Subspace Methods for Visual Learning and Recognition

Size: px
Start display at page:

Download "Subspace Methods for Visual Learning and Recognition"

Transcription

1 This is a shortened version of the tutorial given at the ECCV 2002, Copenhagen, and ICPR 2002, Quebec City. Copyright 2002 by Aleš Leonardis, University of Ljubljana, and Horst Bischof, Graz University of Technology Subspace Methods for Visual Learning and Recognition Aleš Leonardis Faculty of Computer and Information Science University of Ljubljana Slovenia Ales.Leonardis@fri.uni-lj.si

2 Outline Part 1 Motivation Appearance based learning and recognition Subspace methods for visual object recognition Principal Components Analysis (PCA) Linear Discriminant Analysis (LDA) Canonical Correlation Analysis (CCA) Independent Component Analysis (ICA) Non-negative Matrix Factorization (NMF) Kernel methods for non-linear subspaces 2

3 Outline Part 2 Robot localization Robust representations and recognition Robust PCA recognition Scale invariant recognition using PCA Illumination insensitive recognition Representations for panoramic images Incremental building of eigenspaces Multiple eigenspaces for efficient representation Robust building of eigenspaces Research issues 3

4 Learning and recognition 3D reconstruction matching learning matching scene training images input image 4

5 Appearance-based approaches Attention in the appearance-based approaches Encompass combined effects of: shape, reflectance properties, pose in the scene, illumination conditions. Acquired through an automatic learning phase. 5

6 Appearance-based approaches Objects are represented by a large number of views: 6

7 Subspace Methods Images are represented as points in the N-dimensional vector space Set of images populate only a small fraction of the space Characterize subspace spanned by images Image set Basis images Representation 7

8 Subspace Methods Properties of the representation: Optimal Reconstruction PCA Optimal Separation LDA Optimal Correlation CCA Independent Factors ICA Non-negative Factors NMF Non-linear Extension Kernel Methods 8

9 9 Eigenspace representation Image set (normalised, zero-mean) We are looking for orthonormal basis functions: Individual image is a linear combination of basis functions ) ( ) ( )) ( ) ( ( ) ( ) ( y x u y x u y u x y x j j k j j j j k j j j k j j j q q q q q q = = = = =

10 Optimisation problem Best basis functions n? Taking the k eigenvectors with the largest eigenvalues of PCA or Karhunen-Loéve Transform (KLT) 10

11 n << m Efficient eigenspace computation Compute the eigenvectors u' i, i = 0,...,n-1, of the inner product matrix The eigenvectors of XX T can be obtained by using XX T Xv i '=l' i Xv i ': 11

12 Principal Component Analysis 12

13 Principal Component Analysis = q 1 + q 2 + q

14 Image representation with PCA u 1 u 2 u 3 14

15 Image presentation with PCA 15

16 Properties PCA It can be shown that the mean square error between x i and its reconstruction using only m principle eigenvectors is given by the expression : j= 1 j= 1 PCA minimizes reconstruction error N λ j m λ j = N λ j= m+ 1 j PCA maximizes variance of projection Finds a more natural coordinate system for the sample data.

17 PCA for visual recognition and pose estimation Objects are represented as coordinates in an n-dimensional eigenspace. An example: 3-D space with points representing individual objects or a manifold representing parametric eigenspace (e.g., orientation, pose, illumination). u 1 u 0 u 2 17

18 PCA for visual recognition and pose estimation Calculate coefficients Search for the nearest point (individual or on the curve) Point determines object and/or pose 18

19 Calculation of coefficients To recover q i the image is projected onto the eigenspace q ( x) i =< x,u i >= n 1 j= 1 x j u ij 1 i k < > = q 1 < > + q 2 < > +... =q 1 < > = q 1 < > + q 2 < > +... =q 2 Complete image x is required to calculate q i. Corresponds to Least-Squares Solution 19

20 Linear Discriminant Analysis (LDA) PCA minimizes projection error Best discriminating Projection PCA-Projection PCA is unsupervised no information on classes is used Discriminating information might be lost 20

21 LDA Linear Discriminance Analysis (LDA) Maximize distance between classes Minimize distance within a class Fisher Linear Discriminance ρ( w) = w w T T S S B W w w 21

22 LDA: Problem formulation n Sample images: c classes: { x,, } 1 Λ x n { c,, } 1 Λ c c Average of each class: Total average: µ i µ = = 1 n i 1 x k χ N n k= 1 i x k x k 22

23 LDA: Practice Scatter of class i: ( )( ) T S i = x k c i x k - m i x k - m i Within class scatter: c S W = S i i= 1 Between class scatter: S B = c i= 1 c i ( m - m )( m - m ) i i T Total scatter: S = S + T W S B 23

24 LDA S 1 S B S W = S 1 + S 2 S 2 Good separation 24

25 Maximization of ρ( w) = w w T T S S B W w w LDA is given by solution of generalized eigenvalue problem S B w = λs w w For the c-class case we obtain (at most) c-1 projections as the largest eigenvalues of S B w = λs i ww i 25

26 LDA Example Fisherface of recognition Glasses/NoGlasses (Belhumeur et.al. 1997) 26

27 Canonical Correlation Analysis (CCA) Also supervised method but motivated by regression tasks, e.g. pose estimation. Canonical Correlation Analysis relates two sets of observations by determining pairs of directions that yield maximum correlation between these sets. Find a pair of directions (canonical factors) w x R p, w y R q, so that the correlation of the projections c = w xt x and d = w yt y becomes maximal. 27

28 What is CCA? Canonical Correlation 0 r 1 Between Set Covariance Matrix ρ = E[ w w T x C E[ c T x w xx E[ cd] E[ w xx T x w 2 T C x ] E[ d xy T x w w x w xy T y y T ] E[ w C 2 ] yy w = y w T y ] y yy T w y ] = 28

29 What is CCA? Finding solutions w = w w x y A = 0 C yx C 0 xy, B = C 0 xx C 0 yy Rayleigh Quotient Generalized Eigenproblem r = w w T T Aw Bw Aw = µbw 29

30 CCA Example Parametric eigenspace obtained by PCA for 2DoF in pose

31 CCA Example CCA representation (projections of training images onto w x1, w x2 )

32 Independent Component Analysis (ICA) ICA is a powerful technique from signal processing (Blind Source Separation) Can be seen as an extension of PCA PCA takes into account only statistics up to 2 nd order ICA finds components that are statistically independent (or as independent as possible) 33

33 Independent Component Analysis (ICA) m scalar variables X=(x 1... x m ) T They are assumed to be obtained as linear mixtures of n sources S=(s 1... s n ) T X = AS Task: Given X find A, S (under the assumption that S are independent) 34

34 ICA Example Original Sources Mixtures Recovered Sources 35

35 ICA Example ICA basis obtained from 16x16 patches of natural images (Bell&Sejnowski 96) 36

36 Face Recognition using ICA PCA vs. ICA on Ferret DB (Baek et.al. 02) PCA ICA 37

37 Non-Negative Matrix Factorization (NMF) How can we obtain part-based representation? Local representation where parts are added E.g. learn from a set of faces the parts a face consists of, i.e. eyes, nose, mouth, etc. Non-Negative Matrix Factorization (Lee & Seung 1999) lead to part based representation 38

38 Matrix Factorization - Constraints V» WH PCA: W are orthonormal basis vectors W = [ w, w2, 1 Λ, w n ], w i w j = δ ij VQ : H are unity vectors H = [ 2 h1, h, Λ, hn], h j = [0,0,1,0, Λ T,0] NMF: V,W,H are non-negative Vij, Wij, Hij 0 i, j 39

39 Learning Find basis images from the training set Training images Basis images 41

40 Face features Basis images Encoding (Coefficients) Reconstructed image 42

41 Kernel Methods All presented methods are linear Can we generalize to non-linear methods in a computational efficient manner? 43

42 Kernel Methods Kernel Methods are powerful methods (introduced with Support Vector Machines) to generalize linear methods BASIC IDEA: 1. Non-linear mapping of data in high dimensional space 2. Perform linear method in high-dimensional space Non-linear method in original space 44

43 Outline Part 2 Robot localization Robust representations and recognition Robust recognition using PCA Scale invariant recognition using PCA Illumination insensitive recognition Representations for panoramic images Incremental building of eigenspaces Multiple eigenspaces for efficient representation Robust building of eigenspaces Research issues 45

44 A variety of successful applications: Appearance-based approaches Human face recognition e.g. [Turk & Pentland] Visual inspection e.g. [Yoshimura & Kanade] Visual positioning and tracking of robot manipulators, e.g. [Nayar & Murase] Tracking e.g., [Black & Jepson] Illumination planning e.g., [Murase & Nayar] Image spotting e.g., [Murase & Nayar] Mobile robot localization e.g., [Jogan & Leonardis] Background modeling e.g., [Oliver, Rosario & Pentland] 46

45 Mobile Robot 47

46 Panoramic image 48

47 Environment map environments are represented by a large number of views localisation = recognition 49

48 Compression with PCA 50

49 Image representation with PCA 51

50 Localisation 52

51 Distance vs. similarity 53

52 Robot localisation Interpolated hyper-surface represents the memorized environment. The parameters to be retrieved are related to position and orientation. Parameters of an input image are obtained by scalar product. 54

53 Localisation 55

54 Enhancing recognition and representations Occlusions, varying background, outliers Robust recognition using PCA Scale variance Multiresolution coefficient estimation Scale invariant recognition using PCA Illumination variations Illumination insensitive recognition Rotated panoramic images Spinning eigenimages Incremental building of eigenspaces Multiple eigenspaces for efficient representations Robust building of eigenspaces 56

55 Occlusions 57

56 Calculation of coefficients To recover q i the image is projected onto the eigenspace q ( x) i =< x,u i >= n 1 j= 1 x j u ij 1 i k < > = q 1 < > + q 2 < > +... =q 1 < > = q 1 < > + q 2 < > +... =q 2 Complete image x is required to calculate q i. Corresponds to Least-Squares Solution 58

57 Non-robustness 59

58 Robust method 60

59 Robust algorithm 61

60 Selection 62

61 Robust recovery of coefficients 63

62 Robust localisation under occlusions 66

63 Robust localisation at 60% occlusion Standard approach Robust approach 67

64 Mean error of localisation Mean error of localisation with respect to % of occlusion 68

65 Illumination insensitive recognition Recognition of objects under varying illumination global illumination changes highlights shadows Dramatic effects of illumination on objects appearance Training set under a single ambient illumination 69

66 Illumination insensitive recognition Our Approach Global eigenspace representation Local gradient based filters Efficient combination of global and local representations Robust coefficient recovery in eigenspaces 70

67 Eigenspaces and filtering 71

68 Filtered eigenspaces 72

69 Gradient-based filters Global illumination Gradient-based filters Steerable filters [Simoncelli] 73

70 Robust coefficient recovery Highlights and shadows Robust coefficient recovery Robust solution of linear equations = a + a + a +Λ = a + a + a +Λ = a + a + a +Λ Μ Μ a + a + + Λ = a Hypothesize & Select 74

71 Experimental results Test images Our approach Standard method Demo 75

72 Experimental results Robust filtered method - all eigenvectors used obj % ang avg Standard method - all eigenvectors used obj % ang avg

73 Research issues Comparative studies (e.g., LDA versus PCA, PCA versus ICA) Robust learning of other representations (e.g. LDA, CCA) Integration of robust learning with modular eigenspaces Local versus Global subspace represenations Combination of subspace representations in a hierarchical framework 77

74 Further readings Recognizing objects by their appearance using eigenimages (SOFSEM 2000, LNCS 1963) Robust recognition using eigenimages (CVIU 2000, Special Issue on Robust Methods in CV) Illumination insensitive eigenspaces (ICCV 2001) Mobile robot localization under varying illumination (ICPR 2002) Eigenspace of spinning images (OMNI 2000, ICPR 2000, ICAR 2001) Incremental building of eigenspaces (ICRA 2002, ICPR 2002, CogVis 2002) Multiple eigenspaces (Pattern Recognition 2002) Robust building of eigenspaces (ECCV 2002) Special issue of Pattern Recognition on Kernel and Subspace Methods in Computer Vision (Guest Editors A. Leonardis and H. Bischof), to appear in

Subspace Methods for Visual Learning and Recognition

Subspace Methods for Visual Learning and Recognition Subspace Methods for Visual Learning and Recognition Horst Bischof Inst. f. Computer Graphics and Vision, Graz Univesity of Technology Austria bischof@icg.tu-graz.ac.at Aleš Leonardis Faculty of Computer

More information

Karhunen Loéve Expansion of a Set of Rotated Templates

Karhunen Loéve Expansion of a Set of Rotated Templates IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 7, JULY 2003 817 Karhunen Loéve Expansion of a Set of Rotated Templates Matjaž Jogan, Student Member, IEEE, Emil Žagar, and Aleš Leonardis, Member, IEEE

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigenimages " Unitary transforms" Karhunen-Loève transform" Eigenimages for recognition" Sirovich and Kirby method" Example: eigenfaces" Eigenfaces vs. Fisherfaces" Digital Image Processing: Bernd Girod,

More information

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY

Keywords Eigenface, face recognition, kernel principal component analysis, machine learning. II. LITERATURE REVIEW & OVERVIEW OF PROPOSED METHODOLOGY Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Eigenface and

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

Example: Face Detection

Example: Face Detection Announcements HW1 returned New attendance policy Face Recognition: Dimensionality Reduction On time: 1 point Five minutes or more late: 0.5 points Absent: 0 points Biometrics CSE 190 Lecture 14 CSE190,

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh Lecture 06 Object Recognition Objectives To understand the concept of image based object recognition To learn how to match images

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Deterministic Component Analysis Goal (Lecture): To present standard and modern Component Analysis (CA) techniques such as Principal

More information

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Recognition Using Class Specific Linear Projection Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Articles Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection, Peter N. Belhumeur,

More information

Image Analysis. PCA and Eigenfaces

Image Analysis. PCA and Eigenfaces Image Analysis PCA and Eigenfaces Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice Hall, 2003. Computer Vision course by Svetlana

More information

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface Image Analysis & Retrieval Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv, Spring

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello Artificial Intelligence Module 2 Feature Selection Andrea Torsello We have seen that high dimensional data is hard to classify (curse of dimensionality) Often however, the data does not fill all the space

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Pavel Laskov 1 Blaine Nelson 1 1 Cognitive Systems Group Wilhelm Schickard Institute for Computer Science Universität Tübingen,

More information

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson PCA Review! Supervised learning! Fisher linear discriminant analysis! Nonlinear discriminant analysis! Research example! Multiple Classes! Unsupervised

More information

Maximum variance formulation

Maximum variance formulation 12.1. Principal Component Analysis 561 Figure 12.2 Principal component analysis seeks a space of lower dimensionality, known as the principal subspace and denoted by the magenta line, such that the orthogonal

More information

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction Using PCA/LDA Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction One approach to deal with high dimensional data is by reducing their

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

CS 4495 Computer Vision Principle Component Analysis

CS 4495 Computer Vision Principle Component Analysis CS 4495 Computer Vision Principle Component Analysis (and it s use in Computer Vision) Aaron Bobick School of Interactive Computing Administrivia PS6 is out. Due *** Sunday, Nov 24th at 11:55pm *** PS7

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition COMP 408/508 Computer Vision Fall 07 PCA or Recognition Recall: Color Gradient by PCA v λ ( G G, ) x x x R R v, v : eigenvectors o D D with v ^v (, ) x x λ, λ : eigenvalues o D D with λ >λ v λ ( B B, )

More information

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact:

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

7. Variable extraction and dimensionality reduction

7. Variable extraction and dimensionality reduction 7. Variable extraction and dimensionality reduction The goal of the variable selection in the preceding chapter was to find least useful variables so that it would be possible to reduce the dimensionality

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Additional reading can be found from non-assessed exercises (week 8) in this course unit teaching page. Textbooks: Sect. 6.3 in [1] and Ch. 12 in [2] Outline Introduction

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

Face Detection and Recognition

Face Detection and Recognition Face Detection and Recognition Face Recognition Problem Reading: Chapter 18.10 and, optionally, Face Recognition using Eigenfaces by M. Turk and A. Pentland Queryimage face query database Face Verification

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Enhanced Fisher Linear Discriminant Models for Face Recognition

Enhanced Fisher Linear Discriminant Models for Face Recognition Appears in the 14th International Conference on Pattern Recognition, ICPR 98, Queensland, Australia, August 17-2, 1998 Enhanced isher Linear Discriminant Models for ace Recognition Chengjun Liu and Harry

More information

Eigenimaging for Facial Recognition

Eigenimaging for Facial Recognition Eigenimaging for Facial Recognition Aaron Kosmatin, Clayton Broman December 2, 21 Abstract The interest of this paper is Principal Component Analysis, specifically its area of application to facial recognition

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Discriminant Uncorrelated Neighborhood Preserving Projections

Discriminant Uncorrelated Neighborhood Preserving Projections Journal of Information & Computational Science 8: 14 (2011) 3019 3026 Available at http://www.joics.com Discriminant Uncorrelated Neighborhood Preserving Projections Guoqiang WANG a,, Weijuan ZHANG a,

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Principal Component Analysis Barnabás Póczos Contents Motivation PCA algorithms Applications Some of these slides are taken from Karl Booksh Research

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Introduction Consider a zero mean random vector R n with autocorrelation matri R = E( T ). R has eigenvectors q(1),,q(n) and associated eigenvalues λ(1) λ(n). Let Q = [ q(1)

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Eigenface-based facial recognition

Eigenface-based facial recognition Eigenface-based facial recognition Dimitri PISSARENKO December 1, 2002 1 General This document is based upon Turk and Pentland (1991b), Turk and Pentland (1991a) and Smith (2002). 2 How does it work? The

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU,

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU, Eric Xing Eric Xing @ CMU, 2006-2010 1 Machine Learning Data visualization and dimensionality reduction Eric Xing Lecture 7, August 13, 2010 Eric Xing Eric Xing @ CMU, 2006-2010 2 Text document retrieval/labelling

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Salvador Dalí, Galatea of the Spheres CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy and Lisa Zhang Some slides from Derek Hoiem and Alysha

More information

Machine Learning 11. week

Machine Learning 11. week Machine Learning 11. week Feature Extraction-Selection Dimension reduction PCA LDA 1 Feature Extraction Any problem can be solved by machine learning methods in case of that the system must be appropriately

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Face Recognition. Lecture-14

Face Recognition. Lecture-14 Face Recognition Lecture-14 Face Recognition imple Approach Recognize faces (mug shots) using gray levels (appearance). Each image is mapped to a long vector of gray levels. everal views of each person

More information

COS 429: COMPUTER VISON Face Recognition

COS 429: COMPUTER VISON Face Recognition COS 429: COMPUTER VISON Face Recognition Intro to recognition PCA and Eigenfaces LDA and Fisherfaces Face detection: Viola & Jones (Optional) generic object models for faces: the Constellation Model Reading:

More information

Face Recognition. Lecture-14

Face Recognition. Lecture-14 Face Recognition Lecture-14 Face Recognition imple Approach Recognize faces mug shots) using gray levels appearance). Each image is mapped to a long vector of gray levels. everal views of each person are

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Kazuhiro Fukui, University of Tsukuba

Kazuhiro Fukui, University of Tsukuba Subspace Methods Kazuhiro Fukui, University of Tsukuba Synonyms Multiple similarity method Related Concepts Principal component analysis (PCA) Subspace analysis Dimensionality reduction Definition Subspace

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Gaurav, 2(1): Jan., 2013] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Face Identification & Detection Using Eigenfaces Sachin.S.Gurav *1, K.R.Desai 2 *1

More information

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici Subspace Analysis for Facial Image Recognition: A Comparative Study Yongbin Zhang, Lixin Lang and Onur Hamsici Outline 1. Subspace Analysis: Linear vs Kernel 2. Appearance-based Facial Image Recognition.

More information

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Machine Learning Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1 / 47 Table of contents 1 Introduction

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

Comparative Assessment of Independent Component. Component Analysis (ICA) for Face Recognition.

Comparative Assessment of Independent Component. Component Analysis (ICA) for Face Recognition. Appears in the Second International Conference on Audio- and Video-based Biometric Person Authentication, AVBPA 99, ashington D. C. USA, March 22-2, 1999. Comparative Assessment of Independent Component

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

Recipes for the Linear Analysis of EEG and applications

Recipes for the Linear Analysis of EEG and applications Recipes for the Linear Analysis of EEG and applications Paul Sajda Department of Biomedical Engineering Columbia University Can we read the brain non-invasively and in real-time? decoder 1001110 if YES

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Multi-Label Informed Latent Semantic Indexing

Multi-Label Informed Latent Semantic Indexing Multi-Label Informed Latent Semantic Indexing Shipeng Yu 12 Joint work with Kai Yu 1 and Volker Tresp 1 August 2005 1 Siemens Corporate Technology Department of Neural Computation 2 University of Munich

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

c Springer, Reprinted with permission.

c Springer, Reprinted with permission. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto, Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014 Principal Component Analysis and Singular Value Decomposition Volker Tresp, Clemens Otte Summer 2014 1 Motivation So far we always argued for a high-dimensional feature space Still, in some cases it makes

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels Machine Learning: Basis and Wavelet 32 157 146 204 + + + + + - + - 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 7 22 38 191 17 83 188 211 71 167 194 207 135 46 40-17 18 42 20 44 31 7 13-32 + + - - +

More information

2D Image Processing Face Detection and Recognition

2D Image Processing Face Detection and Recognition 2D Image Processing Face Detection and Recognition Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

CSC 411 Lecture 12: Principal Component Analysis

CSC 411 Lecture 12: Principal Component Analysis CSC 411 Lecture 12: Principal Component Analysis Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 12-PCA 1 / 23 Overview Today we ll cover the first unsupervised

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

Face Recognition and Biometric Systems

Face Recognition and Biometric Systems The Eigenfaces method Plan of the lecture Principal Components Analysis main idea Feature extraction by PCA face recognition Eigenfaces training feature extraction Literature M.A.Turk, A.P.Pentland Face

More information

Tutorial on Principal Component Analysis

Tutorial on Principal Component Analysis Tutorial on Principal Component Analysis Copyright c 1997, 2003 Javier R. Movellan. This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms

More information

Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System 2 Overview

Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System 2 Overview 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System processes System Overview Previous Systems:

More information

Rapid Object Recognition from Discriminative Regions of Interest

Rapid Object Recognition from Discriminative Regions of Interest Rapid Object Recognition from Discriminative Regions of Interest Gerald Fritz, Christin Seifert, Lucas Paletta JOANNEUM RESEARCH Institute of Digital Image Processing Wastiangasse 6, A-81 Graz, Austria

More information