DETERMINATION OF RESPONSE SURFACE FUNCTION USING REPEATED MEASURES

Size: px
Start display at page:

Download "DETERMINATION OF RESPONSE SURFACE FUNCTION USING REPEATED MEASURES"

Transcription

1 DETERMINATION OF RESPONSE SURFACE FUNCTION USING REPEATED MEASURES Denise Moyse. Abbott Laboratories David Henry. Abbott Laboratories Hong-Jiong Shi. Abbott Laboratories Robert S. Boger. Abbott Laboratories Clement Maurath. Abbott Laboratories INTRODUCTION AND OBJECTIVE In the clinical trial setting, there are frequently studies which measure effect of study drug over a range of dose levels. In addition, sequential measurements are obtained on subjects prior to, and at multiple times following study drug administration at each of these dose levels. The measurement times may often be unequally spaced. A threedimensional response surface provides a graphical presentation of the results by simultaneously presenting the relationship among drug effect, measurement time, and dose level. The objective of this paper is to show how a threedimensional response surface function was determined using repeated measures. This function was then used to graphically present results from a clinical trial. FULL RESPONSE SURFACE FUNCTION Where E(y) is the expected change from baseline; D is the patient's dose level; T is the time of measurement relative to dosing; b o is the intercept estimate; b 1 and b 2 are the linear effect estimates; b 11 and b 22 are the curvature effect estimates; b 12 is the interaction effect estimate. DETERMINATION OF APPROPRIATE RESPONSE SURFACE FUNCTION Since measurements were made at only four postdosing evaluation times. it was not considered appropriate to use the full quadratic response surface function unless convincing evidence of either nonlinearity or interaction existed. The first step to determine an appropriate response surface function was to look for evidence of interaction by examining significance of the interaction of time with the quadratic dose term, and time with the linear dose term. Although the interaction of time with quadratic dose was not included in the full response surface function, the test for this interaction provided additional confidence in detennining the function. Next, evidence of quadratic effects in time and dose were examined if there was no evidence of interaction. When a covariate is present in a repeated measures model, the appropriate test for quadratic effects in time is obtained at the overall dose mean; however, the SAS* procedure performs the test at the intercept. In order to test for a Quadratic trend in time, an orthogonal contrast was constructed using the coefficients provided in the SAS repeated measures output, and was then examined in an analysis of variance. The final, appropriate response surface function included, at a minimum, linear terms for both time (T) and dose (D). The SAS code used to perform the analyses is shown later, in the example. A flow chart summarizing the algorithm used to determine the appropriate response surface function is shown in Figure 1. EXAMPLE A clinical trial was conducted to examine the effect of study drug on plasma norepinephrine levels. Study drug was administered at several ascending dose levels and measurements were obtained at unequally spaced times following study drug administration. The objective was to find the appropriate response surface function which would describe the change from baseline observed in norepinephrine levels across the ascending dose levels and postdosing evaluations times. N=15 subjects. Study drug dose levels (number of subjects receiving the dose): (n=l); (n=l); (n=l); (n=l); (n=2); (n=l); (n=l); (n=3); (n=2); (n=2). A logarithmic transformation of the dose (loglo(do5e)) was used in 1he analyses. Measurements were made on each subject prior to dosing (baseline), and at four, unequally spaced times following dosing. Time of measurement was recoded so that T took on the following values: Time of Measurement Relative to Dosing +20mins +45 mins +90 mins mins T (per 20 mins) Change from baseline to each of the postdosing evaluation times was calculated for each subject, and these changes from baseline data were used in the analyses

2 The following SAS code was used in the analyses to determine the appropriate response surface: DATA A; SET A; LOGDOSE=LOG10(DOSE); determine 10910(dose level); LOGDOSEQ=LOGDOSE 2; quadratic 1091O(dose level); TITLE 'DETERMINATION OF APPROPRIATE RESPONSE SURFACE FUNCTION'; TITLE2 ''; PROC GLM DATA=A; MODEL Y20 Y45 Y90 Y180 = LOGDOSE LOGDOSEQ I NOUNI; REPEATED TIME 4 ( ) POLYNOMIAL I NOU SUMMARY SHORT PRINTE; TITLE3 'INCLUDING LINEAR AND QUADRATIC TERMS FOR LOGDOSE'; Step 2 : Test for Significance of quadratic dose effect (0 2 ). Result: p = ; not significant. Drop 0 2 from response surface function. Step 3 : Test for significance of quadratic time effect (T2) using an orthogonal contrast. Result: p = ; not significant. Drop T2 from response surface function. Step 4 : Final response surface function: E(y) = b o + b 1 T + b 2 D Figure 2 shows this response surface (shaded plane) and the actual data points (open and solid circles) used in the analyses. SUMMARY PROC GLM DATA=A; MODEL Y20 Y45 Y90 Y180 = LOGOOSEI NOUNI; REPEATED TIME 4 ( ) POLYNOMIAL I NOU SUMMARY SHORT PRINTE PRINTM; TITLE3 'INCLUDING ONLY LINEAR TERM FOR LOGDOSE'; This paper has described an approach to determine an appropriate response surface function using repeated measures in SAS. This was developed to summarize results from a clinical trial so that the relationship among drug effect, evaluation time, and dose Jevel could be simultaneously presented using a three-dimensional response surface. DATA QTIME; SET A; QUA=0.539rY Y rY90 + O.3509*Y180;* quadratic orthogonal contrast. Coefficients obtained from repeated measures model including linear term for logdose;.. the overall average log 1 o(dose level) was ; PROC GLM DATA=QTIME; MODEL QUA = LOGDOSE; ESTIMATE 'EFFECT AT AVG DOSE' INTERCEPT 1 LOGDOSE ; TITLE3 'QUADRATIC TREND IN TIME USING AN ORTHOGONAL CONTRAST'; OUTPUT FROM SAS REPEATED MEASURES ANALYSES AND ANALYSIS OF VARIANCE Selected pages from the SAS output of the repeated measures analyses and analysis of variance are shown in Appendix 1. The entire output was too long to include here, but the appropriate test statistic results have been highlighted to show how the appropriate response surface was determined. Bold face type was added to the output to key the steps: ACKNOWLEDGEMENTS The authors wish to thank Mr. David Jaskela for his assistance. SAS is a registered trademark or trademark of SAS Institute Inc. the USA and other countries. Author contact: Denise Moyse Abbott Laboratories, 0436 AP9Ai2 One Abbott Park Road Abbott Park, IL (708) Step 18 : Test for significance of 0 2 * T interaction. Result: p = ; not significant. Step 1b : Test for significance of 0 * T interaction. Result: p = 0.745; not significant. Drop interaction term from response surface function. 1215

3 Figure 1 Flow Chart Summarizing Analyses Used to Determine an Appropriate Response Surface Function Figure 2 Norepinephrine (pg/ml) d Response Surface " O L 200 I\) (j),... T Q) C.Qi CO E 101) 0 U- Q) Ol 50 c III s::. 0 ;i",. ". ' 'n.) R.I. "'a 10 InfuSion Start

4 Appendix 1 DETERMINATION OF APPROPRIATE RESPONSE SURFACE FUNCTION INCLUDING LINEAR AND QUADRATIC TERMS FOR LOG DOSE General Linear Models Procedure Number of observations In data set = 15 General linear Models Procedure Repeated Measures Analysis of Variance Repeated Measures Level Information Dependent Variable Y20 Y45 Y90 Y180 Level of TIME S=1 M=O.5 N-4 Statistic Value F Num DF Den DF Tests of Hypotheses for Between Subjects Effects Source DF Type III SS hii,g; :: ::i':i:'l:l:;:;i!! m.t:j.;'!iiiii$q;"",:! iif: :::!I:I.I.i!:i!ii!!lj.!!;! :!$i"f Error DETERMINATION OF APPROPRIATE RESPONSE SURFACE FUNCTION INCLUDING ONLY LINEAR TERM FOR LOGDOSE General linear Models Procedure Number of observations In data set = 15 General linear Models Procedure Repeated Measures Analysis of Variance Repeated Measures Level Information Dependent Variable Y20 Y45 Y90 Y180 Level of TIME

5 DETERMINATION OF APPROPRIATE RESPONSE SURFACE FUNCTION INCLUDING ONLY LINEAR TERM FOR LOGDOSE (Cont.) TIME.N represents the nth degree polynomial contrast fortime M1MI \#l!l'j 1ilt.f911,:*il!1 1: Y20 Y45 Y90 Y180 Coefficients for orthogonal contrast to assess quadratic time effect Manova Test CrHerla and Exact F Statistics for thehpti.!;i,jjrnjm.j'!lml:effljil H = Type III SS&CP Matrix for TIME*LOGDOSE E = Error S,,&CP Matrix S=l M=O.5 N=4.5 Statistic Value F Num DF Den DF Analysis of Variance of Contrast Variables TIME.N represents the nth degree polynomial contrast for TIME Contrast Variable: TIME.l Source DF Type III SS MEAN LOGDOSE Error I Contrast Variable: TIME.21 Source DF Type III SS F Value IMEAN LOG DOSE Error Contrast Variable: TIME.3 Source DF Type III SS MEAN LOG DOSE Error

6 DETERMINATION OF APPROPRIATE RESPONSE SURFACE FUNCTION QUADRATIC TREND IN TIME USING AN ORTHOGONAL CONTRAST General Linear Models Procedure Number of observations in data set = 15 General Linear Models Procedure Dependent Variable: QUA Source DF Sum of Squares Model Error Corrected Total R-Square C.V. RootMSE QUA Mean Source DF Type I SS F Value LOG DOSE Source DF Type III SS LOG DOSE Parameter T for HO: Parameter=O Pr> ITI Std Error of Parameter T for HO: Parameter=O Pr> ITI Std Error of INTERCEPT

Repeated Measures Part 2: Cartoon data

Repeated Measures Part 2: Cartoon data Repeated Measures Part 2: Cartoon data /*********************** cartoonglm.sas ******************/ options linesize=79 noovp formdlim='_'; title 'Cartoon Data: STA442/1008 F 2005'; proc format; /* value

More information

Application of Ghosh, Grizzle and Sen s Nonparametric Methods in. Longitudinal Studies Using SAS PROC GLM

Application of Ghosh, Grizzle and Sen s Nonparametric Methods in. Longitudinal Studies Using SAS PROC GLM Application of Ghosh, Grizzle and Sen s Nonparametric Methods in Longitudinal Studies Using SAS PROC GLM Chan Zeng and Gary O. Zerbe Department of Preventive Medicine and Biometrics University of Colorado

More information

ANOVA approaches to Repeated Measures. repeated measures MANOVA (chapter 3)

ANOVA approaches to Repeated Measures. repeated measures MANOVA (chapter 3) ANOVA approaches to Repeated Measures univariate repeated-measures ANOVA (chapter 2) repeated measures MANOVA (chapter 3) Assumptions Interval measurement and normally distributed errors (homogeneous across

More information

ANOVA Longitudinal Models for the Practice Effects Data: via GLM

ANOVA Longitudinal Models for the Practice Effects Data: via GLM Psyc 943 Lecture 25 page 1 ANOVA Longitudinal Models for the Practice Effects Data: via GLM Model 1. Saturated Means Model for Session, E-only Variances Model (BP) Variances Model: NO correlation, EQUAL

More information

Orthogonal and Non-orthogonal Polynomial Constrasts

Orthogonal and Non-orthogonal Polynomial Constrasts Orthogonal and Non-orthogonal Polynomial Constrasts We had carefully reviewed orthogonal polynomial contrasts in class and noted that Brian Yandell makes a compelling case for nonorthogonal polynomial

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

1998, Gregory Carey Repeated Measures ANOVA - 1. REPEATED MEASURES ANOVA (incomplete)

1998, Gregory Carey Repeated Measures ANOVA - 1. REPEATED MEASURES ANOVA (incomplete) 1998, Gregory Carey Repeated Measures ANOVA - 1 REPEATED MEASURES ANOVA (incomplete) Repeated measures ANOVA (RM) is a specific type of MANOVA. When the within group covariance matrix has a special form,

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

STA 303H1F: Two-way Analysis of Variance Practice Problems

STA 303H1F: Two-way Analysis of Variance Practice Problems STA 303H1F: Two-way Analysis of Variance Practice Problems 1. In the Pygmalion example from lecture, why are the average scores of the platoon used as the response variable, rather than the scores of the

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false.

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. 1. A study was carried out to examine the relationship between the number

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation Using the least squares estimator for β we can obtain predicted values and compute residuals: Ŷ = Z ˆβ = Z(Z Z) 1 Z Y ˆɛ = Y Ŷ = Y Z(Z Z) 1 Z Y = [I Z(Z Z) 1 Z ]Y. The usual decomposition

More information

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum T-test: means of Spock's judge versus all other judges 1 The TTEST Procedure Variable: pcwomen judge1 N Mean Std Dev Std Err Minimum Maximum OTHER 37 29.4919 7.4308 1.2216 16.5000 48.9000 SPOCKS 9 14.6222

More information

Answer to exercise: Blood pressure lowering drugs

Answer to exercise: Blood pressure lowering drugs Answer to exercise: Blood pressure lowering drugs The data set bloodpressure.txt contains data from a cross-over trial, involving three different formulations of a drug for lowering of blood pressure:

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

Topic 28: Unequal Replication in Two-Way ANOVA

Topic 28: Unequal Replication in Two-Way ANOVA Topic 28: Unequal Replication in Two-Way ANOVA Outline Two-way ANOVA with unequal numbers of observations in the cells Data and model Regression approach Parameter estimates Previous analyses with constant

More information

Mixed Models Lecture Notes By Dr. Hanford page 199 More Statistics& SAS Tutorial at

Mixed Models Lecture Notes By Dr. Hanford page 199 More Statistics& SAS Tutorial at Mixed Models Lecture Notes By Dr. Hanford page 199 Variance Balance Cross-Over Designs Variance balance cross-over designs are designs where all treatment contrasts have the same precision and all carry-over

More information

Linear models Analysis of Covariance

Linear models Analysis of Covariance Esben Budtz-Jørgensen April 22, 2008 Linear models Analysis of Covariance Confounding Interactions Parameterizations Analysis of Covariance group comparisons can become biased if an important predictor

More information

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES 4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES FOR SINGLE FACTOR BETWEEN-S DESIGNS Planned or A Priori Comparisons We previously showed various ways to test all possible pairwise comparisons for

More information

Linear models Analysis of Covariance

Linear models Analysis of Covariance Esben Budtz-Jørgensen November 20, 2007 Linear models Analysis of Covariance Confounding Interactions Parameterizations Analysis of Covariance group comparisons can become biased if an important predictor

More information

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 Part 1 of this document can be found at http://www.uvm.edu/~dhowell/methods/supplements/mixed Models for Repeated Measures1.pdf

More information

Performing response surface analysis using the SAS RSREG procedure

Performing response surface analysis using the SAS RSREG procedure Paper DV02-2012 Performing response surface analysis using the SAS RSREG procedure Zhiwu Li, National Database Nursing Quality Indicator and the Department of Biostatistics, University of Kansas Medical

More information

Multivariate Linear Regression Models

Multivariate Linear Regression Models Multivariate Linear Regression Models Regression analysis is used to predict the value of one or more responses from a set of predictors. It can also be used to estimate the linear association between

More information

Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures

Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures 12.1 Topic 12. The Split-plot Design and its Relatives (continued) Repeated Measures 12.9 Repeated measures analysis Sometimes researchers make multiple measurements on the same experimental unit. We have

More information

UV Absorbance by Fish Slime

UV Absorbance by Fish Slime Data Set 1: UV Absorbance by Fish Slime Statistical Setting This handout describes a repeated-measures ANOVA, with two crossed amongsubjects factors and repeated-measures on a third (within-subjects) factor.

More information

Introduction to Crossover Trials

Introduction to Crossover Trials Introduction to Crossover Trials Stat 6500 Tutorial Project Isaac Blackhurst A crossover trial is a type of randomized control trial. It has advantages over other designed experiments because, under certain

More information

Other hypotheses of interest (cont d)

Other hypotheses of interest (cont d) Other hypotheses of interest (cont d) In addition to the simple null hypothesis of no treatment effects, we might wish to test other hypothesis of the general form (examples follow): H 0 : C k g β g p

More information

Computation of Variances of Functions of Parameter Estimates for Mixed Models in GLM

Computation of Variances of Functions of Parameter Estimates for Mixed Models in GLM Computation of Variances of Functions of Parameter Estimates for Mixed Models in GLM Ramon C. Littell and Stephen B. Linda University of Florida. Introduction Estimates of functions of parameters in linear

More information

Analysis of variance and regression. November 22, 2007

Analysis of variance and regression. November 22, 2007 Analysis of variance and regression November 22, 2007 Parametrisations: Choice of parameters Comparison of models Test for linearity Linear splines Lene Theil Skovgaard, Dept. of Biostatistics, Institute

More information

In social and biological sciences, a useful and frequently used statistical technique is the

In social and biological sciences, a useful and frequently used statistical technique is the Testing the additivity assumption in repeated measures ANOV A Robert I. Zambarano University of Texas Computation Center In social and biological sciences, a useful and frequently used statistical technique

More information

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93 Contents Preface ix Chapter 1 Introduction 1 1.1 Types of Models That Produce Data 1 1.2 Statistical Models 2 1.3 Fixed and Random Effects 4 1.4 Mixed Models 6 1.5 Typical Studies and the Modeling Issues

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

A SAS/AF Application For Sample Size And Power Determination

A SAS/AF Application For Sample Size And Power Determination A SAS/AF Application For Sample Size And Power Determination Fiona Portwood, Software Product Services Ltd. Abstract When planning a study, such as a clinical trial or toxicology experiment, the choice

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

1 Tomato yield example.

1 Tomato yield example. ST706 - Linear Models II. Spring 2013 Two-way Analysis of Variance examples. Here we illustrate what happens analyzing two way data in proc glm in SAS. Similar issues come up with other software where

More information

STAT 350: Summer Semester Midterm 1: Solutions

STAT 350: Summer Semester Midterm 1: Solutions Name: Student Number: STAT 350: Summer Semester 2008 Midterm 1: Solutions 9 June 2008 Instructor: Richard Lockhart Instructions: This is an open book test. You may use notes, text, other books and a calculator.

More information

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED Maribeth Johnson Medical College of Georgia Augusta, GA Overview Introduction to longitudinal data Describe the data for examples

More information

Longitudinal data: simple univariate methods of analysis

Longitudinal data: simple univariate methods of analysis Longitudinal data: simple univariate methods of analysis Danish version by Henrik Stryhn, June 1996 Department of Mathematcis and Physics, KVL Translation (and rewriting) by Ib Skovgaard, March 1998 (the

More information

Fitting PK Models with SAS NLMIXED Procedure Halimu Haridona, PPD Inc., Beijing

Fitting PK Models with SAS NLMIXED Procedure Halimu Haridona, PPD Inc., Beijing PharmaSUG China 1 st Conference, 2012 Fitting PK Models with SAS NLMIXED Procedure Halimu Haridona, PPD Inc., Beijing ABSTRACT Pharmacokinetic (PK) models are important for new drug development. Statistical

More information

Topic 32: Two-Way Mixed Effects Model

Topic 32: Two-Way Mixed Effects Model Topic 3: Two-Way Mixed Effects Model Outline Two-way mixed models Three-way mixed models Data for two-way design Y is the response variable Factor A with levels i = 1 to a Factor B with levels j = 1 to

More information

ST 732, Midterm Solutions Spring 2019

ST 732, Midterm Solutions Spring 2019 ST 732, Midterm Solutions Spring 2019 Please sign the following pledge certifying that the work on this test is your own: I have neither given nor received aid on this test. Signature: Printed Name: There

More information

Chapter 8 Quantitative and Qualitative Predictors

Chapter 8 Quantitative and Qualitative Predictors STAT 525 FALL 2017 Chapter 8 Quantitative and Qualitative Predictors Professor Dabao Zhang Polynomial Regression Multiple regression using X 2 i, X3 i, etc as additional predictors Generates quadratic,

More information

A Re-Introduction to General Linear Models (GLM)

A Re-Introduction to General Linear Models (GLM) A Re-Introduction to General Linear Models (GLM) Today s Class: You do know the GLM Estimation (where the numbers in the output come from): From least squares to restricted maximum likelihood (REML) Reviewing

More information

STAT 705 Generalized linear mixed models

STAT 705 Generalized linear mixed models STAT 705 Generalized linear mixed models Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 24 Generalized Linear Mixed Models We have considered random

More information

When combining power functions into a single polynomial function, there are a few new features we like to look for, such as

When combining power functions into a single polynomial function, there are a few new features we like to look for, such as Section 1.2 Characteristics of Polynomial Functions In section 1.1 we explored Power Functions, a single piece of a polynomial function. This modelling method works perfectly for simple real world problems

More information

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance Chapter 9 Multivariate and Within-cases Analysis 9.1 Multivariate Analysis of Variance Multivariate means more than one response variable at once. Why do it? Primarily because if you do parallel analyses

More information

Practice of SAS Logistic Regression on Binary Pharmacodynamic Data Problems and Solutions. Alan J Xiao, Cognigen Corporation, Buffalo NY

Practice of SAS Logistic Regression on Binary Pharmacodynamic Data Problems and Solutions. Alan J Xiao, Cognigen Corporation, Buffalo NY Practice of SAS Logistic Regression on Binary Pharmacodynamic Data Problems and Solutions Alan J Xiao, Cognigen Corporation, Buffalo NY ABSTRACT Logistic regression has been widely applied to population

More information

CHAPTER 5 NON-LINEAR SURROGATE MODEL

CHAPTER 5 NON-LINEAR SURROGATE MODEL 96 CHAPTER 5 NON-LINEAR SURROGATE MODEL 5.1 INTRODUCTION As set out in the research methodology and in sequent with the previous section on development of LSM, construction of the non-linear surrogate

More information

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Page 1 Linear Combination of Means ANOVA: y ij = µ + τ i + ɛ ij = µ i + ɛ ij Linear combination: L = c 1 µ 1 + c 1 µ 2 +...+ c a µ a = a i=1

More information

Nonlinear regression. Nonlinear regression analysis. Polynomial regression. How can we model non-linear effects?

Nonlinear regression. Nonlinear regression analysis. Polynomial regression. How can we model non-linear effects? Nonlinear regression Nonlinear regression analysis Peter Dalgaard (orig. Lene Theil Skovgaard) Department of Biostatistics University of Copenhagen Simple kinetic model Compartment models Michaelis Menten

More information

4.1 Computing section Example: Bivariate measurements on plants Post hoc analysis... 7

4.1 Computing section Example: Bivariate measurements on plants Post hoc analysis... 7 Master of Applied Statistics ST116: Chemometrics and Multivariate Statistical data Analysis Per Bruun Brockhoff Module 4: Computing 4.1 Computing section.................................. 1 4.1.1 Example:

More information

3 Variables: Cyberloafing Conscientiousness Age

3 Variables: Cyberloafing Conscientiousness Age title 'Cyberloafing, Mike Sage'; run; PROC CORR data=sage; var Cyberloafing Conscientiousness Age; run; quit; The CORR Procedure 3 Variables: Cyberloafing Conscientiousness Age Simple Statistics Variable

More information

Outline. Topic 22 - Interaction in Two Factor ANOVA. Interaction Not Significant. General Plan

Outline. Topic 22 - Interaction in Two Factor ANOVA. Interaction Not Significant. General Plan Topic 22 - Interaction in Two Factor ANOVA - Fall 2013 Outline Strategies for Analysis when interaction not present when interaction present when n ij = 1 when factor(s) quantitative Topic 22 2 General

More information

ANCOVA. Psy 420 Andrew Ainsworth

ANCOVA. Psy 420 Andrew Ainsworth ANCOVA Psy 420 Andrew Ainsworth What is ANCOVA? Analysis of covariance an extension of ANOVA in which main effects and interactions are assessed on DV scores after the DV has been adjusted for by the DV

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH From Basic to Translational: INDIRECT BIOASSAYS INDIRECT ASSAYS In indirect assays, the doses of the standard and test preparations are are applied

More information

Paper Equivalence Tests. Fei Wang and John Amrhein, McDougall Scientific Ltd.

Paper Equivalence Tests. Fei Wang and John Amrhein, McDougall Scientific Ltd. Paper 11683-2016 Equivalence Tests Fei Wang and John Amrhein, McDougall Scientific Ltd. ABSTRACT Motivated by the frequent need for equivalence tests in clinical trials, this paper provides insights into

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc IES 612/STA 4-573/STA 4-576 Winter 2008 Week 1--IES 612-STA 4-573-STA 4-576.doc Review Notes: [OL] = Ott & Longnecker Statistical Methods and Data Analysis, 5 th edition. [Handouts based on notes prepared

More information

1. (Problem 3.4 in OLRT)

1. (Problem 3.4 in OLRT) STAT:5201 Homework 5 Solutions 1. (Problem 3.4 in OLRT) The relationship of the untransformed data is shown below. There does appear to be a decrease in adenine with increased caffeine intake. This is

More information

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Applied Statistics Friday, January 15, 2016

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Applied Statistics Friday, January 15, 2016 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Applied Statistics Friday, January 15, 2016 Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the

More information

PLS205 Lab 2 January 15, Laboratory Topic 3

PLS205 Lab 2 January 15, Laboratory Topic 3 PLS205 Lab 2 January 15, 2015 Laboratory Topic 3 General format of ANOVA in SAS Testing the assumption of homogeneity of variances by "/hovtest" by ANOVA of squared residuals Proc Power for ANOVA One-way

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Correlated data. Variance component models. Example: Evaluate vaccine. Traditional assumption so far. Faculty of Health Sciences

Correlated data. Variance component models. Example: Evaluate vaccine. Traditional assumption so far. Faculty of Health Sciences Faculty of Health Sciences Variance component models Definitions and motivation Correlated data Variance component models, I Lene Theil Skovgaard November 29, 2013 One-way anova with random variation The

More information

Chapter 5 Contrasts for one-way ANOVA

Chapter 5 Contrasts for one-way ANOVA Chapter Contrasts for one-way NOV Page. What is a contrast? -. Types of contrasts -. Significance tests of a single contrast -0. Brand name contrasts -. Relationships between the omnibus F and contrasts

More information

6. Multiple regression - PROC GLM

6. Multiple regression - PROC GLM Use of SAS - November 2016 6. Multiple regression - PROC GLM Karl Bang Christensen Department of Biostatistics, University of Copenhagen. http://biostat.ku.dk/~kach/sas2016/ kach@biostat.ku.dk, tel: 35327491

More information

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 1 DAVID C. HOWELL 4/26/2010

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 1 DAVID C. HOWELL 4/26/2010 MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 1 DAVID C. HOWELL 4/26/2010 FOR THE SECOND PART OF THIS DOCUMENT GO TO www.uvm.edu/~dhowell/methods/supplements/mixed Models Repeated/Mixed Models for

More information

Implementing contrasts using SAS Proc GLM is a relatively straightforward process. A SAS Proc GLM contrast statement has the following form:

Implementing contrasts using SAS Proc GLM is a relatively straightforward process. A SAS Proc GLM contrast statement has the following form: Contrasts for Comparison of Means If the analysis of variance produces a significant F-statistic, this signals the need for further analyses. The most common post ANOVA analysis is the comparison of means.

More information

Remedial Measures Wrap-Up and Transformations-Box Cox

Remedial Measures Wrap-Up and Transformations-Box Cox Remedial Measures Wrap-Up and Transformations-Box Cox Frank Wood October 25, 2011 Last Class Graphical procedures for determining appropriateness of regression fit - Normal probability plot Tests to determine

More information

Overview Scatter Plot Example

Overview Scatter Plot Example Overview Topic 22 - Linear Regression and Correlation STAT 5 Professor Bruce Craig Consider one population but two variables For each sampling unit observe X and Y Assume linear relationship between variables

More information

Linear Combinations. Comparison of treatment means. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 6 1

Linear Combinations. Comparison of treatment means. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 6 1 Linear Combinations Comparison of treatment means Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 6 1 Linear Combinations of Means y ij = µ + τ i + ǫ ij = µ i + ǫ ij Often study

More information

Topic 14: Inference in Multiple Regression

Topic 14: Inference in Multiple Regression Topic 14: Inference in Multiple Regression Outline Review multiple linear regression Inference of regression coefficients Application to book example Inference of mean Application to book example Inference

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

Paper: ST-161. Techniques for Evidence-Based Decision Making Using SAS Ian Stockwell, The Hilltop UMBC, Baltimore, MD

Paper: ST-161. Techniques for Evidence-Based Decision Making Using SAS Ian Stockwell, The Hilltop UMBC, Baltimore, MD Paper: ST-161 Techniques for Evidence-Based Decision Making Using SAS Ian Stockwell, The Hilltop Institute @ UMBC, Baltimore, MD ABSTRACT SAS has many tools that can be used for data analysis. From Freqs

More information

Linear Modelling in Stata Session 6: Further Topics in Linear Modelling

Linear Modelling in Stata Session 6: Further Topics in Linear Modelling Linear Modelling in Stata Session 6: Further Topics in Linear Modelling Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 14/11/2017 This Week Categorical Variables Categorical

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION In linear regreion, we conider the frequency ditribution of one variable (Y) at each of everal level of a econd variable (). Y i known a the dependent variable. The variable for

More information

Parametrisations, splines

Parametrisations, splines / 7 Parametrisations, splines Analysis of variance and regression course http://staff.pubhealth.ku.dk/~lts/regression_2 Marc Andersen, mja@statgroup.dk Analysis of variance and regression for health researchers,

More information

Visual interpretation with normal approximation

Visual interpretation with normal approximation Visual interpretation with normal approximation H 0 is true: H 1 is true: p =0.06 25 33 Reject H 0 α =0.05 (Type I error rate) Fail to reject H 0 β =0.6468 (Type II error rate) 30 Accept H 1 Visual interpretation

More information

Simple logistic regression

Simple logistic regression Simple logistic regression Biometry 755 Spring 2009 Simple logistic regression p. 1/47 Model assumptions 1. The observed data are independent realizations of a binary response variable Y that follows a

More information

Sleep data, two drugs Ch13.xls

Sleep data, two drugs Ch13.xls Model Based Statistics in Biology. Part IV. The General Linear Mixed Model.. Chapter 13.3 Fixed*Random Effects (Paired t-test) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch

More information

Modeling Effect Modification and Higher-Order Interactions: Novel Approach for Repeated Measures Design using the LSMESTIMATE Statement in SAS 9.

Modeling Effect Modification and Higher-Order Interactions: Novel Approach for Repeated Measures Design using the LSMESTIMATE Statement in SAS 9. Paper 400-015 Modeling Effect Modification and Higher-Order Interactions: Novel Approach for Repeated Measures Design using the LSMESTIMATE Statement in SAS 9.4 Pronabesh DasMahapatra, MD, MPH, PatientsLikeMe

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 17 for Applied Multivariate Analysis Outline Multivariate Analysis of Variance 1 Multivariate Analysis of Variance The hypotheses:

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

ECON Introductory Econometrics. Lecture 17: Experiments

ECON Introductory Econometrics. Lecture 17: Experiments ECON4150 - Introductory Econometrics Lecture 17: Experiments Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 13 Lecture outline 2 Why study experiments? The potential outcome framework.

More information

Analyzing and Interpreting Continuous Data Using JMP

Analyzing and Interpreting Continuous Data Using JMP Analyzing and Interpreting Continuous Data Using JMP A Step-by-Step Guide José G. Ramírez, Ph.D. Brenda S. Ramírez, M.S. Corrections to first printing. The correct bibliographic citation for this manual

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Linear Models in Statistics

Linear Models in Statistics Linear Models in Statistics ALVIN C. RENCHER Department of Statistics Brigham Young University Provo, Utah A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc.

AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc. AN EXACT CONFIDENCE INTERVAL FOR THE RATIO OF MEANS USING NONLINEAR REGRESSION ThponRoy Boehringer Ingelheim PharmaceuticaIs, Inc. ABSTRACT In several statistical applications, the ratio of means is of

More information

Chapter 6 Multiple Regression

Chapter 6 Multiple Regression STAT 525 FALL 2018 Chapter 6 Multiple Regression Professor Min Zhang The Data and Model Still have single response variable Y Now have multiple explanatory variables Examples: Blood Pressure vs Age, Weight,

More information

Multivariate analysis of variance and covariance

Multivariate analysis of variance and covariance Introduction Multivariate analysis of variance and covariance Univariate ANOVA: have observations from several groups, numerical dependent variable. Ask whether dependent variable has same mean for each

More information

Chapter 11. Analysis of Variance (One-Way)

Chapter 11. Analysis of Variance (One-Way) Chapter 11 Analysis of Variance (One-Way) We now develop a statistical procedure for comparing the means of two or more groups, known as analysis of variance or ANOVA. These groups might be the result

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

2 >1. That is, a parallel study design will require

2 >1. That is, a parallel study design will require Cross Over Design Cross over design is commonly used in various type of research for its unique feature of accounting for within subject variability. For studies with short length of treatment time, illness

More information

SMA 6304 / MIT / MIT Manufacturing Systems. Lecture 10: Data and Regression Analysis. Lecturer: Prof. Duane S. Boning

SMA 6304 / MIT / MIT Manufacturing Systems. Lecture 10: Data and Regression Analysis. Lecturer: Prof. Duane S. Boning SMA 6304 / MIT 2.853 / MIT 2.854 Manufacturing Systems Lecture 10: Data and Regression Analysis Lecturer: Prof. Duane S. Boning 1 Agenda 1. Comparison of Treatments (One Variable) Analysis of Variance

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance (ANCOVA) Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 10 1 When to Use ANCOVA In experiment, there is a nuisance factor x that is 1 Correlated with y 2

More information

Orthogonal, Planned and Unplanned Comparisons

Orthogonal, Planned and Unplanned Comparisons This is a chapter excerpt from Guilford Publications. Data Analysis for Experimental Design, by Richard Gonzalez Copyright 2008. 8 Orthogonal, Planned and Unplanned Comparisons 8.1 Introduction In this

More information

CHL 5225 H Crossover Trials. CHL 5225 H Crossover Trials

CHL 5225 H Crossover Trials. CHL 5225 H Crossover Trials CHL 55 H Crossover Trials The Two-sequence, Two-Treatment, Two-period Crossover Trial Definition A trial in which patients are randomly allocated to one of two sequences of treatments (either 1 then, or

More information

SPH 247 Statistical Analysis of Laboratory Data

SPH 247 Statistical Analysis of Laboratory Data SPH 247 Statistical Analysis of Laboratory Data March 31, 2015 SPH 247 Statistical Analysis of Laboratory Data 1 ANOVA Fixed and Random Effects We will review the analysis of variance (ANOVA) and then

More information

Statistics for exp. medical researchers Regression and Correlation

Statistics for exp. medical researchers Regression and Correlation Faculty of Health Sciences Regression analysis Statistics for exp. medical researchers Regression and Correlation Lene Theil Skovgaard Sept. 28, 2015 Linear regression, Estimation and Testing Confidence

More information

Laboratory Topics 4 & 5

Laboratory Topics 4 & 5 PLS205 Lab 3 January 23, 2014 Orthogonal contrasts Class comparisons in SAS Trend analysis in SAS Multiple mean comparisons Laboratory Topics 4 & 5 Orthogonal contrasts Planned, single degree-of-freedom

More information