PHYSICS 44 MECHANICS Homework Assignment II SOLUTION

Size: px
Start display at page:

Download "PHYSICS 44 MECHANICS Homework Assignment II SOLUTION"

Transcription

1 July 21, 23 PHYSICS 44 MECHANICS Homewk Assignment II SOLUTION Problem 1 AcartofmassM is placed on rails and attached to a wall with the help of a massless spring with constant k (as shown in the Figure below); the spring is in its equilibrium state when the cart is atadistancex from the wall. A pendulum of mass m and length ` is attached to the cart (as shown). (a) Write the Lagrangian L(x; _x; µ; _ µ)fthecart-pendulum system, where x denotes the position of the cart (as measured from a suitable igin) and µ denotes the angular position of the pendulum. (b) From your Lagrangian, write the Euler-Lagrange equations f the generalized codinates x and µ. (a) Using the generalized codinates x (the displacement of the cart from the equilibrium point of the spring) and µ (the displacement of the pendulum from the vertical) shown in the Figure, the codinates of the cart are x M = x and y M =whilethecodinates of the pendulum are x m = x + ` sinµ and y m = ` cos µ and thus the squared velocities are v 2 M = _x2 M + _y2 M = _x2 v 2 m = _x2 m + _y2 m = (_x + ` _µ cosµ) 2 + (` _µ sin µ) 2 = _x 2 + `2 _ µ 2 +2` _x _ µ cos µ:

2 The expression f the kinetic energy of the cart-pendulum system is therefe K = (m + M) _x2 2 + m`2 _ µ m`_x _ µ cos µ: The potential energy U of the cart-pendulum system is broken into two parts: the gravitational potential energy mg` cosµ of the pendulum and the elastic potential energy kx 2 =2sted in thespring. The Lagrangian L = K U of the cart-pendulum system is therefe L(x; _x; µ; _ µ) = (m + M) _x2 2 + m`2 _ µ m` cosµ ³ _x _ µ + g k 2 x2 : (b) The Euler-Lagrange equation f x _x = (m + M) _x + m` _µ cosµ d = (m + M)Äx + m` ³Ä µ cos µ µ _ 2 sin µ = kx (m + M)Äx + m` ³Ä µ cos µ _ µ 2 sin µ + kx = The Euler-Lagrange equation f µ µ _ d µ = m` ³ ` _µ + _x cos µ = m` ³ ` ĵ + Äx cos µ _x _ µ sin µ = m` _x _ µ sin µ mg` sin µ ` ĵ + Äx cos µ + g sin µ =

3 Problem 2 Show that the two Lagrangians L(q; _q; t) and L (q; _q; t) = L(q; _q; t) + df(q;t) ; dt where F(q;t) isanarbitrary function of the generalized codinates q(t), yield the same Euler-Lagrange equations. Hence, two Lagrangians which di er only by an exact time derivative are said to be equivalent. We call L = L + df=dt the new Lagrangian and L the old Lagrangian. The Euler- Lagrange equations f the new Lagrangian are d _q i i ; where Let us begin _q _q i df (q;t) @t j : 1 _q j _q i ; so that d = d _q i _q i Next, we nd i j i 1 + X k _q i : A i _q j : Using the symmetry properties _q j = _q i and ; we easily verify d _q i = d _q i = ; and thus since L and L = L + df=dt lead to the same Euler-Lagrange equations, they are said to be equivalent.

4 Problem 3 An Atwood machine is composed of two masses m and M attached by means of a massless rope into which a massless spring (with constant k) is inserted (as shown in the Figure below). When the spring is in a relaxed state, the spring-rope length is `. (a) Find suitable generalized codinates to describe the motion of the two masses (allowing f elongation compression of the spring). (b) Using these generalized codinates, construct the Lagrangian and derive the appropriate Euler-Lagrange equations. (a) The Figure below shows a suitable set of generalized codinates where x denotes the distance of mass M from the top of the pulley, ` x denotes the distance of the equilibrium point of the spring from the top of the pulley, and y denotes the distance of mass m from the equilibrium point of the spring (i.e., its elongation).

5 (b) Using the generalized codinates (x; y), the codinate of mass M is x M = x while the codinate of mass m is x m = ` x + y and thus the squared velocities are v 2 M = _x2 and v 2 m = (_y _x)2 : The expression f the kinetic energy of the system is therefe K = (m + M) _x2 2 + m _y2 2 m _x _y: The potential energy U of the system is broken into two parts: the gravitational potential energy Mgx mg(y x)andtheelastic potential energy ky 2 =2sted in thespring. The Lagrangian L = K U of the system is therefe L(x; _x; y; _y) = (m + M) _x2 2 + m _y2 2 m _x _y +(M m)gx + mg y k 2 y2 : (c) The Euler-Lagrange equation f x _x = (m + M) _x m _y d = (m + M)Äx m Äy = (M m) g (m + M)Äx m Äy = (M m) g The Euler-Lagrange equation f y _y = m (_y _x) d = m (Äy Äx) = mg ky m (Äy Äx) +k y = m g

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

PHYSICS 44 {CLASSICAL MECHANICS 2003 SUMMER FINAL EXAM { SOLUTIONS

PHYSICS 44 {CLASSICAL MECHANICS 2003 SUMMER FINAL EXAM { SOLUTIONS PHYSICS 44 {CLASSICAL MECHANICS 3 SUMMER FINAL EXAM { SOLUTIONS Problem 1 Consider the following Atwood machine comosed of the two masses m 1 and m and attached to a stand with the hel of a sring of strength

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

Name & Surname:... No:... Class: 11 /...

Name & Surname:... No:... Class: 11 /... METU D. F. HIGH SCHOOL 2017-2018 ACADEMIC YEAR, 1 st SEMESTER GRADE 11 / PHYSICS REVIEW FOR GENERAL EXAM-3 UNIFORMLY ACCELERATED MOTION IN TWO DIMENSIONS, ENERGY, IMPULSE & MOMENTUM & TORQUE DECEMBER 2017

More information

ANALYTISK MEKANIK I HT 2016

ANALYTISK MEKANIK I HT 2016 Karlstads Universitet Fysik ANALYTISK MEKANIK I HT 2016 Kursens kod: FYGB08 Kursansvarig lärare: Jürgen Fuchs rum 21F 316 tel. 054-700 1817 el.mail: juerfuch@kau.se FYGB08 HT 2016 Exercises 1 2016-12-14

More information

Lecture 19: Calculus of Variations II - Lagrangian

Lecture 19: Calculus of Variations II - Lagrangian Lecture 19: Calculus of Variations II - Lagrangian 1. Key points Lagrangian Euler-Lagrange equation Canonical momentum Variable transformation Maple VariationalCalculus package EulerLagrange 2. Newton's

More information

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same 1. An object is thrown horizontally with a speed of v from point M and hits point E on the vertical wall after t seconds as shown in the figure. (Ignore air friction.). Two objects M and S are thrown as

More information

Forces and two masses.

Forces and two masses. Forces and two masses. Atwood's Machine frictionless, massless pulley +a +a M 1 M 2 Atwood's Machine frictionless, massless pulley +a T +a m 1 a=t m 1 g 1 M 1 M 2 T m 2 a=m 2 g T 2 w 1 =m 1 g w 2 =m 2

More information

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009 NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION Professor G.G.Ross Oxford University Hilary Term 009 This course of twelve lectures covers material for the paper CP4: Differential Equations, Waves and

More information

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine)

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine) Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine Physics A301 Spring 2005 Contents 1 Lagrangian Mechanics 3 1.1 Derivation of the Lagrange Equations...................... 3 1.1.1 Newton s Second

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

14.4 Change in Potential Energy and Zero Point for Potential Energy

14.4 Change in Potential Energy and Zero Point for Potential Energy 14.4 Change in Potential Energy and Zero Point for Potential Energy We already calculated the work done by different conservative forces: constant gravity near the surface of the earth, the spring force,

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Euler-Lagrange formulation) Dimitar Dimitrov Örebro University June 16, 2012 Main points covered Euler-Lagrange formulation manipulator inertia matrix

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

Solution to phys101-t112-final Exam

Solution to phys101-t112-final Exam Solution to phys101-t112-final Exam Q1. An 800-N man stands halfway up a 5.0-m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wall-ladder

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. K = K f K i = 1 2 mv 2 f rf = v v F dr Consider a vertical spring oscillating with mass m attached

More information

Homework 1. Due Tuesday, January 29.

Homework 1. Due Tuesday, January 29. Homework 1. Due Tuesday, January 29. Problem 1. An ideal rope (no friction) lying on a table slides from its edge down to a scales lying on the floor. The table s height is h. Find a stationary velocity

More information

Mechanical Energy and Simple Harmonic Oscillator

Mechanical Energy and Simple Harmonic Oscillator Mechanical Energy and Simple Harmonic Oscillator Simple Harmonic Motion Hooke s Law Define system, choose coordinate system. Draw free-body diagram. Hooke s Law! F spring =!kx ˆi! kx = d x m dt Checkpoint

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo 2 Preface FYS 3120 is a course in classical theoretical physics, which covers

More information

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1 Simple Harmonic Motion 8.01 Week 1D1 Today s Reading Assignment MIT 8.01 Course Notes Chapter 3 Simple Harmonic Motion Sections 3.1-3.4 1 Announcements Sunday Tutoring in 6-15 from 1-5 pm Problem Set 9

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

This module requires you to read a textbook such as Fowles and Cassiday on material relevant to the following topics.

This module requires you to read a textbook such as Fowles and Cassiday on material relevant to the following topics. Module M2 Lagrangian Mechanics and Oscillations Prerequisite: Module C1 This module requires you to read a textbook such as Fowles and Cassiday on material relevant to the following topics. Topics: Hamilton

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

After the spring losses contact with both masses, the speed of m is the speed of 3m.

After the spring losses contact with both masses, the speed of m is the speed of 3m. Two masses, of size m and 3m, are at rest on a frictionless surface. A compressed, massless spring between the masses is suddenly allowed to uncompress, pushing the masses apart. m 3m After the spring

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Homework 1. Due whatever day you decide to have the homework session.

Homework 1. Due whatever day you decide to have the homework session. Homework 1. Due whatever day you decide to have the homework session. Problem 1. Rising Snake A snake of length L and linear mass density ρ rises from the table. It s head is moving straight up with the

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

AP Physics: Newton's Laws 2

AP Physics: Newton's Laws 2 Assignment Due Date: December 12, 2011 AP Physics: Newton's Laws 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A lamp with a mass m = 42.6 kg is hanging

More information

4.1 Important Notes on Notation

4.1 Important Notes on Notation Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potential Energy and Conservation of Energy 8.2 Conservative and non-conservative forces A system consists of two or more particles. A configuration of the system is just a specification of the

More information

Work and Energy Definition of work Examples. Definition of Mechanical Energy. Conservation of Mechanical Energy, Pg 1

Work and Energy Definition of work Examples. Definition of Mechanical Energy. Conservation of Mechanical Energy, Pg 1 Work and Energy Definition of work Examples Work and Energy Today s Agenda Definition of Mechanical Energy Conservation of Mechanical Energy Conservative forces Conservation of Mechanical Energy, Pg 1

More information

2.003 Engineering Dynamics Problem Set 6 with solution

2.003 Engineering Dynamics Problem Set 6 with solution .00 Engineering Dynamics Problem Set 6 with solution Problem : A slender uniform rod of mass m is attached to a cart of mass m at a frictionless pivot located at point A. The cart is connected to a fixed

More information

The object of this experiment is to study systems undergoing simple harmonic motion.

The object of this experiment is to study systems undergoing simple harmonic motion. Chapter 9 Simple Harmonic Motion 9.1 Purpose The object of this experiment is to study systems undergoing simple harmonic motion. 9.2 Introduction This experiment will develop your ability to perform calculations

More information

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo December 2009 2 Preface These notes are prepared for the physics course FYS 3120,

More information

Simple Harmonic Motion Practice Problems PSI AP Physics B

Simple Harmonic Motion Practice Problems PSI AP Physics B Simple Harmonic Motion Practice Problems PSI AP Physics B Name Multiple Choice 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located

More information

Homework 1. Due Thursday, January 21

Homework 1. Due Thursday, January 21 Homework 1. Due Thursday, January 21 Problem 1. Rising Snake A snake of length L and linear mass density ρ rises from the table. It s head is moving straight up with the constant velocity v. What force

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion Lecture 27: Generalize Coorinates an Lagrange s Equations of Motion Calculating T an V in terms of generalize coorinates. Example: Penulum attache to a movable support 6 Cartesian Coorinates: (X, Y, Z)

More information

a. Determine the potential energy of the spring as a function of displacement.

a. Determine the potential energy of the spring as a function of displacement. PSI AP Physics C Work and Energy (With Calculus) Free Response Problems Use g = 10 m/s 2 1. A spring is found with a force that doesn t obey Hooke s Law: F = -kx 2. This spring is placed on a horizontal

More information

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40.

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40. 1. As a pendulum swings from position A to position B as shown in the diagram, its total mechanical energy (neglecting friction) A) decreases B) increases C) remains the same 2. Base your answer to the

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Seminar 6: COUPLED HARMONIC OSCILLATORS

Seminar 6: COUPLED HARMONIC OSCILLATORS Seminar 6: COUPLED HARMONIC OSCILLATORS 1. Lagrangian Equations of Motion Let consider a system consisting of two harmonic oscillators that are coupled together. As a model, we will use two particles attached

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Read textbook CHAPTER 1.4, Apps B&D

Read textbook CHAPTER 1.4, Apps B&D Lecture 2 Read textbook CHAPTER 1.4, Apps B&D Today: Derive EOMs & Linearization undamental equation of motion for mass-springdamper system (1DO). Linear and nonlinear system. Examples of derivation of

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly PH1140 D09 Homework 3 Solution 1. [30] Y&F 13.48. a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly T = π L =.84 s. g b) For the displacement θ max = 30 = 0.54 rad we use

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

7 Pendulum. Part II: More complicated situations

7 Pendulum. Part II: More complicated situations MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a Stephen Martin PHYS 10 Homework #1 Question 1: A particle starts at rest and moves along a cycloid whose equation is [ ( ) a y x = ± a cos 1 + ] ay y a There is a gravitational field of strength g in the

More information

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6 A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given b ( 6.m ) ˆ ( 8.m ) A ˆ i ˆ ˆ j A ˆ i ˆ ˆ j C) A ˆ ( 1 ) ( i ˆ ˆ j) D) Aˆ.6 iˆ+.8 ˆj E) Aˆ.6 iˆ.8 ˆj A) (.6m

More information

Energy Considerations

Energy Considerations Physics 42200 Waves & Oscillations Lecture 4 French, Chapter 3 Spring 2016 Semester Matthew Jones Energy Considerations The force in Hooke s law is = Potential energy can be used to describe conservative

More information

Brenda Rubenstein (Physics PhD)

Brenda Rubenstein (Physics PhD) PHYSICIST PROFILE Brenda Rubenstein (Physics PhD) Postdoctoral Researcher Lawrence Livermore Nat l Lab Livermore, CA In college, Brenda looked for a career path that would allow her to make a positive

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. 11 THIS PRESENTATION HAS EEN PREPARED Y: DR. NASSR S. ALZAYED

More information

Physics 106a, Caltech 16 October, Lecture 5: Hamilton s Principle with Constraints. Examples

Physics 106a, Caltech 16 October, Lecture 5: Hamilton s Principle with Constraints. Examples Physics 106a, Caltech 16 October, 2018 Lecture 5: Hamilton s Principle with Constraints We have been avoiding forces of constraint, because in many cases they are uninteresting, and the constraints can

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

Ch 10 HW: Problem Spring Force

Ch 10 HW: Problem Spring Force Ch 10 HW: Problem 10.1 - Spring Force A 3.40-kg block is held against a vertical wall by a spring force in the setup shown below. The spring has a spring constant k = 725 N/m. Someone pushes on the end

More information

Phys 7221, Fall 2006: Midterm exam

Phys 7221, Fall 2006: Midterm exam Phys 7221, Fall 2006: Midterm exam October 20, 2006 Problem 1 (40 pts) Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained system with r = l, as shown in the figure.

More information

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Phys101 Lectures 8, 9 Oscillations Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Ref: 11-1,,3,4. Page 1 Oscillations of a Spring If an object oscillates

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn. Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

AHL 9.1 Energy transformation

AHL 9.1 Energy transformation AHL 9.1 Energy transformation 17.1.2018 1. [1 mark] A pendulum oscillating near the surface of the Earth swings with a time period T. What is the time period of the same pendulum near the surface of the

More information

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW)

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW) !! www.clutchprep.com CONCEPT: Hooke s Law & Springs When you push/pull against a spring (FA), spring pushes back in the direction. (Action-Reaction!) Fs = FA = Ex. 1: You push on a spring with a force

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 25 Oscillations simple harmonic motion pendulum driven and damped oscillations http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Oscillations

More information

Forces of Constraint & Lagrange Multipliers

Forces of Constraint & Lagrange Multipliers Lectures 30 April 21, 2006 Written or last updated: April 21, 2006 P442 Analytical Mechanics - II Forces of Constraint & Lagrange Multipliers c Alex R. Dzierba Generalized Coordinates Revisited Consider

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information

Video 2.1a Vijay Kumar and Ani Hsieh

Video 2.1a Vijay Kumar and Ani Hsieh Video 2.1a Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Introduction to Lagrangian Mechanics Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Analytical Mechanics Aristotle Galileo Bernoulli

More information

ANALYTISK MEKANIK I HT 2014

ANALYTISK MEKANIK I HT 2014 Karlstads Universitet Fysik ANALYTISK MEKANIK I HT 2014 Kursens kod: FYGB08 Undervisande lärare: Jürgen Fuchs rum 21F 316 tel. 054-700 1817 el.mail: jfuchs@fuchs.tekn.kau.se FYGB08 HT 2014 Exercises 1

More information

Physics 110 Homework Solutions Week #5

Physics 110 Homework Solutions Week #5 Physics 110 Homework Solutions Week #5 Wednesday, October 7, 009 Chapter 5 5.1 C 5. A 5.8 B 5.34. A crate on a ramp a) x F N 15 F 30 o mg Along the x-axis we that F net = ma = Fcos15 mgsin30 = 500 cos15

More information

Unforced Oscillations

Unforced Oscillations Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion Phase-Amplitude Conversion The Simple Pendulum and The Linearized

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

PHY2053 General Physics I

PHY2053 General Physics I PHY2053 General Physics I Section 584771 Prof. Douglas H. Laurence Final Exam May 3, 2018 Name: 1 Instructions: This final exam is a take home exam. It will be posted online sometime around noon of the

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions k 2 Wheels roll without friction k 1 Motion will not cause block to hit the supports

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Somnath Bharadwaj and S. Pratik Khastgir Department of Physics and Meteorology IIT Kharagpur Module : Oscillations Lecture : Oscillations Oscillations are ubiquitous. It would be

More information

Math 1302, Week 8: Oscillations

Math 1302, Week 8: Oscillations Math 302, Week 8: Oscillations T y eq Y y = y eq + Y mg Figure : Simple harmonic motion. At equilibrium the string is of total length y eq. During the motion we let Y be the extension beyond equilibrium,

More information

Nonlinear Dynamic Systems Homework 1

Nonlinear Dynamic Systems Homework 1 Nonlinear Dynamic Systems Homework 1 1. A particle of mass m is constrained to travel along the path shown in Figure 1, which is described by the following function yx = 5x + 1x 4, 1 where x is defined

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

Math 304 Answers to Selected Problems

Math 304 Answers to Selected Problems Math Answers to Selected Problems Section 6.. Find the general solution to each of the following systems. a y y + y y y + y e y y y y y + y f y y + y y y + 6y y y + y Answer: a This is a system of the

More information