODEs has the form X(t)=U Λe pt where p is a constant (tobedetermined) and U is a nonzero 2 matrix of constants (tobedetermined). Fill in the two blanks in the following polynomial equation that governs the values of =  p 2. Note: the blanks only involve m, I, k x, k, k c. =» kx m + k I Λ + k x k k 2 c mi = 2
3 (c) (6 pts.) For certain values of m, I, k x, k, and k c, the matrix A = M  K = Find the eigenvalues and corresponding eigenvectors of A.». = 9 U =»  2 = U 2 =» (d) (2 pts.) Calculate the values of p, p 2, p 3, p 4 and draw their locations in the complex plane. p ;2 = ± p  = ± p 9 = ± 3 i p 3;4 = ± p  2 = ± p  = ± 3:32 i Imaginary Axis x x Real Axis (e) ( pt.) The solution is stable/ neutrally stable /unstable. (f) (4 pts.) Write the solution for X(t) in terms of the yettobedetermined constants c, c 2, c 3, c 4, the sine and cosine functions, and t.» x(t) (t) =»  n c sin( 3 t) + c 2 cos( 3 t)o 3 +» n c 3 sin( 3:32 t) + c 4 cos( 3:32 t)o
4 (g) (2 pts.) Determine c, c 2, c 3, c 4 when x() = :2, ()=, _x() =, and _ () =. c = c 2 = : c 3 = c 4 = : (h) (2 pts.) Using the aforementioned initial values, write explicit solutions for x(t) and (t). x(t) = : cos(3 t) + : cos(3:32 t) (t) = : cos(3 t) + : cos(3:32 t) (i) ( pt.) Using trigonometric identities, equation (2.9), and cos(a) =cos(a+ß), show that your previous solution for x(t) and (t) is x(t) = :2 sin(:6 t + ß 2 ) sin(3:6 t + ß 2 ) = :2 cos(:6 t) cos(3:6 t).2.2 (t) = :2 sin(:6 t) sin(3:6 t) = :2 sin(:6 t + ß) sin(3:6 t).5.5 Displacement Rotation angle (radians) (j) (2 pts.) Give an interpretation of the timebehavior of x(t) and (t). Both x(t)and (t)exhibit the beat phenomena with a highfrequency of 3:6 rad sec rad and a lowfrequency of :6 sec. Since x(t)and (t)are coupled, x's maximum amplitude coincides with 's minimum amplitude (and viceversa). 4
5 F.3 (38 pts.) Linearization of equations of motion for a swinging spring A straight, massless, linear spring connects a particle Q to a point N o which is fixed in a Newtonian reference frame N. The system identifiers and governing equations are shown below. Quantity Identifier Type Local gravitational constant g constant Mass of Q m constant Natural spring length L n constant Linear spring constant k constant Spring stretch y variable Pendulum angle" variable m (L n + y) + 2 m _ _y + mg sin( ) = m ÿ m (L n +y) _ 2 + ky mg cos( ) = N N o b y k θ L n n z n y n x y b x (a) ( pt.) Classify the previous equations by picking the relevant qualifiers from the following list. Uncoupled Linear Homogeneous Constantcoefficient storder Algebraic Coupled Nonlinear Inhomogeneous Variablecoefficient 2ndorder Differential (b) (3 pts.) Find the condition on y nom such that y = y nom (a constant) and = nom = satisfy the nonlinear ODEs. y nom = mg k (c) ( pts.) Using a Taylor series, linearize the differential equations in perturbations about this nominal solution. In other words, define perturbations of y and as ey = y y nom (y nom is constant) e = nom ( nom =) and form a set of differential equations which arelineariney, _ ey, ëy, e, _ e, ë. m (L n + y nom ) ë + mg e = 5 m ëy + k ey =
6 (d) (7 pts.) Replace y and in the original nonlinear ODEs with y = ey + y nom (y nom is the constant determined earlier) = e + nom ( nom =) Assuming ey, _ ey, ëy and e, _ e, and ë are small and using the smallapproximations technique of Chapter 2, form a set of ODEs that are linear in ey, _ ey, ëy, e, _ e, ë. m (L n + y nom ) ë + mg e = m ëy + k ey = (e) ( pt.) Classify your equations in part (3d) by picking the relevant qualifiers from the following list. Uncoupled Linear Homogeneous Constantcoefficient storder Algebraic Coupled Nonlinear Inhomogeneous Variablecoefficient 2ndorder Differential (f) ( pt.) The linearized ODEs resulting from the Taylor series technique are identical to those obtained from the smallapproximations technique. True /False. (g) (5 pts.) Find analytical solutions for ey(t) and (t) e when g =9:8 m=sec 2, m = kg, L n =:5 m, k = n=m, ey() = : m, e () = ffi,and _ ey() = _ e () = ey(t) = e (t) = q k : cos( t) m = : cos( t) q q ffi g cos( L n+y t) nom = ffi cos( gk t) = L n k+mg ffi cos(4:5 t) 6
7 (h) (4 pts.) Make a rough sketch of your linearized solutions for y(t)and (t)for» t» 6 sec, showing the relevant characteristics, e.g., amplitude, frequency, growth, decay, etc. y(t) ß ey(t)+y nom = : cos( t)+:98 (t) ß e (t)+ nom = ffi cos(4:5 t).2 3 Spring stretch (meters).5..5 Pendulum angle (degrees) (i) (6 pts.) The computer solution for y(t) and (t) to the original nonlinear ODEs for» t» 6 sec are plotted below. Comment on the similarities and differences between the plots you produced with the ones below. Give a reason for the similarities and differences..2 3 Spring stretch (meters) Similarities: Frequency, maximum amplitude Pendulum angle (degrees) Similarities: Frequency Differences: Beat phenomenon, varying amplitude Differences: Amplitude, beat phenomenon Reason for differences: Coupled and nonlinear Reason for differences: Coupled and nonlinear 7
8 F.4 (29 pts.) Dynamic response for an airconditioner on a building An air conditioner is bolted to the roof of a one story building. The air conditioner's motor is unbalanced and its eccentricity is modeled as a particle of mass m attached to the distal end of a rigid rod of length r. When the motor spins with angular speed Ω, it causes the building's roof of mass M to vibrate. The stiffness and material damping in each column that supports the roof is modeled as a linear horizontal spring (k) and linear horizontal damper (b). Homework 4.5 showed that the ODE governing the horizontal displacement x of the building's roof is (M +m)ẍ + 2 b _x + 2 kx = mrω 2 sin(ωt) (a) (3 pts.) Express! n,, A in terms of M, m, b, k, r so the ODE is x k,b M Ωt r m k,b ẍ + 2! n _x +! 2 n x = AΩ2 sin(ωt)! n = q 2 k b = p M + m (M+m) k A = mr M + m (b) (2 pts.) For certain values of M, m, b, k, andr, this ODE simplifies to Calculate numerical values for! n and. ẍ + 3 _x + 9 x = x 4 Ω 2 sin(ωt)! n = 3 rad sec = :5 (c) (7 pts.) Fillinnumerical valuesinthefollowing expressions for x ss (t), the steadystate part of x(t). Ω ( rad sec ) x ss(t) 2 7:94 x 5 Λ sin( 2 t + 6:843 ffi ) 3 : Λ sin( 3 t + 9 ffi ) 4 2:25 x 4 Λ sin( 4 t + 7:3 ffi ) 8
9 (d) (4 pts.) The building's occupants complain that the roof shakes too much. Comment on Ω the effect small variations of M, m, b, k, and r have on:,! n, and the magnitude of x ss (t). Fill in each element in the table by writing (decreases), (no effect), + (increases), or? (if it may decrease or increase). For the 2 nd tolast column, assume the air conditioner's normal operating speed is Ω = 28 rad rad, and for last column, assume Ω = 32. sec sec Ω!n Ω ß 28 rad sec jx ss (t)j Ω ß 32 rad sec jx ss (t)j Balancing the motor (r! ) Increasing the motor speed Ω + + Decreasing the motor speed Ω + Adding mass to the roof (increasing M) + +?? Removing mass from the roof +?? Stiffening the support columns (increasing k) + Adding damping to the columns (increasing b) + (e) (3 pts.) List three ways to change the motor and minimize the roof shaking. Balance the motor, damp the motor, or operate Ω fl! n or Ω fi! n. 9
Imaginary. Axis. Real. Axis
Name ME6 Final. I certify that I upheld the Stanford Honor code during this exam Monday December 2, 2005 3:306:30 p.m. ffl Print your name and sign the honor code statement ffl You may use your course
More informationFlat disk Hollow disk Solid sphere. Flat plate Hollow plate Solid block. n y n O O O
NAME ME161 Midterm. Icertify that Iupheld the Stanford Honor code during this exam Tuesday October 29, 22 1:152:45 p.m. ffl Print your name and sign the honor code statement ffl You may use your course
More informationSection 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple MassSpring System
Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple MassSpring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free
More informationIntroduction to Controls
EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essaytype answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.
More informationFinal Exam April 30, 2013
Final Exam Instructions: You have 120 minutes to complete this exam. This is a closedbook, closednotes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic
More informationPHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010
Name: PHYS2330 Intermediate Mechanics Fall 2010 Final Exam Tuesday, 21 Dec 2010 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively
More informationEDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1  TRIGONOMETRICAL GRAPHS
EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1  TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply
More informationName: Fall 2014 CLOSED BOOK
Name: Fall 2014 1. Rod AB with weight W = 40 lb is pinned at A to a vertical axle which rotates with constant angular velocity ω =15 rad/s. The rod position is maintained by a horizontal wire BC. Determine
More informationMCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2
MCE 366 System Dynamics, Spring 2012 Problem Set 2 Reading: Chapter 2, Sections 2.3 and 2.4, Chapter 3, Sections 3.1 and 3.2 Problems: 2.22, 2.24, 2.26, 2.31, 3.4(a, b, d), 3.5 Solutions to Set 2 2.22
More informationCEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5
1 / 42 CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, November 27, 2012 2 / 42 KINETIC
More informationIn the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as
2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,
More informationChapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.
Chapter 13 Oscillations about Equilibrium Periodic Motion Units of Chapter 13 Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring
More informationAssignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get
Assignment 6 Goldstein 6.4 Obtain the normal modes of vibration for the double pendulum shown in Figure.4, assuming equal lengths, but not equal masses. Show that when the lower mass is small compared
More information!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:
A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We
More informationChapter 14 Periodic Motion
Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.
More information1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly
PH1140 D09 Homework 3 Solution 1. [30] Y&F 13.48. a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly T = π L =.84 s. g b) For the displacement θ max = 30 = 0.54 rad we use
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67
1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure
More informationPhysics Mechanics. Lecture 32 Oscillations II
Physics 170  Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object
More informationVibrations Qualifying Exam Study Material
Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors
More informationClassical Mechanics Comprehensive Exam Solution
Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,
More informationEQUIVALENT SINGLEDEGREEOFFREEDOM SYSTEM AND FREE VIBRATION
1 EQUIVALENT SINGLEDEGREEOFFREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development
More information28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)
28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.
More informationOscillations. Oscillations and Simple Harmonic Motion
Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl
More informationFinal Exam December 15, 2014
Final Exam Instructions: You have 120 minutes to complete this exam. This is a closedbook, closednotes exam. You are allowed to use the ME approved calculator only during the exam. Usage of mobile phones
More informationQuantitative Skills in AP Physics 1
This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these
More informationMathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.
Chapter 3 Mechanical Systems A. Bazoune 3.1 INRODUCION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENS Any mechanical system consists
More informationSolutions for homework 5
1 Section 4.3 Solutions for homework 5 17. The following equation has repeated, real, characteristic roots. Find the general solution. y 4y + 4y = 0. The characteristic equation is λ 4λ + 4 = 0 which has
More informationModeling and Experimentation: MassSpringDamper System Dynamics
Modeling and Experimentation: MassSpringDamper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to
More informationSymmetries 2  Rotations in Space
Symmetries 2  Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system
More informationChapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.
Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical
More informationL = 1 2 a(q) q2 V (q).
Physics 3550, Fall 2011 Motion near equilibrium  Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion
More informationDate: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.
PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show
More informationUnforced Oscillations
Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion PhaseAmplitude Conversion The Simple Pendulum and The Linearized
More informationDate: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.
PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.
More informationTOPIC E: OSCILLATIONS SPRING 2019
TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised massspring system: simple harmonic motion
More informationEquations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the
More informationLecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003
Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of
More information1 Oscillations MEI Conference 2009
1 Oscillations MEI Conference 2009 Some Background Information There is a film clip you can get from Youtube of the Tacoma Narrows Bridge called Galloping Gertie. This shows vibrations in the bridge increasing
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2019 10:00AM to 12:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion
More informationChapter 15 Oscillations
Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = kx x SHM in vertical
More informationSection 3.7: Mechanical and Electrical Vibrations
Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion
More informationMath 1302, Week 8: Oscillations
Math 302, Week 8: Oscillations T y eq Y y = y eq + Y mg Figure : Simple harmonic motion. At equilibrium the string is of total length y eq. During the motion we let Y be the extension beyond equilibrium,
More informationVibrations and Waves MP205, Assignment 4 Solutions
Vibrations and Waves MP205, Assignment Solutions 1. Verify that x = Ae αt cos ωt is a possible solution of the equation and find α and ω in terms of γ and ω 0. [20] dt 2 + γ dx dt + ω2 0x = 0, Given x
More informationLab #2  Two DegreesofFreedom Oscillator
Lab #2  Two DegreesofFreedom Oscillator Last Updated: March 0, 2007 INTRODUCTION The system illustrated in Figure has two degreesoffreedom. This means that two is the minimum number of coordinates
More informationVibrations and Waves Physics Year 1. Handout 1: Course Details
Vibrations and Waves JanFeb 2011 Handout 1: Course Details Office Hours Vibrations and Waves Physics Year 1 Handout 1: Course Details Dr Carl Paterson (Blackett 621, carl.paterson@imperial.ac.uk Office
More informationOscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Massspring system Energy in SHM Pendulums
PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Massspring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function
More informationOSCILLATIONS ABOUT EQUILIBRIUM
OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring
More informationChapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.
Chapter 14 Oscillations 141 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The
More informationExam II Difficult Problems
Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released
More informationExam II Difficult Problems
Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released
More informationExam II Difficult Problems
Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released
More informationExam II Difficult Problems
Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released
More informationChapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech
Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration
More informationMATH 23 Exam 2 Review Solutions
MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution
More informationSolutions to the Homework Replaces Section 3.7, 3.8
Solutions to the Homework Replaces Section 3.7, 3.8. Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is 2π L/g SOLUTION: With no damping, mu + ku = 0 has
More information5.6 Unforced Mechanical Vibrations
5.6 Unforced Mechanical Vibrations 215 5.6 Unforced Mechanical Vibrations The study of vibrating mechanical systems begins here with examples for unforced systems with one degree of freedom. The main example
More informationBSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:3017:00
BSc/MSci EXAMINATION PHY217 Vibrations and Waves Time Allowed: 2 hours 30 minutes Date: 4 th May, 2011 Time: 14:3017:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from
More informationMIPSI: Classic particle pendulum
Chapter 24 MIPSI: Classic particle pendulum The pendulum to the right consists of a small heavy metallic ball tied to a light cable which is connected to the ceiling. This chapter investigates this system
More informationMIPSI: Classic particle pendulum
Chapter 27 MIPSI: Classic particle pendulum (www.motiongenesis.com Textbooks Resources) The pendulum to the right consists of a small heavy metallic ball tied to a light cable which is connected to the
More informationChapter 14 Oscillations
Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a
More informationAssignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class
Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,
More informationOscillations and Waves
Oscillations and Waves Somnath Bharadwaj and S. Pratik Khastgir Department of Physics and Meteorology IIT Kharagpur Module : Oscillations Lecture : Oscillations Oscillations are ubiquitous. It would be
More informationFinal Exam December 13, 2016
Final Exam Instructions: You have 120 minutes to complete this exam. This is a closedboo, closednotes exam. You are allowed to use a calculator during the exam. Do NOT unstaple your exam. Do NOT write
More informationChapter 11 Vibrations and Waves
Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system
More informationAnalytical Mechanics ( AM )
Analytical Mechanics ( AM ) Olaf Scholten KVI, kamer v8; tel nr 655; email: scholten@kvinl Web page: http://wwwkvinl/ scholten Book: Classical Dynamics of Particles and Systems, Stephen T Thornton & Jerry
More informationDifferential Equations and Linear Algebra Exercises. Department of Mathematics, HeriotWatt University, Edinburgh EH14 4AS
Differential Equations and Linear Algebra Exercises Department of Mathematics, HeriotWatt University, Edinburgh EH14 4AS CHAPTER 1 Linear second order ODEs Exercises 1.1. (*) 1 The following differential
More information4.9 Free Mechanical Vibrations
4.9 Free Mechanical Vibrations SpringMass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced
More informationAPPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.
APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.
More informationMath 215/255 Final Exam (Dec 2005)
Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.
More informationBSc/MSci MidTerm Test
BSc/MSci MidTerm Test PHY217 Vibrations and Waves Time Allowed: 40 minutes Date: 18 th Nov, 2011 Time: 9:109:50 Instructions: Answer ALL questions in section A. Answer ONLY ONE questions from section
More informationMATH 251 Examination II July 28, Name: Student Number: Section:
MATH 251 Examination II July 28, 2008 Name: Student Number: Section: This exam has 9 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must be shown.
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationMath Assignment 5
Math 2280  Assignment 5 Dylan Zwick Fall 2013 Section 3.41, 5, 18, 21 Section 3.51, 11, 23, 28, 35, 47, 56 Section 3.61, 2, 9, 17, 24 1 Section 3.4  Mechanical Vibrations 3.4.1  Determine the period
More informationNonlinear Dynamic Systems Homework 1
Nonlinear Dynamic Systems Homework 1 1. A particle of mass m is constrained to travel along the path shown in Figure 1, which is described by the following function yx = 5x + 1x 4, 1 where x is defined
More informationL = 1 2 a(q) q2 V (q).
Physics 3550 Motion near equilibrium  Small Oscillations Relevant Sections in Text: 5.1 5.6, 11.1 11.3 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion
More informationa. What is the angular frequency ω of the block in terms of k, l, and m?
1 Problem 1: (4 pts.) Two spherical planets, each of mass M and Radius R, start out at rest with a distance from center to center of 4R. What is the speed of one of the planets at the moment that their
More informationPHY217: Vibrations and Waves
Assessed Problem set 1 Issued: 5 November 01 PHY17: Vibrations and Waves Deadline for submission: 5 pm Thursday 15th November, to the V&W pigeon hole in the Physics reception on the 1st floor of the GO
More informationPHYSICS 1 Simple Harmonic Motion
Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and
More information7 Pendulum. Part II: More complicated situations
MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics
More information1) SIMPLE HARMONIC MOTION/OSCILLATIONS
1) SIMPLE HARMONIC MOTION/OSCILLATIONS 1.1) OSCILLATIONS Introduction:  An event or motion that repeats itself at regular intervals is said to be periodic. Periodicity in Space is the regular appearance
More informationPHYSICS  CLUTCH CH 15: PERIODIC MOTION (NEW)
!! www.clutchprep.com CONCEPT: Hooke s Law & Springs When you push/pull against a spring (FA), spring pushes back in the direction. (ActionReaction!) Fs = FA = Ex. 1: You push on a spring with a force
More informationF = ma, F R + F S = mx.
Mechanical Vibrations As we mentioned in Section 3.1, linear equations with constant coefficients come up in many applications; in this section, we will specifically study spring and shock absorber systems
More informationThursday, August 4, 2011
Chapter 16 Thursday, August 4, 2011 16.1 Springs in Motion: Hooke s Law and the SecondOrder ODE We have seen alrealdy that differential equations are powerful tools for understanding mechanics and electromagnetism.
More informationMATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS
MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 11, 2016 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More informationReview: control, feedback, etc. Today s topic: statespace models of systems; linearization
Plan of the Lecture Review: control, feedback, etc Today s topic: statespace models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered
More informationCHAPTER 12 OSCILLATORY MOTION
CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time
More informationEMA 545 Final Exam  Prof. M. S. Allen Spring 2011
EMA 545 Final Exam  Prof. M. S. Allen Spring 2011 Honor Pledge: On my honor, I pledge that this exam represents my own work, and that I have neither given nor received inappropriate aid in the preparation
More informationLECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWOMASS VIBRATION EXAMPLES
LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWOMASS VIBRATION EXAMPLES Figure 3.47 a. Twomass, linear vibration system with spring connections. b. Freebody diagrams. c. Alternative freebody
More informationFINAL EXAM MAY 20, 2004
18.034 FINAL EXAM MAY 20, 2004 Name: Problem 1: /10 Problem 2: /20 Problem 3: /25 Problem 4: /15 Problem 5: /20 Problem 6: /25 Problem 7: /10 Problem 8: /35 Problem 9: /40 Problem 10: /10 Extra credit
More informationPhysics 351, Spring 2015, Final Exam.
Physics 351, Spring 2015, Final Exam. This closedbook exam has (only) 25% weight in your course grade. You can use one sheet of your own handwritten notes. Please show your work on these pages. The back
More informationEngineering Science OUTCOME 2  TUTORIAL 3 FREE VIBRATIONS
Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2  TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements
More informationMATH 2250 Final Exam Solutions
MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one doublesided sheet of notes during the exam
More informationPeriodic Motion. Periodic motion is motion of an object that. regularly repeats
Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems
More informationChapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = kx
Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = kx When the mass is released, the spring will pull
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2017 11:00AM to 1:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More informationPhaseAmplitude Conversion, Cafe Door, Pet Door, Damping Classifications
PhaseAmplitude Conversion, Cafe Door, Pet Door, Damping Classifications Phaseamplitude conversion Cafe door Pet door Cafe Door Model Pet Door Model Classifying Damped Models Phaseamplitude conversion
More informationPhysics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )
Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium
More informationkx m x B N 1 C L, M Mg θ
.004 MODELING DYNAMICS AND CONTROL II Spring 00 Solutions to Problem Set No. 7 Problem 1. Pendulum mounted on elastic support. This problem is an execise in the application of momentum principles. Two
More informationQuestion: Total. Points:
MATH 308 May 23, 2011 Final Exam Name: ID: Question: 1 2 3 4 5 6 7 8 9 Total Points: 0 20 20 20 20 20 20 20 20 160 Score: There are 9 problems on 9 pages in this exam (not counting the cover sheet). Make
More information