A fast introduction to the tracking and to the Kalman filter. Alberto Rotondi Pavia

Size: px
Start display at page:

Download "A fast introduction to the tracking and to the Kalman filter. Alberto Rotondi Pavia"

Transcription

1 A fast introduction to the tracking and to the Kalman filter Alberto Rotondi Pavia

2 The tracking To reconstruct the particle path to find the origin (vertex) and the momentum The trajectory is usually curved by the Lorentz force y 0 X B F q c v B + - Even when B is uniform, the trajectory is NOT an helix, due to energy loss multiple scattering The track is defined as a set of points usually on detector planes (real and/or virtual) x

3 The track Since on a detector plane we have two coordinates (v,w) and three momentum components (p u, p v, p w ) the track is a 5-dimensional mathematical entity 3

4 Tracking neglecting inhomogeneous magnetic field and the medium effects Tracking in inhomogeneous magnetic field neglecting the medium effects Tracking in inhomogeneous magnetic field with energy loss and multiple scattering Global fit HELIX Global fit SPLINES H. Wind, NIM 5(974)43 Progressive fit KALMAN... R. Frühwirth, NIM A6(987)444 4

5 The Helix No matter and uniform magnetic field x s x 0 R H cos Φ 0 h s cosλ R H cosφ 0 y s y 0 R H sin Φ 0 h s cosλ R H sinφ 0 z s z 0 s sinλ B // z two planes: xy : circle z - s : straight line s h R cosλ s = track length P(x 0, y 0, z 0 ) = starting point = dip angle 0 = azimuthal angle R H = radius h = -sign(qb z ) arctan RsinΦ RcosΦ y y 0 0 Φ0 0 x x0 5

6 Spline fit H. Wind, NIM 5 (974), 43 No medium effects, dishomogeneous magnetic field is taken intoaccount The spline is a smooth segmented polynomial Cubic spline through n+ points y 0,, y n : Y i t a i b i t c i t d i t 3 i = 0,,n t є [0,] parameters The parameters are found by constraining the pieces of splines to be connected in the measured points assuring the continuity up to the derivative 6

7 What is the track follower? Track extrapolation Also MC with fluctuations Switched off Track follower From one point To Another one Error Propagation (5x5 covariance Matrix) In the same point Between two Track systems 7

8 Tracking track follower vs MC MC= at each step the trajectory is sampled as a random value Tracking= at each step the trajectory is calculated as a mean value with an associate error 8

9 GEANE V. Innocente et al. Average Tracking and Error Propagation Package, CERN Program Library W503-E (99). Two main tasks: Track propagation: the same MC geometry banks are used. Error propagation: from one point to another one In the same point between different systems x y z MARS SC cosλ cosφ sinφ sinλ cosφ cosλ sinφ cosφ sinλ sinφ sinλ 0 cosλ x y z GEANE = tracking with the geometry of GEANT3 + a lot of mathematics for the transport matrix calculation 9

10 Track propagation 0

11 Track propagation II a piece of helix field along z-axis M(s) is the position vector l

12 Track propagation III

13 Track propagation IV Strandlie & Wittek, CMS note, 006/00 3

14 The first task: track propagation 4

15 The jacobian transports the erros from one step to another Here, at each step, multiple scattering and energy loss effects have to be added 5

16 Multiple scattering 0 ( k min) d u 6

17 Multiple scattering 7

18 Multiple scattering 8

19 Multiple scattering PDG: wrong GEANE 9

20 /p y z /p y z 0

21 Energy loss

22 Average energy loss de Z mec γ β max 4π N r m c z ln T β A e e dx A β I δ BETHE-BLOCH Fluctuations in energy loss k ξ E max max average energy loss energy loss in a single collision k k 0 Gaussian Vavilov σ E ξ E max β σ p σ k 0.0; N c 50 Landau are infinite!! k 0.0; N c 50 Sub-Landau is too large!!

23 Gauss and Vavilov: no problems for the track follower GEANE σ E ξ E max β Landau: problematic distribution σ p σ The track follower must be compared With the full Landau sampling ray tail Sub-Landau: what distribution? 3

24 Gauss and Vavilov: no problems for the track follower GEANE and GEANT4E contain only this 4

25 Improvements New error calculation in energy loss for heavy particles New error calculation for bremsstrahlung 5

26 Truncated Landau: Solution (GEANT3 & GEANT4): truncation of the distribution tail to have as a mean the average de/dx 6

27 Original GEANE GEANE for PANDA modified with the the -tail 7

28 8

29 Thin gaseous absorbers: The Urban distribution 9

30 -ray tail 30

31 Truncation of the Urban tail of distribution 3

32 Is the Urban distribution a good model? Comparison with an exact model in the case of a thin gas layer 3

33 p( n) ( nx) k! k e nx MIP particle: Argon CO Cluster/cm 6 35 Prymary e Effective cluster/cm: n MIP de/dx/(de/dx) min N/n ~.8 l ( x) ne n x 33

34 Urban model works well Urban Exact model Landau.5 cm of Ar/CO 90/0. GeV pions 34

35 The matching between Urban and Landau is obtained for =

36 36

37 37

38 Bremsstrahlung 38

39 Bremsstrahlung 39

40 Bremsstrahlung 40

41 =.4 =.3 =.9 =0.96 =.05 x MC σ Pull x GEANE GEANE 4

42 4 A Bayesian technique:the KALMAN filter 0 ) (, ) ( ) ( ) ( x x x x Consider the well-known weighted mean: x x x x x x x x x A simple algebraic manipulation gives the recursive form: measured point weight matrix prediction Kalman= the measurement is weighted with a model prediction (track following)

43 Example: Radar Applications /3 43/0 In a radar application, where one is interested in following a target, information about the location, speed, and acceleration of the target is measured at different moments in time with corruption by noise. State vector error of x Covariance matrix r = { x, y, z, v x, v y, v z } position velocity C = x y z vx vy vz December, 968. The Apollo 8 spacecraft has just been sent on its way to the Moon. 003:46:3 Collins: Roger. At your convenience, would you please go P00 and Accept? We're going to update to your W-matrix.

44 The original idea is very simple When m is measured at t and x(t,t ) is the prediction from t to t, the best evaluation of x at t is This is called the Kalman filter recursive form x( t ) m m x( t, t ) m m Kalman= the measurement is weighted with a model prediction (track following) 44

45 Extrapolation, filtering and smoothing X i+ Kalman filter K i+ e i+ e i k i f i k i- prefit vertex Kalman filter X i x Detector plane Measured point 45

46 Track propagation: physical effects Multiple scattering Energy loss straggling α RMS.03 Pull x MC σ x GEANE GEANE 46

47 Tracking with Kalman 47

48 Tracking with Kalman solve 48

49 49

50 x x 50

51 5

52 Track fitting tools. the GEANT3-GEANE old chain: The mathematics is that of Wittek (EMC Collaboration) The tracking banks and routines are the same as in MC. The user gives the starting and ending planes or volumes and the tracking is done automatically. It works very well (see the CERN Report W503 GEANE, 99).. Modern experiments: in the software are implemented some tracking classes: input: xi, Ti, i, step, medium, magnetic field output: new xi, Ti, i the user has to manage geometry,medium and detector interface 3. A GEANT4-GEANT4E chain there exists in the new GEANT Root framework. It is used by CMS but is not included into the official releases 5 (see Pedro Arce s talks in the Web)

A fast introduction to the tracking and to the Kalman filter. Alghero 2009 Alberto Rotondi Pavia

A fast introduction to the tracking and to the Kalman filter. Alghero 2009 Alberto Rotondi Pavia A fast introduction to the tracking and to the Kalman filter Alghero 009 Alberto Rotondi Pavia 1 The tracking To reconstruct the particle path to find the origin (vertex) and the momentum The trajectory

More information

Status of the PANDA TPC simulation software

Status of the PANDA TPC simulation software Status of the PANDA TPC simulation software Felix Böhmer Physik Department E18 Technische Universität München PANDA collaboration meeting @ GSI March 2, 2009 Felix Böhmer (TUM E18) TPC software status

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Tracking and Fitting. Natalia Kuznetsova, UCSB. BaBar Detector Physics Series. November 19, November 19, 1999 Natalia Kuznetsova, UCSB 1

Tracking and Fitting. Natalia Kuznetsova, UCSB. BaBar Detector Physics Series. November 19, November 19, 1999 Natalia Kuznetsova, UCSB 1 Tracking and Fitting Natalia Kuznetsova, UCSB BaBar Detector Physics Series November 19, 1999 November 19, 1999 Natalia Kuznetsova, UCSB 1 Outline BaBar tracking devices: SVT and DCH Track finding SVT

More information

Momentum measurement. Multiple scattering Bethe-Bloch formula / Landau tails Ionization of gases Wire chambers. Drift and diffusion in gases

Momentum measurement. Multiple scattering Bethe-Bloch formula / Landau tails Ionization of gases Wire chambers. Drift and diffusion in gases Lecture 1 Momentum measurement Multile scattering Bethe-Bloch formula / Landau tails Ionization of gases Wire chambers Drift and diffusion in gases Drift chambers Micro gas detectors Silicon as a detection

More information

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters:

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters: Lecture 2 & 3 Particles going through matter PDG chapter 27 Kleinknecht chapters: 1.2.1 for charged particles 1.2.2 for photons 1.2.3 bremsstrahlung for electrons Collider Detectors PDG chapter 28 Kleinknecht

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Disclaimer Particle Detectors are very complex, a lot of physics is behind the detection

More information

Track Reconstruction and Muon Identification in the Muon Detector of the CBM Experiment at FAIR

Track Reconstruction and Muon Identification in the Muon Detector of the CBM Experiment at FAIR Track Reconstruction and Muon Identification in the Muon Detector of the CBM Experiment at FAIR ab, Claudia Höhne a, Ivan Kisel ac, Anna Kiseleva a and Gennady Ososkov b for the CBM collaboration a GSI

More information

Gaseous Detectors. Bernhard Ketzer University of Bonn

Gaseous Detectors. Bernhard Ketzer University of Bonn Gaseous Detectors Bernhard Ketzer University of Bonn XIV ICFA School on Instrumentation in Elementary Particle Physics LA HABANA 27 November - 8 December, 2017 Plan of the Lecture 1. Introduction 2. Interactions

More information

A Geant4 validation study for the ALICE experiment at the LHC

A Geant4 validation study for the ALICE experiment at the LHC A Geant4 validation study for the ALICE experiment at the LHC Kevin Nicholas Barends Department of Physics University of Cape Town Supervisor: Dr Alexander Kalweit Co-supervisor: Dr Sandro Wenzel 04 August

More information

Interactions of particles and radiation with matter

Interactions of particles and radiation with matter 1 Interactions of particles and radiation with matter When the intervals, passages, connections, weights, impulses, collisions, movement, order, and position of the atoms interchange, so also must the

More information

for the ALICE Collaboration V Convegno Nazionale sulla Fisica di ALICE Trieste - September,

for the ALICE Collaboration V Convegno Nazionale sulla Fisica di ALICE Trieste - September, 1/27 for the ALICE Collaboration Università e INFN di Torino V Convegno Nazionale sulla Fisica di ALICE Trieste - September, 14 2009 2/27 1 2 3 4 ITS role in ALICE 3/27 Reconstruction of primary vertex

More information

Particle Identification with Ionization Energy Loss in the CMS Silicon Strip Tracker

Particle Identification with Ionization Energy Loss in the CMS Silicon Strip Tracker Particle Identification with Ionization Energy Loss in the CMS Silicon Strip Tracker Loïc Quertenmont on behalf of the CMS Collaboration Université catholique de Louvain & FNRS Center for Particle Physics

More information

2. How Tracks are Measured Charged particle tracks in high energy physics experiments are measured through a two step process. First, detector measure

2. How Tracks are Measured Charged particle tracks in high energy physics experiments are measured through a two step process. First, detector measure Applied Fitting Theory V Track Fitting Using the Kalman Filter Paul Avery CBX 92{39 August 2, 992 Section : Introduction Section 2: How Tracks are Measured Section 3: The Standard Track Fit Section 4:

More information

Interaction of Particles with Matter

Interaction of Particles with Matter Chapter 10 Interaction of Particles with Matter A scattering process at an experimental particle physics facility is called an event. Stable particles emerging from an event are identified and their momenta

More information

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics Particle Detectors Summer Student Lectures 2010 Werner Riegler, CERN, werner.riegler@cern.ch History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles

More information

CALICE scintillator HCAL

CALICE scintillator HCAL CALICE scintillator HCAL Erika Garutti DESY (on behalf of the CALICE collaboration) OUTLINE: electromagnetic and hadronic shower analysis shower separation The test beam prototypes 10 GeV pion shower @

More information

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω PHYS 352 Charged Particle Interactions with Matter Intro: Cross Section cross section σ describes the probability for an interaction as an area flux F number of particles per unit area per unit time dσ

More information

Heavy charged particle passage through matter

Heavy charged particle passage through matter Heavy charged particle passage through matter Peter H. Hansen University of Copenhagen Content Bohrs argument The Bethe-Bloch formula The Landau distribution Penetration range Biological effects Bohrs

More information

Simulations of MPD Straw End-Cap Tracker. Jan Fedorishin, XXII International Baldin Seminar on High Energy Physics Problems, September 19, 2014

Simulations of MPD Straw End-Cap Tracker. Jan Fedorishin, XXII International Baldin Seminar on High Energy Physics Problems, September 19, 2014 Simulations of MPD Straw End-Cap Tracker Jan Fedorishin, XXII International Baldin Seminar on High Energy Physics Problems, September 19, 2014 MPD the current layout z Straw End-Cap Tracker (ECT) module

More information

Fluka advanced calculations on stopping power and multiple Coulomb scattering

Fluka advanced calculations on stopping power and multiple Coulomb scattering Fluka advanced calculations on stopping power and multiple Coulomb scattering Andrea Fontana INFN Sezione di Pavia Outline Stopping power Ionization potential Range calculation: which range? Fluka options

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS OTE 997/064 The Compact Muon Solenoid Experiment CMS ote Mailing address: CMS CER, CH- GEEVA 3, Switzerland 3 July 997 Explicit Covariance Matrix for Particle Measurement

More information

Monte Carlo radiation transport codes

Monte Carlo radiation transport codes Monte Carlo radiation transport codes How do they work? Michel Maire (Lapp/Annecy) 16/09/2011 introduction to Monte Carlo radiation transport codes 1 Outline From simplest case to complete process : Decay

More information

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers 2nd-Meeting Ionization energy loss Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers #2 -Particle Physics Experiments at High Energy Colliders John Hauptman, Kyungpook National

More information

Detectors in Nuclear Physics (40 hours)

Detectors in Nuclear Physics (40 hours) Detectors in Nuclear Physics (40 hours) Silvia Leoni, Silvia.Leoni@mi.infn.it http://www.mi.infn.it/~sleoni Complemetary material: Lectures Notes on γ-spectroscopy LAB http://www.mi.infn.it/~bracco Application

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Initial estimates for R 0 and Γ0 R Γ. Γ k. State estimate R Error covariance. k+1 k+1

Initial estimates for R 0 and Γ0 R Γ. Γ k. State estimate R Error covariance. k+1 k+1 HERA-B -32 VDET -1 CATS track fitting algorithm based on the discrete Kalman filter D. Emeliyanov 12 I. Kisel 34 1 Institute of Control Sciences, Profsoyuznaya ul., 65, Moscow, 11786 Russia 2 Deutsches

More information

Geometry optimization of a barrel silicon pixelated tracker *

Geometry optimization of a barrel silicon pixelated tracker * Chinese Physics C Vol. 1, No. 8 (017) 086001 Geometry optimization of a barrel silicon pixelated tracker * Qing-Yuan Liu() 1, Meng Wang() 1;1) Marc Winter 1 School of Physics and Key Laboratory of Particle

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Neutron pulse height analysis (R405n)

Neutron pulse height analysis (R405n) Neutron pulse height analysis (R405n) Y. Satou April 6, 2011 Abstract A pulse height analysis was made for the neutron counter hodoscope used in R405n. By normalizing the pulse height distributions measured

More information

The ALICE Inner Tracking System Off-line Software

The ALICE Inner Tracking System Off-line Software The ALICE Inner Tracking System Off-line Software Roberto Barbera 1;2 for the ALICE Collaboration 1 Istituto Nazionale di Fisica Nucleare, Sezione di Catania Italy 2 Dipartimento di Fisica dell Università

More information

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1 Physics 663 Particle Physics Phenomenology April 23, 2002 Physics 663, lecture 4 1 Detectors Interaction of Charged Particles and Radiation with Matter Ionization loss of charged particles Coulomb scattering

More information

Charged Particle Identification in GLUEX

Charged Particle Identification in GLUEX Outline E.Chudakov JLab GLUEX PID 1 Charged Particle Identification in GLUEX E.Chudakov for GLUEX Collaboration JLab GLUEX PID Review, March 2008 http://www.jlab.org/~gen/gluex/talk_pid_rev.pdf Outline

More information

Monte Carlo radiation transport codes

Monte Carlo radiation transport codes Monte Carlo radiation transport codes How do they work? Michel Maire (Lapp/Annecy) 23/05/2007 introduction to Monte Carlo radiation transport codes 1 Decay in flight (1) An unstable particle have a time

More information

Passage of Charged Particles in matter. Abstract:

Passage of Charged Particles in matter. Abstract: Passage of Charged Particles in matter Submitted by: Sasmita Behera, Advisor: Dr. Tania Moulik School of Physical Sciences NATIONAL INSTITUTE OF SCIENCE EDUCATION AND RESEARCH Abstract: In this report,

More information

The LHC Experiments. TASI Lecture 2 John Conway

The LHC Experiments. TASI Lecture 2 John Conway The LHC Experiments TASI 2006 - Lecture 2 John Conway Outline A. Interactions of Particles With Matter B. Tracking Detectors C. Calorimetry D. CMS and ATLAS Design E. The Mystery of Triggering F. Physics

More information

Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010

Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010 Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010 Matthew Wetstein - Enrico Fermi Institute, University of Chicago HEP Division, Argonne

More information

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85.

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85. Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG 2018 @ Würzburg (.03.22, T85.1) Mu3e Experiment Mu3e Experiment: Search for Lepton Flavor Violation

More information

Simulation of J/ψ detection via electron-positron decay

Simulation of J/ψ detection via electron-positron decay 1 Simulation of J/ψ detection via electron-positron decay Goran Kružić Faculty of Science, University of Zagreb, Croatia 6 th Austrian Croatian Hungarian meeting Summer workshop for theoretical physics

More information

Detectors in Nuclear Physics (48 hours)

Detectors in Nuclear Physics (48 hours) Detectors in Nuclear Physics (48 hours) Silvia Leoni, Silvia.Leoni@mi.infn.it http://www.mi.infn.it/~sleoni Complemetary material: Lectures Notes on γ-spectroscopy LAB http://www.mi.infn.it/~bracco Application

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Interaction of Electron and Photons with Matter

Interaction of Electron and Photons with Matter Interaction of Electron and Photons with Matter In addition to the references listed in the first lecture (of this part of the course) see also Calorimetry in High Energy Physics by Richard Wigmans. (Oxford

More information

General Information. Muon Lifetime Update. Today s Agenda. The next steps. Reports due May 14

General Information. Muon Lifetime Update. Today s Agenda. The next steps. Reports due May 14 General Information Muon Lifetime Update The next steps Organize your results Analyze, prepare plots, fit lifetime distribution Prepare report using the Latex templates from the web site Reports due May

More information

FATRAS. A Novel Fast Track Simulation Engine for the ATLAS Experiment. Sebastian Fleischmann on behalf of the ATLAS Collaboration

FATRAS. A Novel Fast Track Simulation Engine for the ATLAS Experiment. Sebastian Fleischmann on behalf of the ATLAS Collaboration A Novel Fast Track Engine for the ATLAS Experiment on behalf of the ATLAS Collaboration Physikalisches Institut University of Bonn February 26th 2010 ACAT 2010 Jaipur, India 1 The ATLAS detector Fast detector

More information

Particle Interactions in Detectors

Particle Interactions in Detectors Particle Interactions in Detectors Dr Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University, Uxbridge Peter.Hobson@brunel.ac.uk http://www.brunel.ac.uk/~eestprh/

More information

PARTICLE TRACKING USING THE UNSCENTED KALMAN FILTER IN HIGH ENERGY PHYSICS EXPERIMENTS. Jahanzeb Akhtar

PARTICLE TRACKING USING THE UNSCENTED KALMAN FILTER IN HIGH ENERGY PHYSICS EXPERIMENTS. Jahanzeb Akhtar PARTICLE TRACKING USING THE UNSCENTED KALMAN FILTER IN HIGH ENERGY PHYSICS EXPERIMENTS Jahanzeb Akhtar A thesis submitted for the degree of Doctor of Philosophy Brunel University London September 2015

More information

Transverse momentum spectra using the Inner Tracking System of the ALICE experiment at LHC

Transverse momentum spectra using the Inner Tracking System of the ALICE experiment at LHC - 1 - Transverse momentum spectra using the Inner Tracking System of the ALICE experiment at LHC Seminario di fine secondo anno di dottorato Torino, 3 Febbraio 2010 Outline - 2-1 2 3 4 5 A Large Ion Collider

More information

Cherenkov Detector Simulation

Cherenkov Detector Simulation Outline E.Chudakov JLab Cherenkov Detector 1 Cherenkov Detector Simulation E.Chudakov 1 1 JLab For GLUEX Collaboration Meeting, March 2007 http://www.jlab.org/~gen/gluex/gas_cher_geom.html Outline E.Chudakov

More information

Simulation of Energy Loss Straggling Maria Physicist January 17, 1999

Simulation of Energy Loss Straggling Maria Physicist January 17, 1999 Simulation of Energy Loss Straggling Maria Physicist January 17, 1999 i This text should be read with a pinch of salt 1. ntroduction Due to the statistical nature of ionisation energy loss, large fluctuations

More information

13 Path Planning Cubic Path P 2 P 1. θ 2

13 Path Planning Cubic Path P 2 P 1. θ 2 13 Path Planning Path planning includes three tasks: 1 Defining a geometric curve for the end-effector between two points. 2 Defining a rotational motion between two orientations. 3 Defining a time function

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

Study of the MPD detector performance in pp collisions at NICA

Study of the MPD detector performance in pp collisions at NICA Study of the MPD detector performance in pp collisions at NICA Katherin Shtejer Díaz On behalf of the MPD Collaboration VBLHEP, JINR, Russia NICA Days 2017, November 6-10 Introduction Phase diagram of

More information

Particle Identification Techniques Basic definitions and introductory remarks. Ionization energy loss. Time of Flight. Cherenkov radiation

Particle Identification Techniques Basic definitions and introductory remarks. Ionization energy loss. Time of Flight. Cherenkov radiation Particle Identification Techniques Basic definitions and introductory remarks Ionization energy loss Time of Flight Cherenkov radiation Transition radiation Prof. J. Engelfried (next week) Advised textbooks:

More information

Simulation and event reconstruction inside the PandaRoot framework

Simulation and event reconstruction inside the PandaRoot framework Journal of Physics: Conference Series Simulation and event reconstruction inside the PandaRoot framework To cite this article: S Spataro 28 J. Phys.: Conf. Ser. 119 3235 View the article online for updates

More information

remsstrahlung 1 Bremsstrahlung

remsstrahlung 1 Bremsstrahlung remsstrahlung 1 Bremsstrahlung remsstrahlung 2 Bremsstrahlung A fast moving charged particle is decelerated in the Coulomb field of atoms. A fraction of its kinetic energy is emitted in form of real photons.

More information

Event Reconstruction: Tracking

Event Reconstruction: Tracking Event Reconstruction: Tracking Few points Most everyone did not get the randomness part of homework one correctly. If you want to generate a random number from a distribution you can just generate a random

More information

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 Target Tracking Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Slides by Kai Arras, Gian Diego Tipaldi, v.1.1, Jan 2012 Chapter Contents Target Tracking Overview Applications

More information

Usage of GEANT 4 versions: 6, 7 & 8 in BABAR

Usage of GEANT 4 versions: 6, 7 & 8 in BABAR Usage of GEANT 4 versions: 6, 7 & 8 in BABAR Swagato Banerjee Computing in High Energy and Nuclear Physics (CHEP) 4 September 27, Victoria. SLAC-Based B-Factory: PEP II & BABAR The BABAR Detector: Simulation

More information

Kalman Filters, Dynamic Bayesian Networks

Kalman Filters, Dynamic Bayesian Networks Course 16:198:520: Introduction To Artificial Intelligence Lecture 12 Kalman Filters, Dynamic Bayesian Networks Abdeslam Boularias Monday, November 16, 2015 1 / 40 Example: Tracking the trajectory of a

More information

Study of TileCal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction

Study of TileCal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction Study of Cal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction J.Budagov 1), G.Khoriauli 1), ), J.Khubua 1), ), A.Khukhunaishvili 1), Y.Kulchitsky 1), 4), A.Solodkov 5) 1) JINR, Dubna

More information

arxiv: v2 [nucl-ex] 6 Oct 2008

arxiv: v2 [nucl-ex] 6 Oct 2008 he ime Projection Chamber for the ALICE Experiment C. Lippmann and the ALICE PC Collaboration CERN, 1211 Geneva 23, Switzerland he ime Projection Chamber of the ALICE Experiment has been installed in the

More information

Gaussian Processes for Sequential Prediction

Gaussian Processes for Sequential Prediction Gaussian Processes for Sequential Prediction Michael A. Osborne Machine Learning Research Group Department of Engineering Science University of Oxford Gaussian processes are useful for sequential data,

More information

Particle Physics Homework Assignment 4

Particle Physics Homework Assignment 4 Particle Physics Homework Assignment 4 Prof. Costas Foudas March 01 Problem 1: Show the the momentum, p of a particle moving in a circular trajectory of radius, R, in a magnetic field, B, is given by:

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

Accurate numerical orbit propagation using Polynomial Algebra Computational Engine PACE. ISSFD 2015 congress, Germany. Dated: September 14, 2015

Accurate numerical orbit propagation using Polynomial Algebra Computational Engine PACE. ISSFD 2015 congress, Germany. Dated: September 14, 2015 Accurate numerical orbit propagation using Polynomial Algebra Computational Engine PACE Emmanuel Bignon (), Pierre mercier (), Vincent Azzopardi (), Romain Pinède () ISSFD 205 congress, Germany Dated:

More information

day1- determining particle properties Peter Wittich Cornell University

day1- determining particle properties Peter Wittich Cornell University day1- determining particle properties Peter Wittich Cornell University One view of experiment xkcd, http://xkcd.com/ looks like ATLAS! CMS is clearly different. :) 2 my goal for these lectures give you

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Discovery of the muon and the pion Energy losses of charged particles. This is an important

More information

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines Curve Fitting Why do we want to curve fit? In general, we fit data points to produce a smooth representation of the system whose response generated the data points We do this for a variety of reasons 1

More information

Tracking at the LHC. Pippa Wells, CERN

Tracking at the LHC. Pippa Wells, CERN Tracking at the LHC Aims of central tracking at LHC Some basics influencing detector design Consequences for LHC tracker layout Measuring material before, during and after construction Pippa Wells, CERN

More information

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Lectures and Exercise Summer Semester 2016 1 Organization Language:

More information

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Cross Section of Exclusive π Electro-production from Neutron Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Exclusive π electro-production Detect e`, π and at least ONE of the two final

More information

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO LECTURE NOTES FYS 4550/FYS9550 - EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I PROBABILITY AND STATISTICS A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO Before embarking on the concept

More information

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Leszek Adamczyk On behalf of STAR Collaboration September 7, 2016 RHIC AA: Au+Au, Cu+Cu,

More information

Geant4 electromagnetic physics for the LHC and other HEP applications

Geant4 electromagnetic physics for the LHC and other HEP applications Geant4 electromagnetic physics for the LHC and other HEP applications Andreas Schälicke on behalf of the Geant4 EM Working Groups DESY, Zeuthen October 18th, CHEP 2010, Taipei, Taiwan A. Schälicke (DESY,

More information

AGILE AGN Working Group S.Mereghetti - on behalf of the AGILE Team

AGILE AGN Working Group S.Mereghetti - on behalf of the AGILE Team AGILE Scientific Program and S. Mereghetti on behalf of the AGILE team Data Rights AGILE Science Management Plan High level document issued in February 2004 Defines: Scientific Management of the mission

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Tracking detectors for the LHC. Peter Kluit (NIKHEF)

Tracking detectors for the LHC. Peter Kluit (NIKHEF) Tracking detectors for the LHC Peter Kluit (NIKHEF) Overview lectures part I Principles of gaseous and solid state tracking detectors Tracking detectors at the LHC Drift chambers Silicon detectors Modeling

More information

STATISTICAL ORBIT DETERMINATION

STATISTICAL ORBIT DETERMINATION STATISTICAL ORBIT DETERMINATION Satellite Tracking Example of SNC and DMC ASEN 5070 LECTURE 6 4.08.011 1 We will develop a simple state noise compensation (SNC) algorithm. This algorithm adds process noise

More information

Experimental Methods of Particle Physics

Experimental Methods of Particle Physics Experimental Methods of Particle Physics (PHY461) Fall 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Overview 1) Introduction / motivation measurement of particle momenta: magnetic field early

More information

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Today s Lecture: 1) Electromagnetic and hadronic showers 2) Calorimeter design Absorber Incident particle Detector Reconstructing

More information

PAMELA satellite: fragmentation in the instrument

PAMELA satellite: fragmentation in the instrument PAMELA satellite: fragmentation in the instrument Alessandro Bruno INFN, Bari (Italy) for the PAMELA collaboration Nuclear Physics for Galactic CRs in the AMS-02 era 3-4 Dec 2012 LPSC, Grenoble The PAMELA

More information

arxiv:hep-ex/ v1 5 Apr 2000

arxiv:hep-ex/ v1 5 Apr 2000 Track Fit Hypothesis Testing and Kink Selection using Sequential Correlations Robert V. Kowalewski and Paul D. Jackson arxiv:hep-ex/48v 5 Apr 2 Abstract Department of Physics and Astronomy, University

More information

Studies of Cylindrical Drift Chamber for COMET Phase-I

Studies of Cylindrical Drift Chamber for COMET Phase-I Studies of Cylindrical Drift Chamber for COMET Phase-I Speaker: TingSam Wong 1 22 th Feb, 2017 Outline Introduction Studies related to CDC Software studies Track reconstruction Future prospect Summary

More information

Charge Reconstruction with a Magnetized Muon Range Detector in TITUS

Charge Reconstruction with a Magnetized Muon Range Detector in TITUS Charge Reconstruction with a Magnetized Muon Range Detector in TITUS Mark A. Rayner (Université de Genève) on behalf of the TITUS working group 5 th open Hyper-Kamiokande meeting UBC Vancouver, 22 nd July

More information

Parameterization of the Transport of Charged Particles through Gaseous Volumes in Geant4 Via an Interface with Garfield

Parameterization of the Transport of Charged Particles through Gaseous Volumes in Geant4 Via an Interface with Garfield Parameterization of the Transport of Charged Particles through Gaseous Volumes in Geant4 Via an Interface with Garfield Or How I Learned to Stop Worrying and Love Geant4 With a Spare Time Project Alain

More information

Interaction of Particles and Matter

Interaction of Particles and Matter MORE CHAPTER 11, #7 Interaction of Particles and Matter In this More section we will discuss briefly the main interactions of charged particles, neutrons, and photons with matter. Understanding these interactions

More information

Cosmic Muons and the Cosmic Challenge. data taken with B 3.5Tesla, red lines are reconstructed chamber segments

Cosmic Muons and the Cosmic Challenge. data taken with B 3.5Tesla, red lines are reconstructed chamber segments Cosmic Muons and the Cosmic Challenge data taken with B 3.5Tesla, red lines are reconstructed chamber segments 0 Preamble Warning: Data analyzed in this talk are just a few days old, so all interpretations

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

Future prospects for the measurement of direct photons at the LHC

Future prospects for the measurement of direct photons at the LHC Future prospects for the measurement of direct photons at the LHC David Joffe on behalf of the and CMS Collaborations Southern Methodist University Department of Physics, 75275 Dallas, Texas, USA DOI:

More information

Interazioni delle particelle cariche. G. Battistoni INFN Milano

Interazioni delle particelle cariche. G. Battistoni INFN Milano Interazioni delle particelle cariche G. Battistoni INFN Milano Collisional de/dx of heavy charged particles A particle is heavy if m part >>m electron. The energy loss is due to collision with atomic electrons.

More information

From Hits to Four-Vectors. Andy Foland Harvard University NEPPSR 2005 Craigville, MA

From Hits to Four-Vectors. Andy Foland Harvard University NEPPSR 2005 Craigville, MA From Hits to Four-Vectors Andy Foland Harvard University NEPPSR 2005 Craigville, MA Thomas A. Edison Outline Outline Detection Pattern Recognition Parameter Estimation Resolution Systematics Learning More

More information

Monte-Carlo simulations for Drell-Yan in COMPASS

Monte-Carlo simulations for Drell-Yan in COMPASS Monte-Carlo simulations for Drell-Yan in COMPASS C. Quintans, LIP-Lisbon on behalf of the COMPASS Collaboration 26 th February 214 COMPASS Co-financed by: Monte-Carlo simulations for Drell-Yan in COMPASS

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Concepts of Event Reconstruction

Concepts of Event Reconstruction August 3, 2007 Directly Detectable Particles electrons, positrons: e ±, lightest charged lepton photons: γ, gauge boson for electromagnetic force pions: π ±, lightest mesons kaons: K ±, K L, lightest strange

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Probabilistic Robotics

Probabilistic Robotics University of Rome La Sapienza Master in Artificial Intelligence and Robotics Probabilistic Robotics Prof. Giorgio Grisetti Course web site: http://www.dis.uniroma1.it/~grisetti/teaching/probabilistic_ro

More information

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Valuable particles at hadron colliders are the electron e ± for W ±! e ± & Z

More information

Overview of the PandaRoot Framework

Overview of the PandaRoot Framework Overview of the PandaRoot Framework for the Stefano Spataro computing group ISTITUTO NAZIONALE DI FISICA NUCLEARE Sezione di Torino Thuersday, 18th November, 2010 The Panda experiment AntiProton Annihilations

More information