Image Analysis & Retrieval Lec 15 - Graph Embedding & Laplacianface

Size: px
Start display at page:

Download "Image Analysis & Retrieval Lec 15 - Graph Embedding & Laplacianface"

Transcription

1 CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 15 - Graph Embedding & Laplacianface Zhu Li Dept of CSEE, UMKC Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact: lizhu@umkc.edu, Ph: x Created using WPS office and EqualX latex equation editor p.1

2 Outline q Recap: Eigenface Fisherface HW-3: Fisherface and Laplacian face q Graph Embedding Laplacianface Graph Fourier Transform qsummary p.2

3 Subspace Learning for Face Recognition q Project face images to a subspace with basis A Matlab: x=faces*a(:,1:kd) eigf 2 eigf 3 eigf 1 = 10.9* + 0.4* + 4.7* p.3

4 PCA & Fisher s Linear Discriminant Between-class scatter c S B = å c i ( mi - m)( mi - m) i= 1 Within-class scatter T c 1 c 2 m 2 S W = Where c å å i= 1 x Îc k ( x i k - m )( m - m ) c is the number of classes i m i is the mean of class c i c i is number of samples of c i.. k i T m 1 m p.4

5 Eigen vs Fisher Projection PCA c 1 c 2 Fisher PCA (Eigenfaces) W PCA = arg maxw W Maximizes projected total scatter Fisher s Linear Discriminant W fld W = arg max W W W Maximizes ratio of projected between-class to projected within-class scatter, solved by the generalized Eigen problem: T T T S S S T B W W W p.5

6 q mylda.m LDA implementation % compute class mean mx = mean(x); ids = unique(y); m = length(ids); Sb = zeros(kd, kd); for k=1:m indx = find(y==ids(k)); nk(k) = length(indx); % class mean m_cx(k,:) = mean(x(indx, :)); % between class scatter Sb = Sb + nk(k)*(m_cx(k,:) - mx)'*(m_cx(k,:) - mx); end % compute intra-class scatter Sw = zeros(kd, kd); for k=1:m indx = find(y==ids(k)); nk(k) = length(indx); % remove mean xk = x(indx, :) - repmat(m_cx(k,:), [nk(k), 1]); % adding up Sw = Sw + (xk'*xk); end p.6

7 LDA Implementation q Find projection by generalized Eigen problem solution % generalized eigen problem [A, v]=eigs(sb, Sw); if dbg figure(31); subplot(2,2,1); imagesc(sb); colormap('gray'); title('s_b'); subplot(2,2,2); imagesc(sw); colormap('gray'); title('s_w'); z = x*a; dist = pdist2(z, z); subplot(2,2,3); imagesc(dist); title('dist(j,k)'); subplot(2,2,4); stem(diag(v), '.'); grid on; hold on; title('eig v'); end p.7

8 Fisherface Basis q It is interesting to compare Fisherface with Eigenface basis Eigenface Fisherface p.8

9 Fisherface Performance q Fisher vs Eigenface performance: (fisherface.m) 1200 face images, 144 subjects Eigen kd=32 ROC 144 subjects p.9

10 q Recap: Eigenface Fisherface Outline q Graph Embedding Locality Preserving Projection Laplacian Face Graph Fourier Transform qsummary p.10

11 Locality Preserving Projection q Recall the dimension reduction formulations: find w, s.t y=wx: PCA: LDA: p.11

12 LPP Formulation Affinity q To preserve local affinity relationship Affinity map Selection of heat kernel size and threshold are important Hint: affinity matrix should be sparse affinity histogram p.12

13 LPP Formulation Affinity Supervised q How to utilize the label info? Heat map mapping is good for intra-class affinity modelling, but how about intra-class affinity? One direct solution is to set affinity to zero for intra class pairs % LPP - compute affinity f_dist1 = pdist2(x1, x1); % heat kernel size mdist = mean(f_dist1(:)); h = -log(0.15)/mdist; S1 = exp(-h*f_dist1); id_dist = pdist2(ids, ids); subplot(2,2,3); imagesc(id_dist); title('label distance'); S2=S1; S2(find(id_dist~=0)) = 0; subplot(2,2,4); imagesc(s1); colormap('gray'); title('affinitysupervised'); p.13

14 LPP- Affinity Preserving Projection q Find a projection that best preserves the affinity matrix p.14

15 LPP Formulation ql = D-S: nxn matrix, called graph Laplacian qnormalizing factor: nxn D Diagonal matrix, entry D ii = sum of col/row affinity The larger the value, the more important data point is q Constraint on D: p.15

16 q Now the formulation is, Generalized Eigen Problem q Lagranian q by KKT (Karush-Khun-Tucker) Condition, it is solved by a generalized Eigen problem X He, S Yan, Y Hu, P Niyogi, HJ Zhang, Face Recognition Using Laplacianface, IEEE Trans PAMI, vol. 27 (3), , p.16

17 q laplacianface.m Matlab Implementation %LPP n_face = 1200; n_subj = length(unique(ids(1:n_face))); % eigenface kd=32; x1 = faces(1:n_face,:)*a1(:,1:kd); ids=ids(1:n_face); % LPP - compute affinity f_dist1 = pdist2(x1, x1); % heat kernel size mdist = mean(f_dist1(:)); h = -log(0.15)/mdist; S1 = exp(-h*f_dist1); figure(32); subplot(2,2,1); imagesc(f_dist1); colormap('gray'); title('d(x_i, d_j)'); subplot(2,2,2); imagesc(s1); colormap('gray'); title('affinity'); %subplot(2,2,3); grid on; hold on; [h_aff, v_aff]=hist(s(:), 40); plot(v_aff, h_aff, '.-'); % utilize supervised info id_dist = pdist2(ids, ids); subplot(2,2,3); imagesc(id_dist); title('label distance'); S2=S1; S2(find(id_dist~=0)) = 0; subplot(2,2,4); imagesc(s1); colormap('gray'); title('affinity-supervised'); % laplacian face lpp_opt.pcaratio = 1; [A2, eigv2]=lpp(s2, lpp_opt, x1); p.17

18 Laplacian Face q Now, we can model face as a LPP projection: Eigenface Laplacian Face p.18

19 q 1200 faces, 144 subjects Laplacian vs Eigenface p.19

20 LPP and PCA q Graph Embedding is an unifying theory on dimension reduction PCA becomes special case of LPP, if we do not enforce local affinity p.20

21 qhow about LDA? Recall within class scatter: LPP and LDA This is i-th class Data covariance L i has diagonal entry of 1/n i, Equal affinity among data points p.21

22 LPP and LDA q Now consider the between class scatter C is the data covariance, regardless of label L is graph Laplacian computed from the affinity rule that, p.22

23 LDA as a special case of LPP q The same generalized Eigen problem p.23

24 Graph Embedding Interpretation of PCA/LDA/LPP q Affinity graph S, determines the embedding subspace W, via qpca and LDA are special cases of Graph Embedding PCA: LDA LPP p.24

25 Applications: facial expression embedding q Facial expressions embedded in a 2-d space via LPP frown happy sad neutral p.25

26 Application: Compression of SIFT q Compression of SIFT, preserve matching relationship, rather than reconstruction: p.26

27 Homework-3: Subspace Methods q Objective: Understand the graph embedding connections among popular subspace methods like PCA, LDA and LPP Practical experiences with serious size data set q Data Set: 7ww 417 subjects, 6650 image face data set, pre-processed to 20x20 pel images, intensity normalized to [0, 1] Add your own face images, 10~15, frontal q Tasks: Compute Eigenface, Fisherface and Laplacianface models ROC plot on verification performance map for retrieval/identification performance p.27

28 HW-3 test run q Laplacian face is powerful. J p.28

29 Graph Fourier Transform q David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, Pierre Vandergheynst: The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE Signal Process. Mag. 30(3): (2013) p.29

30 q non-uniformly sampled Signal on Graph p.30

31 Graph Fourier Transform q GFT is different from Laplacian Embedding: p.31

32 GFT Example qgraph Laplacian p.32

33 Normalized Graph Laplacian qnormalize by edge pair degree p.33

34 q Analogous to FT Graph Frourier Transform p.34

35 Graph Spectrum p.35

36 q Quadratic form on L: Graph Signal Smoothness p.36

37 Summary q Graph Laplacian Embedding is an unifying theory for feature space dimension reduction PCA is a special case of graph embedding o Fully connected affinity map, equal importance LDA is a special case of graph embedding o Fully connected intra class o Zero affinity inter class LPP: preserves pair wise affinity. GFT: eigen vectors of graph Laplacian, has Fourier Transform like characteristics. q Many applications in Face recognition Pose estimation Facial expression modeling Compression of Graph signals. p.37

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 15. Graph Laplacian Embedding

Image Analysis & Retrieval. CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W Lec 15. Graph Laplacian Embedding Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 15 Graph Laplacian Embedding Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu,

More information

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact:

More information

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface Image Analysis & Retrieval Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv, Spring

More information

Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction

Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E,

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Lec 12 Review of Part I: (Hand-crafted) Features and Classifiers in Image Classification

Lec 12 Review of Part I: (Hand-crafted) Features and Classifiers in Image Classification Image Analysis & Retrieval Spring 2017: Image Analysis Lec 12 Review of Part I: (Hand-crafted) Features and Classifiers in Image Classification Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu,

More information

Discriminant Uncorrelated Neighborhood Preserving Projections

Discriminant Uncorrelated Neighborhood Preserving Projections Journal of Information & Computational Science 8: 14 (2011) 3019 3026 Available at http://www.joics.com Discriminant Uncorrelated Neighborhood Preserving Projections Guoqiang WANG a,, Weijuan ZHANG a,

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Deterministic Component Analysis Goal (Lecture): To present standard and modern Component Analysis (CA) techniques such as Principal

More information

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU,

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU, Eric Xing Eric Xing @ CMU, 2006-2010 1 Machine Learning Data visualization and dimensionality reduction Eric Xing Lecture 7, August 13, 2010 Eric Xing Eric Xing @ CMU, 2006-2010 2 Text document retrieval/labelling

More information

Example: Face Detection

Example: Face Detection Announcements HW1 returned New attendance policy Face Recognition: Dimensionality Reduction On time: 1 point Five minutes or more late: 0.5 points Absent: 0 points Biometrics CSE 190 Lecture 14 CSE190,

More information

Dimensionality Reduction:

Dimensionality Reduction: Dimensionality Reduction: From Data Representation to General Framework Dong XU School of Computer Engineering Nanyang Technological University, Singapore What is Dimensionality Reduction? PCA LDA Examples:

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

COS 429: COMPUTER VISON Face Recognition

COS 429: COMPUTER VISON Face Recognition COS 429: COMPUTER VISON Face Recognition Intro to recognition PCA and Eigenfaces LDA and Fisherfaces Face detection: Viola & Jones (Optional) generic object models for faces: the Constellation Model Reading:

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Additional reading can be found from non-assessed exercises (week 8) in this course unit teaching page. Textbooks: Sect. 6.3 in [1] and Ch. 12 in [2] Outline Introduction

More information

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Recognition Using Class Specific Linear Projection Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Articles Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection, Peter N. Belhumeur,

More information

A Unified Bayesian Framework for Face Recognition

A Unified Bayesian Framework for Face Recognition Appears in the IEEE Signal Processing Society International Conference on Image Processing, ICIP, October 4-7,, Chicago, Illinois, USA A Unified Bayesian Framework for Face Recognition Chengjun Liu and

More information

Random Sampling LDA for Face Recognition

Random Sampling LDA for Face Recognition Random Sampling LDA for Face Recognition Xiaogang Wang and Xiaoou ang Department of Information Engineering he Chinese University of Hong Kong {xgwang1, xtang}@ie.cuhk.edu.hk Abstract Linear Discriminant

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Fisher s Linear Discriminant Analysis

Fisher s Linear Discriminant Analysis Fisher s Linear Discriminant Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Locally Linear Embedded Eigenspace Analysis

Locally Linear Embedded Eigenspace Analysis Locally Linear Embedded Eigenspace Analysis IFP.TR-LEA.YunFu-Jan.1,2005 Yun Fu and Thomas S. Huang Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 North

More information

Locality Preserving Projections

Locality Preserving Projections Locality Preserving Projections Xiaofei He Department of Computer Science The University of Chicago Chicago, IL 60637 xiaofei@cs.uchicago.edu Partha Niyogi Department of Computer Science The University

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici Subspace Analysis for Facial Image Recognition: A Comparative Study Yongbin Zhang, Lixin Lang and Onur Hamsici Outline 1. Subspace Analysis: Linear vs Kernel 2. Appearance-based Facial Image Recognition.

More information

Comparative Assessment of Independent Component. Component Analysis (ICA) for Face Recognition.

Comparative Assessment of Independent Component. Component Analysis (ICA) for Face Recognition. Appears in the Second International Conference on Audio- and Video-based Biometric Person Authentication, AVBPA 99, ashington D. C. USA, March 22-2, 1999. Comparative Assessment of Independent Component

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Orthogonal Laplacianfaces for Face Recognition

Orthogonal Laplacianfaces for Face Recognition 3608 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 11, NOVEMBER 2006 [29] G. Deng and J. C. Pinoli, Differentiation-based edge detection using the logarithmic image processing model, J. Math. Imag.

More information

Statistical and Computational Analysis of Locality Preserving Projection

Statistical and Computational Analysis of Locality Preserving Projection Statistical and Computational Analysis of Locality Preserving Projection Xiaofei He xiaofei@cs.uchicago.edu Department of Computer Science, University of Chicago, 00 East 58th Street, Chicago, IL 60637

More information

Postgraduate Course Signal Processing for Big Data (MSc)

Postgraduate Course Signal Processing for Big Data (MSc) Postgraduate Course Signal Processing for Big Data (MSc) Jesús Gustavo Cuevas del Río E-mail: gustavo.cuevas@upm.es Work Phone: +34 91 549 57 00 Ext: 4039 Course Description Instructor Information Course

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Principal Component Analysis Barnabás Póczos Contents Motivation PCA algorithms Applications Some of these slides are taken from Karl Booksh Research

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

GAUSSIAN PROCESS TRANSFORMS

GAUSSIAN PROCESS TRANSFORMS GAUSSIAN PROCESS TRANSFORMS Philip A. Chou Ricardo L. de Queiroz Microsoft Research, Redmond, WA, USA pachou@microsoft.com) Computer Science Department, Universidade de Brasilia, Brasilia, Brazil queiroz@ieee.org)

More information

W vs. QCD Jet Tagging at the Large Hadron Collider

W vs. QCD Jet Tagging at the Large Hadron Collider W vs. QCD Jet Tagging at the Large Hadron Collider Bryan Anenberg: anenberg@stanford.edu; CS229 December 13, 2013 Problem Statement High energy collisions of protons at the Large Hadron Collider (LHC)

More information

Informative Laplacian Projection

Informative Laplacian Projection Informative Laplacian Projection Zhirong Yang and Jorma Laaksonen Department of Information and Computer Science Helsinki University of Technology P.O. Box 5400, FI-02015, TKK, Espoo, Finland {zhirong.yang,jorma.laaksonen}@tkk.fi

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigenimages " Unitary transforms" Karhunen-Loève transform" Eigenimages for recognition" Sirovich and Kirby method" Example: eigenfaces" Eigenfaces vs. Fisherfaces" Digital Image Processing: Bernd Girod,

More information

Local Learning Projections

Local Learning Projections Mingrui Wu mingrui.wu@tuebingen.mpg.de Max Planck Institute for Biological Cybernetics, Tübingen, Germany Kai Yu kyu@sv.nec-labs.com NEC Labs America, Cupertino CA, USA Shipeng Yu shipeng.yu@siemens.com

More information

Linear Discriminant Analysis Using Rotational Invariant L 1 Norm

Linear Discriminant Analysis Using Rotational Invariant L 1 Norm Linear Discriminant Analysis Using Rotational Invariant L 1 Norm Xi Li 1a, Weiming Hu 2a, Hanzi Wang 3b, Zhongfei Zhang 4c a National Laboratory of Pattern Recognition, CASIA, Beijing, China b University

More information

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA LOCALITY PRESERVING HASHING Yi-Hsuan Tsai Ming-Hsuan Yang Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA ABSTRACT The spectral hashing algorithm relaxes

More information

Tropical Graph Signal Processing

Tropical Graph Signal Processing Tropical Graph Signal Processing Vincent Gripon To cite this version: Vincent Gripon. Tropical Graph Signal Processing. 2017. HAL Id: hal-01527695 https://hal.archives-ouvertes.fr/hal-01527695v2

More information

Spectral Regression for Efficient Regularized Subspace Learning

Spectral Regression for Efficient Regularized Subspace Learning Spectral Regression for Efficient Regularized Subspace Learning Deng Cai UIUC dengcai2@cs.uiuc.edu Xiaofei He Yahoo! hex@yahoo-inc.com Jiawei Han UIUC hanj@cs.uiuc.edu Abstract Subspace learning based

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Graph Signal Processing

Graph Signal Processing Graph Signal Processing Rahul Singh Data Science Reading Group Iowa State University March, 07 Outline Graph Signal Processing Background Graph Signal Processing Frameworks Laplacian Based Discrete Signal

More information

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction Using PCA/LDA Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction One approach to deal with high dimensional data is by reducing their

More information

An Efficient Pseudoinverse Linear Discriminant Analysis method for Face Recognition

An Efficient Pseudoinverse Linear Discriminant Analysis method for Face Recognition An Efficient Pseudoinverse Linear Discriminant Analysis method for Face Recognition Jun Liu, Songcan Chen, Daoqiang Zhang, and Xiaoyang Tan Department of Computer Science & Engineering, Nanjing University

More information

Manifold Learning: Theory and Applications to HRI

Manifold Learning: Theory and Applications to HRI Manifold Learning: Theory and Applications to HRI Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr August 19, 2008 1 / 46 Greek Philosopher

More information

When Fisher meets Fukunaga-Koontz: A New Look at Linear Discriminants

When Fisher meets Fukunaga-Koontz: A New Look at Linear Discriminants When Fisher meets Fukunaga-Koontz: A New Look at Linear Discriminants Sheng Zhang erence Sim School of Computing, National University of Singapore 3 Science Drive 2, Singapore 7543 {zhangshe, tsim}@comp.nus.edu.sg

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research Outline Gaussian Markov Random Field Graph construction Graph transform

More information

arxiv: v1 [cs.it] 26 Sep 2018

arxiv: v1 [cs.it] 26 Sep 2018 SAPLING THEORY FOR GRAPH SIGNALS ON PRODUCT GRAPHS Rohan A. Varma, Carnegie ellon University rohanv@andrew.cmu.edu Jelena Kovačević, NYU Tandon School of Engineering jelenak@nyu.edu arxiv:809.009v [cs.it]

More information

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition COMP 408/508 Computer Vision Fall 07 PCA or Recognition Recall: Color Gradient by PCA v λ ( G G, ) x x x R R v, v : eigenvectors o D D with v ^v (, ) x x λ, λ : eigenvalues o D D with λ >λ v λ ( B B, )

More information

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS Akshay Gadde and Antonio Ortega Department of Electrical Engineering University of Southern California, Los Angeles Email: agadde@usc.edu,

More information

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT)

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Semi-Supervised Learning in Gigantic Image Collections Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Gigantic Image Collections What does the world look like? High

More information

2D Wavelets. Hints on advanced Concepts

2D Wavelets. Hints on advanced Concepts 2D Wavelets Hints on advanced Concepts 1 Advanced concepts Wavelet packets Laplacian pyramid Overcomplete bases Discrete wavelet frames (DWF) Algorithme à trous Discrete dyadic wavelet frames (DDWF) Overview

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

Symmetric Two Dimensional Linear Discriminant Analysis (2DLDA)

Symmetric Two Dimensional Linear Discriminant Analysis (2DLDA) Symmetric Two Dimensional inear Discriminant Analysis (2DDA) Dijun uo, Chris Ding, Heng Huang University of Texas at Arlington 701 S. Nedderman Drive Arlington, TX 76013 dijun.luo@gmail.com, {chqding,

More information

Advanced data analysis

Advanced data analysis Advanced data analysis Akisato Kimura ( 木村昭悟 ) NTT Communication Science Laboratories E-mail: akisato@ieee.org Advanced data analysis 1. Introduction (Aug 20) 2. Dimensionality reduction (Aug 20,21) PCA,

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Subspace Methods for Visual Learning and Recognition

Subspace Methods for Visual Learning and Recognition This is a shortened version of the tutorial given at the ECCV 2002, Copenhagen, and ICPR 2002, Quebec City. Copyright 2002 by Aleš Leonardis, University of Ljubljana, and Horst Bischof, Graz University

More information

Enhanced graph-based dimensionality reduction with repulsion Laplaceans

Enhanced graph-based dimensionality reduction with repulsion Laplaceans Enhanced graph-based dimensionality reduction with repulsion Laplaceans E. Kokiopoulou a, Y. Saad b a EPFL, LTS4 lab, Bat. ELE, Station 11; CH 1015 Lausanne; Switzerland. Email: effrosyni.kokiopoulou@epfl.ch

More information

Joint Factor Analysis for Speaker Verification

Joint Factor Analysis for Speaker Verification Joint Factor Analysis for Speaker Verification Mengke HU ASPITRG Group, ECE Department Drexel University mengke.hu@gmail.com October 12, 2012 1/37 Outline 1 Speaker Verification Baseline System Session

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

2 GU, ZHOU: NEIGHBORHOOD PRESERVING NONNEGATIVE MATRIX FACTORIZATION graph regularized NMF (GNMF), which assumes that the nearby data points are likel

2 GU, ZHOU: NEIGHBORHOOD PRESERVING NONNEGATIVE MATRIX FACTORIZATION graph regularized NMF (GNMF), which assumes that the nearby data points are likel GU, ZHOU: NEIGHBORHOOD PRESERVING NONNEGATIVE MATRIX FACTORIZATION 1 Neighborhood Preserving Nonnegative Matrix Factorization Quanquan Gu gqq03@mails.tsinghua.edu.cn Jie Zhou jzhou@tsinghua.edu.cn State

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

Face Detection and Recognition

Face Detection and Recognition Face Detection and Recognition Face Recognition Problem Reading: Chapter 18.10 and, optionally, Face Recognition using Eigenfaces by M. Turk and A. Pentland Queryimage face query database Face Verification

More information

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Eigenface and

More information

Compressed Sensing Meets Machine Learning - Classification of Mixture Subspace Models via Sparse Representation

Compressed Sensing Meets Machine Learning - Classification of Mixture Subspace Models via Sparse Representation Compressed Sensing Meets Machine Learning - Classification of Mixture Subspace Models via Sparse Representation Allen Y Yang Feb 25, 2008 UC Berkeley What is Sparsity Sparsity A

More information

Classification via Semi-Riemannian Spaces

Classification via Semi-Riemannian Spaces Classification via Semi-Riemannian Spaces Deli Zhao 1 Zhouchen Lin 2 Xiaoou Tang 1,2 1 Dept. of Information Engineering 2 Microsoft Research Asia The Chinese University of Hong Kong Beijing, China {dlzhao,xtang}@ie.cuhk.edu.hk

More information

Notes on Implementation of Component Analysis Techniques

Notes on Implementation of Component Analysis Techniques Notes on Implementation of Component Analysis Techniques Dr. Stefanos Zafeiriou January 205 Computing Principal Component Analysis Assume that we have a matrix of centered data observations X = [x µ,...,

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Linear algebra methods for data mining with applications to materials Yousef Saad Department of Computer Science and Engineering University of Minnesota ICSC 2012, Hong Kong, Jan 4-7, 2012 HAPPY BIRTHDAY

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Image Analysis. PCA and Eigenfaces

Image Analysis. PCA and Eigenfaces Image Analysis PCA and Eigenfaces Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice Hall, 2003. Computer Vision course by Svetlana

More information

Graph Signal Processing for Image Compression & Restoration (Part II)

Graph Signal Processing for Image Compression & Restoration (Part II) ene Cheung, Xianming Liu National Institute of Informatics 11 th July, 016 raph Signal Processing for Image Compression & Restoration (Part II). ICME'16 utorial 07/11/016 1 Outline (Part II) Image Restoration

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

Stefanos Zafeiriou, Anastasios Tefas, and Ioannis Pitas

Stefanos Zafeiriou, Anastasios Tefas, and Ioannis Pitas GENDER DETERMINATION USING A SUPPORT VECTOR MACHINE VARIANT Stefanos Zafeiriou, Anastasios Tefas, and Ioannis Pitas Artificial Intelligence and Information Analysis Lab/Department of Informatics, Aristotle

More information

Automatic Subspace Learning via Principal Coefficients Embedding

Automatic Subspace Learning via Principal Coefficients Embedding IEEE TRANSACTIONS ON CYBERNETICS 1 Automatic Subspace Learning via Principal Coefficients Embedding Xi Peng, Jiwen Lu, Senior Member, IEEE, Zhang Yi, Fellow, IEEE and Rui Yan, Member, IEEE, arxiv:1411.4419v5

More information

Statistical Learning. Dong Liu. Dept. EEIS, USTC

Statistical Learning. Dong Liu. Dept. EEIS, USTC Statistical Learning Dong Liu Dept. EEIS, USTC Chapter 6. Unsupervised and Semi-Supervised Learning 1. Unsupervised learning 2. k-means 3. Gaussian mixture model 4. Other approaches to clustering 5. Principle

More information

SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS. Hilmi E. Egilmez and Antonio Ortega

SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS. Hilmi E. Egilmez and Antonio Ortega SPECTRAL ANOMALY DETECTION USING GRAPH-BASED FILTERING FOR WIRELESS SENSOR NETWORKS Hilmi E. Egilmez and Antonio Ortega Signal and Image Processing Institute, University of Southern California hegilmez@usc.edu,

More information

Simultaneous and Orthogonal Decomposition of Data using Multimodal Discriminant Analysis

Simultaneous and Orthogonal Decomposition of Data using Multimodal Discriminant Analysis Simultaneous and Orthogonal Decomposition of Data using Multimodal Discriminant Analysis Terence Sim Sheng Zhang Jianran Li Yan Chen School of Computing, National University of Singapore, Singapore 117417.

More information

PROJECTIVE NON-NEGATIVE MATRIX FACTORIZATION WITH APPLICATIONS TO FACIAL IMAGE PROCESSING

PROJECTIVE NON-NEGATIVE MATRIX FACTORIZATION WITH APPLICATIONS TO FACIAL IMAGE PROCESSING st Reading October 0, 200 8:4 WSPC/-IJPRAI SPI-J068 008 International Journal of Pattern Recognition and Artificial Intelligence Vol. 2, No. 8 (200) 0 c World Scientific Publishing Company PROJECTIVE NON-NEGATIVE

More information

2D Image Processing Face Detection and Recognition

2D Image Processing Face Detection and Recognition 2D Image Processing Face Detection and Recognition Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Multiple Similarities Based Kernel Subspace Learning for Image Classification

Multiple Similarities Based Kernel Subspace Learning for Image Classification Multiple Similarities Based Kernel Subspace Learning for Image Classification Wang Yan, Qingshan Liu, Hanqing Lu, and Songde Ma National Laboratory of Pattern Recognition, Institute of Automation, Chinese

More information

Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing

Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing Report No. UIUCDCS-R-2006-2748 UILU-ENG-2006-1788 Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing by Deng Cai, Xiaofei He, and Jiawei Han July 2006 Regularized

More information