SUPPLEMENTARY MATERIAL

Size: px
Start display at page:

Download "SUPPLEMENTARY MATERIAL"

Transcription

1 SUPPLEMENTARY MATERIAL INDIVIDUAL VARIABILITY IN TREE ALLOMETRY DETERMINES LIGHT RESOURCE ALLOCATION IN FOREST ECOSYSTEMS A HIERARCHICAL BAYESIAN APPROACH. in Oecologia Ghislain Vieilledent,1,,3 Benoît Courbaud 1,6 Georges Kunstler 1 Jean-François Dhôte 4,5 and James S. Clark 6 [ ] Corresponding author: \ ghislain.vieilledent@cirad.fr \Phone: \Fax: [1] Cemagref Mountain Ecosystems Research Unit, rue de la Papeterie, BP 76, F 3840 Saint-Martin-d Hères cedex, France [] AgroParisTech UMR109, Laboratoire d Etude des Ressources Forêt Bois, 14 rue Girardet, F Nancy, France [3] Cirad UR105 Forest Ecosystem Goods and Services, TA C-105/D, Campus International de Baillarguet, F Montpellier Cedex 5, France [4] INRA UMR109, Laboratoire d Etude des Ressources Forêt Bois, 14 rue Girardet, F Nancy, France [5] ONF Département Recherche, Boulevard de Constance, F Fontainebleau, France [6] Duke University Nicholas School of the Environment and Earth Sciences, box 9038 Durham NC, 7708, USA 1

2 Species (% of stems at Number of Site Elevation Surface first census) First Second Site name Country Alps region Latitude Longitude trees (first number (m) (ha) census) Abies Picea census census Others alba abies 1 Luan Switzerland Canton of Vaud ' 45 N 6 58' 16 E Miroir1 France Tarentaise ' 18" N 6 53' 07" E Miroir3 France Tarentaise ' 19" N 6 53' 09" E Premol France Belledone ' 41" N 5 51' 6" E Queige France Beaufortain ' 57'' N 6 7' 30'' E Sixt France Haut Giffre ' 16" N 6 48' 51" E SteFoy France Tarentaise ' 08'' N 6 54' 3'' E StRhemy Italy Aosta Valley N E Teppas Italy Aosta Valley ' 36'' N 6 40' 30'' E Appendix S1: Plot characteristics. Trees were measured on nine different plots ranging in size from 0.5 ha to 1 ha. Six plots were located in the French Alps, two in the Italian Alps and one in the Swiss Alps. Stands are uneaven-aged. Abies alba Mill. (Silver Fir) and Picea abies (L.) Karst. (Norway spruce) are the dominant species. All sites are situated at the mountain-belt elevation from 800 to 1800 m.

3 H (m) Mean Linear Power Quotient Michaelis Menten Gompertz Mean by DBH class CH (m) Mean Linear Power Mean by H class DBH (cm) (a) H (m) (b) CR (m) Mean Linear Power Mean by DBH class DBH (cm) (c) Appendix S: Graphical superposition of calibrated mathematical functions with points representing the mean of the response by covariate class. Allometries are: (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH. Some parametric functions may be too much constrained by an unbalanced data-set, where the number of smaller trees is much more important than the number of bigger trees. Here we show that the graphical superposition of the mathematical function selected and the mean by DBH class (or H class) was good and that selected models were not biased because of an unbalanced data-set. 3

4 (a) H-DBH Model description Model number Mathematical function Parameters Effects (Y: yes, n: no) Covariate DBH Posterior mean of deviance pd DIC Mean model H1 n Linear model H Y Power model H3 Y Monod model H4 Y Michaelis-Menten model H5 Y Gompertz model H6 Y (b) CH-H Model description Model number Mathematical function Parameters Effects (Y: yes, n: no) Covariate H Posterior mean of deviance pd DIC Mean model CH1 n Power model CH Y Linear model CH3 Y (c) CR-DBH Model description Model number Mathematical function Parameters Effects (Y: yes, n: no) Covariate DBH Posterior mean of deviance pd DIC Mean model CR1 n Linear model CR Y Power model CR3 Y Appendix S3: Model comparison for the three allometric relations. Allometries are (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH. The lower the DIC, the best the model. A difference of more than 10 in the DIC rules out the model with the higher DIC. For equivalent DIC, we selected the model with the lower deviance. If the deviance difference was inferior to 10, we applied the parsimonious principle selecting the model with fewer parameters (with the lowest pd). 4

5 Appendix S4: Measurement errors Model for measurement errors Indexes and notations i: Index of the tree. t: Index of the measuring team. T : Number of measurements for each tree (T = 3). I: Number of trees in the measurement error protocol (I = 50). z it : Measurement t of variable for tree i. z can be DBH, height, crown height or crown radius. Z: Vector of observed values z it. z i,0 : Latent variable ( true value ) z for tree i. Z 0 : Vector of true values z i,0. σ z: Variance for measurement errors. N: Normal distribution. LN: Log-normal distribution. IG: Inverse-gamma distribution. Bayes formula p(parameter data, model) Likelihood Prior Likelihood The likelihood is defined as the probability of observing the data under the assumption that the model is true: p(z Z 0, σ z) = T t=1 Ii=1 LN(z it log(z i,o ), σ z) Priors p(log(z i,0 )) = N(log(z i,0 ) u i, v i ), with u i = 0 and v i = p(σ z) = IG(σ z s 1, s ), with s 1 = and s = Joint posterior p(z 0, σ z Z, priors) T t=1 Ii=1 p(z it z i,o, σ z)p(z i,0 )p(σ z) p(z 0, σ z Z, priors) T t=1 Ii=1 LN(z it log(z i,o ), σ z)n(log(z i,0 ) u i, v i )IG(σ z s 1, s ) Conditional posterior for parameter σ z p(σ z Z, Z 0, priors) T t=1 Ii=1 LN(z it log(z i,o ), σ z)ig(σ z s 1, s ) 5

6 Measurement error results MCMC provided 1000 estimates for σ z. The mean and standard variation for σ z were calculated for each dendrometric variable (Tab. S4). We were able to estimate the precision of our measurement as a percentage (Tab. S4) because we considered multiplicative errors: z it = z i,0 exp(ɛ it ). For a 95% confidence interval: σ z ɛ it + σ z exp( σ z ) exp(ɛ it ) exp(+ σ z ) 100(exp( σ z ) 1)(%) measurement error(%) 100(exp(+ σ z ) 1)(%) Results showed a very good estimation of the DBH with a low measurement error (0.93%). Height was also quite well estimated with an error close to 10%. The two other variables, crown height and crown radius, were quite difficult to measure in the field and had a range of precision of approximately 50% and 30%, respectively. Variable Model Mean (σ² z ) Sd (σ² z ) Measurement error (%) confidence interval at 95% lower bound upper bound DBH.1E E H 3.97E E CH 7.78E-0 1.3E CR.4E E Appendix S4: Means and standard deviations for variance associated to measurement errors. Means and variances were calculated from the thousand simulations of σz obtained with MCMC. Credible interval at 95% for the measurement errors were computed. As errors were multiplicative they were expressed in percentage. 6

7 Abies alba Picea abies densities r density densities r density r density τ density r density τ density τ τ density density density density 0e+00 1e 05 e 05 3e 05 4e e+00 1e 05 e 05 3e 05 4e (a) densities density densities density τ density τ τ density τ (b) 7

8 densities b densities densities b densities b b densities τ densities densities τ densities τ τ densities densities densities densities 5.0e e 05.5e e e e 05.5e e (c) Appendix S5: Posteriors and priors for parameters. Allometries are: (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH. Priors are represented with dashed lines (- - -) and posteriors with plain lines ( ). We used informative priors for the measurement error variance on response (σ y) and on covariate (σ x). All other priors were taken non-informative. 8

9 (a) H-DBH Parameter Signification Mean Sd Mean Sd µ [Miroir1] µ [Miroir3] µ [Premol] µ [Queige] µ [Sixt] µ [SteFoy] µ [StRhemy] µ [Teppas] 3.34E E-0 3.4E E-0 3.4E E E E E E E E-0 3.8E E E+00.84E-0 3.5E+00.93E E+00.89E E E E E-0 3.3E E-0 r fixed f parameter 8.46E E E E-03 (b) CH-H 3.1E-0 7.4E E-0.33E E E E E-04.1E E-06.1E E-06.94E E E-0.45E-03 Parameter Signification Mean Sd Mean Sd (c) CR-DBH site fixed effects V variance of individual random effects σ²y errors on response H σ²x errors on covariate DBH τ² variance of log-errors µ [Miroir1] µ [Miroir3] µ [Premol] µ [Queige] µ [Sixt] µ [SteFoy] site fixed effects µ [Teppas] variance of individual random V effects σ²y errors on response CH σ²x errors on covariate H τ² variance of log-errors Abies alba Abies alba Picea abies Picea abies 3.67E E E E E E E E E E E E E E E E E E E E-0.09E E E E-01.13E E E E E E E E E E E E E E E E-0 Abies alba Picea abies Parameter Signification Mean Sd Mean Sd µ [Miroir1] µ [Miroir3] µ [Premol] µ [Queige] µ [Sixt] µ [SteFoy] µ [Teppas] site fixed effects -3.7E E E E E E E E E E E E E E E E E E E E E E E E-0 b fixed f parameter 4.54E E-0 5.5E E-0 V variance of individual random effects σ²y errors on response CR σ²x errors on covariate DBH τ² variance of log-errors 1.48E-0.78E-03.49E-0 4.3E-03.4E E-03.4E E-03.1E E-06.1E E E-0.70E E E-03 Appendix S6: Means and standard deviations of the estimated parameters for the best allometric models. Allometries are: (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH. 9

Spatio-temporal modeling of avalanche frequencies in the French Alps

Spatio-temporal modeling of avalanche frequencies in the French Alps Available online at www.sciencedirect.com Procedia Environmental Sciences 77 (011) 311 316 1 11 Spatial statistics 011 Spatio-temporal modeling of avalanche frequencies in the French Alps Aurore Lavigne

More information

Nonlinear Models. and. Hierarchical Nonlinear Models

Nonlinear Models. and. Hierarchical Nonlinear Models Nonlinear Models and Hierarchical Nonlinear Models Start Simple Progressively Add Complexity Tree Allometries Diameter vs Height with a hierarchical species effect Three response variables: Ht, crown depth,

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway Prediction of settlement delay in critical illness insurance claims by using the generalized beta of the second kind distribution Dodd, Erengul;

More information

The joint posterior distribution of the unknown parameters and hidden variables, given the

The joint posterior distribution of the unknown parameters and hidden variables, given the DERIVATIONS OF THE FULLY CONDITIONAL POSTERIOR DENSITIES The joint posterior distribution of the unknown parameters and hidden variables, given the data, is proportional to the product of the joint prior

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Bayesian Linear Models

Bayesian Linear Models Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu 03/07/2018 Linear model For observations y 1,..., y n, the basic linear model is y i = x 1i β 1 +... + x pi β p + ɛ i, x 1i,..., x pi are predictors

More information

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Probability Sampling Procedures Collection of Data Measures

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5969/1129/dc1 Supporting Online Material for Individuals and the Variation Needed for High Species Diversity in Forest Trees James S. Clark This PDF file includes:

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals Overall Measures of GOF Deviance: this measures the overall likelihood of the model given a parameter vector D( θ) = 2 log L( θ) This can be averaged

More information

General considerations on the use of allometric models for single tree biomass estimation

General considerations on the use of allometric models for single tree biomass estimation General considerations on the use of allometric models for single tree biomass estimation 8th FIA Symposium of the USDA Forest Service, October 16-19 Monterey CA Lutz Fehrmann & Christoph Kleinn 1 General

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model Regression: Part II Linear Regression y~n X, 2 X Y Data Model β, σ 2 Process Model Β 0,V β s 1,s 2 Parameter Model Assumptions of Linear Model Homoskedasticity No error in X variables Error in Y variables

More information

Multiple sensor fault detection in heat exchanger system

Multiple sensor fault detection in heat exchanger system Multiple sensor fault detection in heat exchanger system Abdel Aïtouche, Didier Maquin, Frédéric Busson To cite this version: Abdel Aïtouche, Didier Maquin, Frédéric Busson. Multiple sensor fault detection

More information

Supplementary Material

Supplementary Material Simulation Comparison... S.2 Sampling Surfaces Gove 1 Supplementary Material Some Refinements on the Comparison of Areal Sampling Methods via Simulation J. H. Gove a a USDA Forest Service, Northern Research

More information

Spatial analysis of extreme rainfalls In the Cévennes-Vivarais region

Spatial analysis of extreme rainfalls In the Cévennes-Vivarais region Spatial analysis of extreme rainfalls In the Cévennes-Vivarais region using a nearest neighbor approach Caroline Bernard-Michel (1), Laurent Gardes (1), Stéphane Girard (1), Gilles Molinié (2) (1) INRIA

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

ABC random forest for parameter estimation. Jean-Michel Marin

ABC random forest for parameter estimation. Jean-Michel Marin ABC random forest for parameter estimation Jean-Michel Marin Université de Montpellier Institut Montpelliérain Alexander Grothendieck (IMAG) Institut de Biologie Computationnelle (IBC) Labex Numev! joint

More information

Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations

Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut BYU Statistics Department

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Spatial Inference of Nitrate Concentrations in Groundwater

Spatial Inference of Nitrate Concentrations in Groundwater Spatial Inference of Nitrate Concentrations in Groundwater Dawn Woodard Operations Research & Information Engineering Cornell University joint work with Robert Wolpert, Duke Univ. Dept. of Statistical

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

36-463/663: Multilevel & Hierarchical Models HW09 Solution

36-463/663: Multilevel & Hierarchical Models HW09 Solution 36-463/663: Multilevel & Hierarchical Models HW09 Solution November 15, 2016 Quesion 1 Following the derivation given in class, when { n( x µ) 2 L(µ) exp, f(p) exp 2σ 2 0 ( the posterior is also normally

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Estimating competition coefficients in tree communities: a hierarchical Bayesian approach to neighborhood analysis

Estimating competition coefficients in tree communities: a hierarchical Bayesian approach to neighborhood analysis Estimating competition coefficients in tree communities: a hierarchical Bayesian approach to neighborhood analysis Shinichi Tatsumi, 1, Toshiaki Owari, 2 and Akira S. Mori 1 1 Graduate School of Environment

More information

An Introduction to Mplus and Path Analysis

An Introduction to Mplus and Path Analysis An Introduction to Mplus and Path Analysis PSYC 943: Fundamentals of Multivariate Modeling Lecture 10: October 30, 2013 PSYC 943: Lecture 10 Today s Lecture Path analysis starting with multivariate regression

More information

Bayesian shrinkage approach in variable selection for mixed

Bayesian shrinkage approach in variable selection for mixed Bayesian shrinkage approach in variable selection for mixed effects s GGI Statistics Conference, Florence, 2015 Bayesian Variable Selection June 22-26, 2015 Outline 1 Introduction 2 3 4 Outline Introduction

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Combining Biased and Unbiased Estimators in High Dimensions. (joint work with Ed Green, Rutgers University)

Combining Biased and Unbiased Estimators in High Dimensions. (joint work with Ed Green, Rutgers University) Combining Biased and Unbiased Estimators in High Dimensions Bill Strawderman Rutgers University (joint work with Ed Green, Rutgers University) OUTLINE: I. Introduction II. Some remarks on Shrinkage Estimators

More information

Vincent BADEAU, Renaud RABASTENS (INRA Nancy) Manuel NICOLAS, Erwin ULRICH (ONF Fontainebleau)

Vincent BADEAU, Renaud RABASTENS (INRA Nancy) Manuel NICOLAS, Erwin ULRICH (ONF Fontainebleau) First results of Biosoil in France Vincent BADEAU, Renaud RABASTENS (INRA Nancy) Manuel NICOLAS, Erwin ULRICH (ONF Fontainebleau) BIOSOIL Conference Brussels, 9th November 9 First comparisons between two

More information

Bayesian Methods in Multilevel Regression

Bayesian Methods in Multilevel Regression Bayesian Methods in Multilevel Regression Joop Hox MuLOG, 15 september 2000 mcmc What is Statistics?! Statistics is about uncertainty To err is human, to forgive divine, but to include errors in your design

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Estimation of a bivariate hierarchical Ornstein-Uhlenbeck model for longitudinal data

Estimation of a bivariate hierarchical Ornstein-Uhlenbeck model for longitudinal data Estimation of a bivariate hierarchical Ornstein-Uhlenbeck model for longitudinal data Zita Oravecz & Francis Tuerlinckx (E-mail to: ) IAP workshop, Ghent 19th September, 2008 1 2 The latent OU model 3

More information

A Bayesian multi-dimensional couple-based latent risk model for infertility

A Bayesian multi-dimensional couple-based latent risk model for infertility A Bayesian multi-dimensional couple-based latent risk model for infertility Zhen Chen, Ph.D. Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health

More information

How small wars become big(er) wars: latent dynamics of conflict and the role of peacekeeping

How small wars become big(er) wars: latent dynamics of conflict and the role of peacekeeping How small wars become big(er) wars: latent dynamics of conflict and the role of peacekeeping Gudmund Horn Hermansen 1,2 Håvard Mokleiv Nygård 3 1 Department of Economics, Norwegian Business School 2 Department

More information

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Jin Kyung Park International Vaccine Institute Min Woo Chae Seoul National University R. Leon Ochiai International

More information

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1 Contents Preface to Second Edition Preface to First Edition Abbreviations xv xvii xix PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1 1 The Role of Statistical Methods in Modern Industry and Services

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis PRE 905: Multivariate Analysis Lecture 10: April 15, 2014 PRE 905: Lecture 10 Path Analysis Today s Lecture Path analysis starting with multivariate regression then arriving

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA. Asymptotic Inference in Exponential Families Let X j be a sequence of independent,

More information

Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution

Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution Biswabrata Pradhan & Debasis Kundu Abstract In this article the Bayes estimates of two-parameter gamma distribution is considered.

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory Danaïl Davidov under the supervision of Jean-Philippe Boucher Département de mathématiques Université

More information

Statistics 135: Fall 2004 Final Exam

Statistics 135: Fall 2004 Final Exam Name: SID#: Statistics 135: Fall 2004 Final Exam There are 10 problems and the number of points for each is shown in parentheses. There is a normal table at the end. Show your work. 1. The designer of

More information

Factor Analysis. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Factor Analysis. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Factor Analysis Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA 1 Factor Models The multivariate regression model Y = XB +U expresses each row Y i R p as a linear combination

More information

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes MAD-Bayes: MAP-based Asymptotic Derivations from Bayes Tamara Broderick Brian Kulis Michael I. Jordan Cat Clusters Mouse clusters Dog 1 Cat Clusters Dog Mouse Lizard Sheep Picture 1 Picture 2 Picture 3

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 1.1 The Probability Model...1 1.2 Finite Discrete Models with Equally Likely Outcomes...5 1.2.1 Tree Diagrams...6 1.2.2 The Multiplication Principle...8

More information

Small domain estimation using probability and non-probability survey data

Small domain estimation using probability and non-probability survey data Small domain estimation using probability and non-probability survey data Adrijo Chakraborty and N Ganesh March 2018, FCSM Outline Introduction to the Problem Approaches for Combining Probability and Non-Probability

More information

Lesson 6 Maximum Likelihood: Part III. (plus a quick bestiary of models)

Lesson 6 Maximum Likelihood: Part III. (plus a quick bestiary of models) Lesson 6 Maximum Likelihood: Part III (plus a quick bestiary of models) Homework You want to know the density of fish in a set of experimental ponds You observe the following counts in ten ponds: 5,6,7,3,6,5,8,4,4,3

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Analysis of Type-II Progressively Hybrid Censored Data

Analysis of Type-II Progressively Hybrid Censored Data Analysis of Type-II Progressively Hybrid Censored Data Debasis Kundu & Avijit Joarder Abstract The mixture of Type-I and Type-II censoring schemes, called the hybrid censoring scheme is quite common in

More information

Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis

Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis Weilan Yang wyang@stat.wisc.edu May. 2015 1 / 20 Background CATE i = E(Y i (Z 1 ) Y i (Z 0 ) X i ) 2 / 20 Background

More information

Bayesian learning Probably Approximately Correct Learning

Bayesian learning Probably Approximately Correct Learning Bayesian learning Probably Approximately Correct Learning Peter Antal antal@mit.bme.hu A.I. December 1, 2017 1 Learning paradigms Bayesian learning Falsification hypothesis testing approach Probably Approximately

More information

Cross-sectional space-time modeling using ARNN(p, n) processes

Cross-sectional space-time modeling using ARNN(p, n) processes Cross-sectional space-time modeling using ARNN(p, n) processes W. Polasek K. Kakamu September, 006 Abstract We suggest a new class of cross-sectional space-time models based on local AR models and nearest

More information

Making rating curves - the Bayesian approach

Making rating curves - the Bayesian approach Making rating curves - the Bayesian approach Rating curves what is wanted? A best estimate of the relationship between stage and discharge at a given place in a river. The relationship should be on the

More information

BAYESIAN REGRESSION ANALYSIS WITH LONGITUDINAL MEASUREMENTS. A Dissertation DUCHWAN RYU

BAYESIAN REGRESSION ANALYSIS WITH LONGITUDINAL MEASUREMENTS. A Dissertation DUCHWAN RYU BAYESIAN REGRESSION ANALYSIS WITH LONGITUDINAL MEASUREMENTS A Dissertation by DUCHWAN RYU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Estimating Timber Volume using Airborne Laser Scanning Data based on Bayesian Methods J. Breidenbach 1 and E. Kublin 2

Estimating Timber Volume using Airborne Laser Scanning Data based on Bayesian Methods J. Breidenbach 1 and E. Kublin 2 Estimating Timber Volume using Airborne Laser Scanning Data based on Bayesian Methods J. Breidenbach 1 and E. Kublin 2 1 Norwegian University of Life Sciences, Department of Ecology and Natural Resource

More information

Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution

Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution Matthew Thomas 9 th January 07 / 0 OUTLINE Introduction Previous methods for

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Bayesian Inference for Conditional Copula models with Continuous and Binary Responses

Bayesian Inference for Conditional Copula models with Continuous and Binary Responses Bayesian Inference for Conditional Copula models with Continuous and Binary Responses Radu Craiu Department of Statistics University of Toronto Joint with Avideh Sabeti (Toronto) and Mian Wei (Toronto)

More information

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Forest Research Institute Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Arne Nothdurft 1, Thilo Wolf 1, Andre Ringeler 2, Jürgen Böhner 2, Joachim Saborowski

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Spatial complementarity in tree crowns explains overyielding in species mixtures

Spatial complementarity in tree crowns explains overyielding in species mixtures VOLUME: 1 ARTICLE NUMBER: 0063 In the format provided by the authors and unedited. Spatial complementarity in tree crowns explains overyielding in species mixtures Laura J. Williams, Alain Paquette, Jeannine

More information

Robust Bayesian Simple Linear Regression

Robust Bayesian Simple Linear Regression Robust Bayesian Simple Linear Regression October 1, 2008 Readings: GIll 4 Robust Bayesian Simple Linear Regression p.1/11 Body Fat Data: Intervals w/ All Data 95% confidence and prediction intervals for

More information

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Jeffrey S. Morris University of Texas, MD Anderson Cancer Center Joint wor with Marina Vannucci, Philip J. Brown,

More information

Bayesian Microwave Breast Imaging

Bayesian Microwave Breast Imaging Bayesian Microwave Breast Imaging Leila Gharsalli 1 Hacheme Ayasso 2 Bernard Duchêne 1 Ali Mohammad-Djafari 1 1 Laboratoire des Signaux et Systèmes (L2S) (UMR8506: CNRS-SUPELEC-Univ Paris-Sud) Plateau

More information

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University Bayesian Statistics and Data Assimilation Jonathan Stroud Department of Statistics The George Washington University 1 Outline Motivation Bayesian Statistics Parameter Estimation in Data Assimilation Combined

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

The microwave sky as seen by Planck

The microwave sky as seen by Planck The microwave sky as seen by Planck Ingunn Kathrine Wehus Jet Propulsion Laboratory California Institute of Technology on behalf of the Planck Collaboration Bayesian component separation We adopt a parametric

More information

A first look at the performances of a Bayesian chart to monitor. the ratio of two Weibull percentiles

A first look at the performances of a Bayesian chart to monitor. the ratio of two Weibull percentiles A first loo at the performances of a Bayesian chart to monitor the ratio of two Weibull percentiles Pasquale Erto University of Naples Federico II, Naples, Italy e-mail: ertopa@unina.it Abstract. The aim

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

Report for ICCAT-GBYP 04/2013

Report for ICCAT-GBYP 04/2013 Report for ICCAT-GBYP 4/213 Marie-Pierre Etienne 1, Tom Carruthers 2, and Murdoch McAllister 2 1 AgroParisTech 2 UBC January 15, 214 Contents 1 Introduction 2 2 Description of the main aspects of iscam

More information

Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information

Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information Statistics Preprints Statistics 8-2010 Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information Jiqiang Guo Iowa State University, jqguo@iastate.edu

More information

Calibrating Environmental Engineering Models and Uncertainty Analysis

Calibrating Environmental Engineering Models and Uncertainty Analysis Models and Cornell University Oct 14, 2008 Project Team Christine Shoemaker, co-pi, Professor of Civil and works in applied optimization, co-pi Nikolai Blizniouk, PhD student in Operations Research now

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Investigating posterior contour probabilities using INLA: A case study on recurrence of bladder tumours by Rupali Akerkar PREPRINT STATISTICS NO. 4/2012 NORWEGIAN

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Interval Estimation III: Fisher's Information & Bootstrapping

Interval Estimation III: Fisher's Information & Bootstrapping Interval Estimation III: Fisher's Information & Bootstrapping Frequentist Confidence Interval Will consider four approaches to estimating confidence interval Standard Error (+/- 1.96 se) Likelihood Profile

More information

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model Thai Journal of Mathematics : 45 58 Special Issue: Annual Meeting in Mathematics 207 http://thaijmath.in.cmu.ac.th ISSN 686-0209 The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for

More information