Bayesian Linear Models

Size: px
Start display at page:

Download "Bayesian Linear Models"

Transcription

1 Eric F. Lock UMN Division of Biostatistics, SPH 03/07/2018

2 Linear model For observations y 1,..., y n, the basic linear model is y i = x 1i β x pi β p + ɛ i, x 1i,..., x pi are predictors for the i th observation. ɛ i are error terms. In matrix form: y = X β + ɛ y = (y 1,..., y n ), ɛ = (ɛ 1,..., ɛ n ), β = (β 1,..., β p ) X is the matrix with entries X ij = x ij

3 Linear model Assume X is fixed (non-random) Assume errors are normal and iid with equal variance: ɛ Normal(0, σ 2 I ). Standard frequentist estimates are ˆβ = (X T X ) 1 X T y and ˆσ 2 = s 2 = 1 n p (y X ˆβ) T (y X ˆβ). These estimates are unbiased, and can be motivated by least-squares. Under a Bayesian framework, we put a prior on β and σ 2.

4 Uninformative priors Consider uniform prior for β and Jeffreys prior for σ 2 : π(β, σ 2 ) 1 σ 2. The posterior for β, given σ 2, is ( ) p(β y, σ 2 ) = Normal ˆβ, σ 2 (X T X ) 1 )

5 Uninformative priors The marginal posterior of σ 2 is ( n p p(σ 2 y) = IG, 2 ) (n p)s2 2 Equivalently: σ 2 (n p)s2 U where U χ 2 (n p).

6 Uninformative priors The marginal posterior for β i is a non-central t-distribution: β i ˆβ i t n p. s (X T X ) 1 ii For a new predictor vector x (n+1), the posterior predictive for y n+1 is also a non-central t-distribution: y n+1 x n+1 ˆβ s 1 + x n+1 (X T X ) 1 x n+1 t n p. All given results for π(β, σ 2 ) 1 correspond to standard σ 2 frequentist inference for linear regression!

7 Example: Body Fat The % body fat (BF %) is measured for 100 adult males. 1 Using sophisticated and precise technique (water immersion) Also measure the following for each person: 1: Age (in years) 2: Weight (in pounds) 3: Height (in inches) Circumference of the neck (4), chest (5), abdomen (6), ankle (7), bicep (8), and wrist (9) in cm. Data available at Would like to predict BF % from the 9 additional measurements 1 Johnson, R. Fitting Percentage Body Fat to Simple Body Measurements, Journal of Statistics Education, 1996.

8 Example: Body Fat Assume ỹ = (ỹ 1,..., ỹ 100 ) give BF % for subjects 1,..., 100 ỹ = 18.6% sỹ = 8.01% Let X : be the matrix of standardized predictors X i,j = x i,j mean( x,j ) stdev( x,j ) X i,j is measurement j (unstandardized) for subject i The mean BF% for american adult men is 18.5% For y = ỹ 18.5 consider the model y = βx + ɛ

9 Example: Body Fat Assume ɛ Normal(0, σ 2 I ) Use uninformative prior: π(β, σ 2 ) = 1 σ 2 Recall p(β i y) is a non-central t: β i ˆβ i t 91. s (X T X ) 1 ii where and s = ˆβ = (X T X ) 1 X T y 1 91 y X ˆβ) 2 = 4.11

10 Example: Body Fat Estimates and 95% credible intervals for β i s: Variable ˆβi 95% credible interval Age (-0.186, 2.099) Weight (-7.397, 2.480) Height (-1.328, 1.523) Neck (-1.727, 1.732) Chest (-3.889, 1.526) Abdomen (7.639, ) Ankle (-1.137, 1.745) Biceps (-0.935, 1.844) Wrist (-3.807, ) Models_Rcode1.r

11 Example: Body Fat Recall p(σ 2 y) = IG ( 91 2 ) 91 s2, 2 : density s^2 E(sigma^2 y) sigma^2

12 Variance estimate, uninformative priors Note for the uninformative prior π(µ, σ 2 ) = 1 σ 2, E(σ 2 y) = s2 (n p) n p 2 However, the expected precision is E(1/σ 2 y) = 1 s 2 s 2 still commonly used as point estimate for error variance.

13 Residuals Recall: defined Bayesian residual as r i = y i E(Y i y (i) ) where y (i) = (y 1,..., y i 1, y i+1,..., y n ) For this context, the Bayesian residual is r i = y i x i ˆβ (i) where ˆβ (i) = (X T (i) X (i)) 1 X T (i) y (i). The standard (non-bayesian) definition of residual is r i = y i x i ˆβ

14 Example: Body Fat Standard residuals Predicted Residual Bayesian residuals Predicted Residual

15 Example: Body Fat Predicted vs observed (standard) Predicted Observed Predicted vs observed (Bayesian) Predicted Observed

16 Normal-inverse-gamma prior Consider independent normal priors for the β i s: β σ 2 Normal(0, σ 2 T ) where T ij = τi 2 if i = j, 0 otherwise. And an inverse-gamma prior for σ 2 : The full prior is π(β, σ 2 ) = IG(σ 2 a, b) σ 2 IG(a, b). p i=1 Normal(β i 0, σ 2 τ 2 i )

17 Normal-inverse-gamma prior The posterior for β, given σ 2, is ( ) p(β y, σ 2 ) = Normal β, σ 2 V β where β = (X T X + T 1 ) 1 (X T y) and V β = (X T X + T 1 ) 1

18 Normal-inverse-gamma prior The estimate β solves a penalized least squares criterion: β = argmin y XB 2 + β p i=1 β 2 i /τ 2 i Shrinks unbiased estimate ˆβ toward 0.

19 Normal-inverse-gamma prior The marginal posterior for σ 2 is p(σ 2 y) = IG (a n, b n ) where a n = a + n 2 and b n = b [yt y β T V 1 β β] The marginal posterior for β is a multivariate t-distribution β i β i b n a n (V β ) ii t 2a+n.

20 Normal-inverse-gamma prior For a new predictor vector x n+1, the posterior predictive for y n+1 given σ 2 is y n+1 σ 2 Normal(x n+1 β, σ 2 (1 + x n+1 V β x T n+1)) The full posterior predictive distribution is a non-central t: y n+1 x n+1 β ( ) t 2a+n. b n a n 1 + xn+1 V β x T n+1

21 Extensions There are many other versions of the Bayesian linear model. E.g.: Could use non-trivial mean and covariance for β: β Normal(µ β, T ) E.g.: Could relax iid assumption for y i s, model general covariance: y Normal(X β, Σ) requires a prior for Σ. For more details and derivations see and Carlin & Louis 4.1.1

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2015 Julien Berestycki (University of Oxford) SB2a MT 2015 1 / 16 Lecture 16 : Bayesian analysis

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

1 Multiple Regression

1 Multiple Regression 1 Multiple Regression In this section, we extend the linear model to the case of several quantitative explanatory variables. There are many issues involved in this problem and this section serves only

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15 Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 15 Contingency table analysis North Carolina State University

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Module 4: Bayesian Methods Lecture 5: Linear regression

Module 4: Bayesian Methods Lecture 5: Linear regression 1/28 The linear regression model Module 4: Bayesian Methods Lecture 5: Linear regression Peter Hoff Departments of Statistics and Biostatistics University of Washington 2/28 The linear regression model

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

Simple Linear Regression Using Ordinary Least Squares

Simple Linear Regression Using Ordinary Least Squares Simple Linear Regression Using Ordinary Least Squares Purpose: To approximate a linear relationship with a line. Reason: We want to be able to predict Y using X. Definition: The Least Squares Regression

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Predictive Models Predictive Models 1 / 34 Outline

More information

Robust Bayesian Simple Linear Regression

Robust Bayesian Simple Linear Regression Robust Bayesian Simple Linear Regression October 1, 2008 Readings: GIll 4 Robust Bayesian Simple Linear Regression p.1/11 Body Fat Data: Intervals w/ All Data 95% confidence and prediction intervals for

More information

Stat260: Bayesian Modeling and Inference Lecture Date: March 10, 2010

Stat260: Bayesian Modeling and Inference Lecture Date: March 10, 2010 Stat60: Bayesian Modelin and Inference Lecture Date: March 10, 010 Bayes Factors, -priors, and Model Selection for Reression Lecturer: Michael I. Jordan Scribe: Tamara Broderick The readin for this lecture

More information

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression 1/37 The linear regression model Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression Ken Rice Department of Biostatistics University of Washington 2/37 The linear regression model

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Biostatistics. Correlation and linear regression. Burkhardt Seifert & Alois Tschopp. Biostatistics Unit University of Zurich

Biostatistics. Correlation and linear regression. Burkhardt Seifert & Alois Tschopp. Biostatistics Unit University of Zurich Biostatistics Correlation and linear regression Burkhardt Seifert & Alois Tschopp Biostatistics Unit University of Zurich Master of Science in Medical Biology 1 Correlation and linear regression Analysis

More information

STA 302f16 Assignment Five 1

STA 302f16 Assignment Five 1 STA 30f16 Assignment Five 1 Except for Problem??, these problems are preparation for the quiz in tutorial on Thursday October 0th, and are not to be handed in As usual, at times you may be asked to prove

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Chapter 2 Multiple Regression I (Part 1)

Chapter 2 Multiple Regression I (Part 1) Chapter 2 Multiple Regression I (Part 1) 1 Regression several predictor variables The response Y depends on several predictor variables X 1,, X p response {}}{ Y predictor variables {}}{ X 1, X 2,, X p

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

Caterpillar Regression Example: Conjugate Priors, Conditional & Marginal Posteriors, Predictive Distribution, Variable Selection

Caterpillar Regression Example: Conjugate Priors, Conditional & Marginal Posteriors, Predictive Distribution, Variable Selection Caterpillar Regression Example: Conjugate Priors, Conditional & Marginal Posteriors, Predictive Distribution, Variable Selection Prof. Nicholas Zabaras University of Notre Dame Notre Dame, IN, USA Email:

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Statistical Models. ref: chapter 1 of Bates, D and D. Watts (1988) Nonlinear Regression Analysis and its Applications, Wiley. Dave Campbell 2009

Statistical Models. ref: chapter 1 of Bates, D and D. Watts (1988) Nonlinear Regression Analysis and its Applications, Wiley. Dave Campbell 2009 Statistical Models ref: chapter 1 of Bates, D and D. Watts (1988) Nonlinear Regression Analysis and its Applications, Wiley Dave Campbell 2009 Today linear regression in terms of the response surface geometry

More information

2. Regression Review

2. Regression Review 2. Regression Review 2.1 The Regression Model The general form of the regression model y t = f(x t, β) + ε t where x t = (x t1,, x tp ), β = (β 1,..., β m ). ε t is a random variable, Eε t = 0, Var(ε t

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

Sampling Distributions

Sampling Distributions Merlise Clyde Duke University September 8, 2016 Outline Topics Normal Theory Chi-squared Distributions Student t Distributions Readings: Christensen Apendix C, Chapter 1-2 Prostate Example > library(lasso2);

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Cun-Hui Zhang and Stephanie S. Zhang Rutgers University and Columbia University September 14, 2012 Outline Introduction Methodology

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Module 11: Linear Regression. Rebecca C. Steorts

Module 11: Linear Regression. Rebecca C. Steorts Module 11: Linear Regression Rebecca C. Steorts Announcements Today is the last class Homework 7 has been extended to Thursday, April 20, 11 PM. There will be no lab tomorrow. There will be office hours

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION SEAN GERRISH AND CHONG WANG 1. WAYS OF ORGANIZING MODELS In probabilistic modeling, there are several ways of organizing models:

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression ST 430/514 Recall: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates).

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

Ordinary Least Squares Regression

Ordinary Least Squares Regression Ordinary Least Squares Regression Goals for this unit More on notation and terminology OLS scalar versus matrix derivation Some Preliminaries In this class we will be learning to analyze Cross Section

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973]

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973] Stats 300C: Theory of Statistics Spring 2018 Lecture 20 May 18, 2018 Prof. Emmanuel Candes Scribe: Will Fithian and E. Candes 1 Outline 1. Stein s Phenomenon 2. Empirical Bayes Interpretation of James-Stein

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

WU Weiterbildung. Linear Mixed Models

WU Weiterbildung. Linear Mixed Models Linear Mixed Effects Models WU Weiterbildung SLIDE 1 Outline 1 Estimation: ML vs. REML 2 Special Models On Two Levels Mixed ANOVA Or Random ANOVA Random Intercept Model Random Coefficients Model Intercept-and-Slopes-as-Outcomes

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

Lecture 14: Shrinkage

Lecture 14: Shrinkage Lecture 14: Shrinkage Reading: Section 6.2 STATS 202: Data mining and analysis October 27, 2017 1 / 19 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 370 Regression models are used to study the relationship of a response variable and one or more predictors. The response is also called the dependent variable, and the predictors

More information