1 Multiple Regression

Size: px
Start display at page:

Download "1 Multiple Regression"

Transcription

1 1 Multiple Regression In this section, we extend the linear model to the case of several quantitative explanatory variables. There are many issues involved in this problem and this section serves only as an introduction. We start with an example. Example 1.1. The dataset fat in the faraway package contains several body measurements of 252 adult males. Included in this dataset are two measures of the percentage of body fat, the Brozek and Siri indices. Each of these indices computes the percentage of body fat from the density (in gm/cm 3 ) which in turn is approximated by an underwater weighing technique. This is a time-consuming procedure and it might be useful to be able to estimate the percentage of body fat from easily obtainable measurements. For example, it might be nice to have a relationship of the following form: density = f(x 1,..., x k ) for k easily measured variables x 1,..., x k. We will first investigate the problem of approximating body fat by a function of only weight and abdomen circumference. The data on the first two individuals is given for illustration. > fat[1:2,] brozek siri density age weight height adipos free neck chest abdom hip thigh knee ankle biceps forearm wrist The notation gets a bit messy. We will continue to use y for the response variable and we will use x 1,..., x k for the k explanatory variables. We will again assume that there are n individuals and use the subscript i to range over individuals. Therefore, the i th data point is (x 1i, x 2i,..., x ki, y i ). The standard linear model now becomes the following. The standard linear model The standard linear model is given by the equation y = β 0 + β 1 x β k x k + ε (1) where 1. ε has mean 0 2. ε has standard deviation σ 3. and ε has a normal distribution. We again assume that the n data points are the result of independent ɛ 1,..., ɛ n. To find good estimates of β 0,..., β k we proceed exactly as in the case of one predictor and find the least squares estimates. Specifically, let b i be an estimate of β i and define ŷ i = b o + b 1 x ii + b 2 x 2i + + b k x ki. We choose these estimates so that we minimize SSE where SSE = n (y i ŷ i ) 2. i=1 It is routine to find the values of the b i s that minimize SSE. R computes them with dispatch. Suppose that we use weight and abdomen circumference to try to predict the Brozek measure of body fat.

2 > l=lm(brozek~weight+abdom,data=fat) > l lm(formula = brozek ~ weight + abdom, data = fat) (Intercept) weight abdom In the case of multiple predictors, we need to be very careful in how we interpret the various coefficients of the model. For example b 1 = 0.14 in this model seems to indicate that body fat is decreasing as a function of weight. This is counter to our intuition and our experience which says that the heaviest men tend to have more body fat than average. On the other hand, the coefficient b 2 = seems to be consistent with the relationship between stomach girth and body fat that we know. The key here is that the coefficient b 1 measures the effect of weight on body fat for a fixed abdomen circumference. This makes more sense. Among individuals with a fixed abdomen circumference, the heavier individuals tend to be taller and so have perhaps less body fat. Even this interpretation needs to be expressed carefully however. It is misleading to say that body fat decreases as weight increases with abdomen circumference held fixed since increasing weight tends to increase abdomen circumference. We will come back to this relationship in a moment but first we investigate the problem of inference in this linear model. The short story of inference is that all of the results for the one predictor case have the obvious extensions to more than one variable. To estimate σ, we again use the residual standard error, s e, except that we define it by SSE s e = n (k + 1). The denominator in s e is simply n p where p is the number of estimated coefficients in the model. Using the estimate s e of σ, we can again produce an estimate se(b j ) of the standard deviation of b j and produce confidence intervals for β j. For the body fat data we have > summary(l) lm(formula = brozek ~ weight + abdom, data = fat) Residuals: Min 1Q Median 3Q Max Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** weight e-11 *** abdom < 2e-16 *** Residual standard error: on 249 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 249 DF, p-value: < 2.2e-16 > confint(l) 2.5 % 97.5 % (Intercept) weight abdom From the output we observe the following. Our estimate for σ is the residual standard error, We note that 249 degrees of freedom are used which is since there are three parameters. We can compute the confidence interval for β 1 from the summary table (b 1 = 0.14 and se(b 1 ) = 0.019) using the t distribution with 249 degrees of freedom or from the R function confint.

3 We can compute confidence intervals for the expected value of body fat and prediction intervals for an individual observation as well. Investigating what happens for a male weighing 180 pounds with an abdomen measure of 82 cm gives the following prediction and confidence intervals: > d=data.frame(weight=180, abdom=82) > predict(l,d,interval='confidence') fit lwr upr > predict(l,d,interval='prediction') fit lwr upr The average body fat of such individuals is likely to be between 7.9% and 10.4%. An individual male not part of the dataset is likely to have body fat between 0.91% and 17.4%. We now return to the issue of interpreting the coefficients in the linear model. In the case of the body fat example, let s fit a model with weight as the only predictor. > lm(brozek~weight,data=fat) lm(formula = brozek ~ weight, data = fat) (Intercept) weight Notice that the sign of the relationship between weight and body fat has changed! Using weight alone, we predict an increase of 0.16 in percentage of body fat for each pound increase in weight. What has happened? Let s first restate the two fitted linear relationships: brozek = weight abdom (2) brozek = weight (3) In order to understand the relationships above, it is important to understand that there is a relationship between weight and the abdomen measurement. One more regression is useful. > lm(abdom~weight,data=fat) lm(formula = abdom ~ weight, data = fat) (Intercept) weight Now suppose that we change weight by 10 pounds. The last analysis says that we would predict that the abdomen measure increases by 3.3 cm. Using (2) we see that a increase in 10 pounds of weight and an increase of 3.3 cm in abdomen circumference causes an increase of 10 ( 0.14) (3.3) = 1.6% in Brozek index. But this is precisely what an increase in 10 pounds of weight should produce according (3). The fact that our predictors are linearly related in the set of data (and so presumably in the population that we are modeling) is known as multicollinearity. The presence of multicollinearity makes it difficult to give simple interpretations of the coefficients in a multiple regression. Interaction terms Consider our linear relationship, brozek = weight abdom. This model implies that for any fixed value of abdom, the slope of the line relating brozek to weight is always An alternative (and more complicated) model would be that the slope of this line also changes as the value of abdom changes. One strategy

4 for incorporating such behavior into our model is to add an additional term, an interaction term. The equation for the linear model with an interaction term in the case that there are only two predictor variables is Y = β 0 + β 1 x 1 + β 2 x 2 + β 1,2 x 1 x 2 + ɛ. While this is not the only way that two variables could interact, it seems to be the simplest possible way. R allows us to add an interaction term using a colon. > lm(brozek~weight+abdom+weight:abdom,data=fat) lm(formula = brozek ~ weight + abdom + weight:abdom, data = fat) (Intercept) weight abdom weight:abdom While the coefficient for the interaction term ( ) seems small, one should realize that the values of the product of these two variables are large so that this term contributes significantly to the sum. On the other hand, in the presence of this interaction term, the contribution of the term for weight is now very small. With all the possible variables that we might include in our model and with all the possible interaction terms, it is important to have some tools for evaluating different choices. We take up this issue in the next section. 2 Evaluating Models In the previous section, we considered several different linear models for predicting the Brozek body fat index from easily determined physical measurements. Other models could be considered by using other physical measurements that were available in the dataset. How should we evaluate one of these models and how should we choose among them? One of the principle tools used to evaluate such models is known as the analysis of variance. Given a linear model (any model, really), we choose the parameters to minimize SSE. Recall SSE = n (y i ŷ i ) 2. i=1 Therefore it seems reasonable to suppose that a model with smaller SSE is better than one with large SSE. Such a model seems to explain or account for more of the variation in the y i. Consider the two models for body fat, one using only abdomen circumference and the other only weight.

5 > la=lm(brozek~abdom,data=fat) > anova(la) Analysis of Variance Table Response: brozek Df Sum Sq Mean Sq F value Pr(>F) abdom < 2.2e-16 *** Residuals > lw=lm(brozek~weight,data=fat) > anova(lw) Analysis of Variance Table Response: brozek Df Sum Sq Mean Sq F value Pr(>F) weight < 2.2e-16 *** Residuals Among other things, the function anova() tells us that SSE = 5, 095 for the linear model using abdomen circumference and SSE = 9, 410 for the model using only weight. While this comparison seems clearly to indicate that abdomen circumference predicts Brozek index better on average than does weight, using SSE as an absolute measure of goodness of fit is has two shortcomings. First, the units of SSE are in terms of the squares of y units which means that SSE will tend to be large or small according as the observations are large or small. Second, we will obviously reduce SSE by including more variables in the model so that comparing SSE does not give us a good way of comparing, say, the model with abdomen circumference and weight to the model with abdomen circumference alone. We address the first issue first. We would like to transform SSE into a dimension free measurement. The key to doing this is to compare SSE to the maximum possible SSE. To do this, define SSTotal = n (y i ȳ) 2, i=1 The quantity SSTotal is just the quantity SSE for the model with only a constant term. The quantity SSTotal can be computed from the output of the function anova() by summing the column labeled Sum Sq. For the body fat data, that number is SSTotal = 1, We first note that 0 SSE SSTotal. This is because choosing b 0 = ȳ and b 1 = 0 would already achieve SSE = SSTotal but SSE is the minimum among all choices of b 0, b 1. Using this fact, we have a first measure of the fit of a linear model. Define R 2 = 1 SSE SSTotal. We have that 0 R 2 1 and R 2 is close to 1 if linear part of the model fits the data well. The number R 2 is sometimes called the coefficient of determination of the model and is often read as a percentage. In the model for Brozek index which uses only abdomen circumference, we can compute R 2 from the statistics in the analysis of variance table or else we can read it from the summary of the regression where it is labeled Multiple R-Squared. We read the result below as abdomen circumference explains 66.2% of the variation in Brozek index and weight explains 37.6% of the variation in the Brozek index.

6 > summary(la) lm(formula = brozek ~ abdom, data = fat) Residuals: Min 1Q Median 3Q Max Estimate Std. Error t value Pr(> t ) (Intercept) <2e-16 *** abdom <2e-16 *** Residual standard error: on 250 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 250 DF, p-value: < 2.2e-16 > summary(lw) lm(formula = brozek ~ weight, data = fat) Residuals: Min 1Q Median 3Q Max Estimate Std. Error t value Pr(> t ) (Intercept) e-05 *** weight < 2e-16 *** Residual standard error: on 250 degrees of freedom Multiple R-squared: 0.376, Adjusted R-squared: F-statistic: on 1 and 250 DF, p-value: < 2.2e-16 The number R 2 values for two different models with the same number of parameters gives us a reasonable way to compare their usefulness. However R 2 is a misleading tool for comparing models with differing numbers of parameters. After all, if we allow ourselves n different parameters (i.e., we have n different explanatory variables), we will be able to fit the data exactly and so achieve R 2 = 100%. There are a many ways to compare two such models the one that we explore here compares two nested models based on their respective SSE. Suppose that we have two different models, one of which is nested in the other. For example, the models model1 : model2 : brozek = β 0 + β 1 weight brozek = β 0 + β 1 weight + β 2 abdom are nested in this way. We compute a statstic, called the F statistic, that compares the SSE of the two models. In the following notation, suppose we have two models, model1 with p 1 parameters and sum of squared residuals equal to SSE 1 and similarly for model2. Here model2 contains all the parameters of model1 so that p 1 < p 2. Define F = (SSE 1 SSE 2 )/(p 2 p 1 ) SSE 1 /(n p 1 )

7 If model2 is substantially better than model1, then the F statistic is large but if not then the F statistic is small. We now take as our null hypothesis that all the extra parameters in model2 are 0. The anova() function of R computes the F statstic and the p-value for this null hypothesis: > anova(lw,l) Analysis of Variance Table Model 1: brozek ~ weight Model 2: brozek ~ weight + abdom Res.Df RSS Df Sum of Sq F Pr(>F) < 2.2e-16 *** This result (given the extremely low p value) should be read as including abdom in the model explains significantly more variation that the model that has weight alone. In particular, this p-value tests the null hypothesis H 0 : β 2 = 0.

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

1 Use of indicator random variables. (Chapter 8)

1 Use of indicator random variables. (Chapter 8) 1 Use of indicator random variables. (Chapter 8) let I(A) = 1 if the event A occurs, and I(A) = 0 otherwise. I(A) is referred to as the indicator of the event A. The notation I A is often used. 1 2 Fitting

More information

ST430 Exam 2 Solutions

ST430 Exam 2 Solutions ST430 Exam 2 Solutions Date: November 9, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textbook are permitted but you may use a calculator. Giving

More information

Regression and the 2-Sample t

Regression and the 2-Sample t Regression and the 2-Sample t James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Regression and the 2-Sample t 1 / 44 Regression

More information

Multiple Linear Regression. Chapter 12

Multiple Linear Regression. Chapter 12 13 Multiple Linear Regression Chapter 12 Multiple Regression Analysis Definition The multiple regression model equation is Y = b 0 + b 1 x 1 + b 2 x 2 +... + b p x p + ε where E(ε) = 0 and Var(ε) = s 2.

More information

Unit 6 - Introduction to linear regression

Unit 6 - Introduction to linear regression Unit 6 - Introduction to linear regression Suggested reading: OpenIntro Statistics, Chapter 7 Suggested exercises: Part 1 - Relationship between two numerical variables: 7.7, 7.9, 7.11, 7.13, 7.15, 7.25,

More information

Tests of Linear Restrictions

Tests of Linear Restrictions Tests of Linear Restrictions 1. Linear Restricted in Regression Models In this tutorial, we consider tests on general linear restrictions on regression coefficients. In other tutorials, we examine some

More information

Comparing Nested Models

Comparing Nested Models Comparing Nested Models ST 370 Two regression models are called nested if one contains all the predictors of the other, and some additional predictors. For example, the first-order model in two independent

More information

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 PDF file location: http://www.murraylax.org/rtutorials/regression_anovatable.pdf

More information

SCHOOL OF MATHEMATICS AND STATISTICS

SCHOOL OF MATHEMATICS AND STATISTICS RESTRICTED OPEN BOOK EXAMINATION (Not to be removed from the examination hall) Data provided: Statistics Tables by H.R. Neave MAS5052 SCHOOL OF MATHEMATICS AND STATISTICS Basic Statistics Spring Semester

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Example: 1982 State SAT Scores (First year state by state data available)

Example: 1982 State SAT Scores (First year state by state data available) Lecture 11 Review Section 3.5 from last Monday (on board) Overview of today s example (on board) Section 3.6, Continued: Nested F tests, review on board first Section 3.4: Interaction for quantitative

More information

STAT 215 Confidence and Prediction Intervals in Regression

STAT 215 Confidence and Prediction Intervals in Regression STAT 215 Confidence and Prediction Intervals in Regression Colin Reimer Dawson Oberlin College 24 October 2016 Outline Regression Slope Inference Partitioning Variability Prediction Intervals Reminder:

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

Multiple Regression Part I STAT315, 19-20/3/2014

Multiple Regression Part I STAT315, 19-20/3/2014 Multiple Regression Part I STAT315, 19-20/3/2014 Regression problem Predictors/independent variables/features Or: Error which can never be eliminated. Our task is to estimate the regression function f.

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Stat 401B Exam 2 Fall 2015

Stat 401B Exam 2 Fall 2015 Stat 401B Exam Fall 015 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

General Linear Statistical Models - Part III

General Linear Statistical Models - Part III General Linear Statistical Models - Part III Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Interaction Models Lets examine two models involving Weight and Domestic in the cars93 dataset.

More information

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Spring 2010 The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative

More information

Regression. Marc H. Mehlman University of New Haven

Regression. Marc H. Mehlman University of New Haven Regression Marc H. Mehlman marcmehlman@yahoo.com University of New Haven the statistician knows that in nature there never was a normal distribution, there never was a straight line, yet with normal and

More information

Bayesian Linear Models

Bayesian Linear Models Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu 03/07/2018 Linear model For observations y 1,..., y n, the basic linear model is y i = x 1i β 1 +... + x pi β p + ɛ i, x 1i,..., x pi are predictors

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, October 2013

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, October 2013 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, October 2013 STAC67H3 Regression Analysis Duration: One hour and fifty minutes Last Name: First Name: Student

More information

Biostatistics for physicists fall Correlation Linear regression Analysis of variance

Biostatistics for physicists fall Correlation Linear regression Analysis of variance Biostatistics for physicists fall 2015 Correlation Linear regression Analysis of variance Correlation Example: Antibody level on 38 newborns and their mothers There is a positive correlation in antibody

More information

Lab 3 A Quick Introduction to Multiple Linear Regression Psychology The Multiple Linear Regression Model

Lab 3 A Quick Introduction to Multiple Linear Regression Psychology The Multiple Linear Regression Model Lab 3 A Quick Introduction to Multiple Linear Regression Psychology 310 Instructions.Work through the lab, saving the output as you go. You will be submitting your assignment as an R Markdown document.

More information

Unit 6 - Simple linear regression

Unit 6 - Simple linear regression Sta 101: Data Analysis and Statistical Inference Dr. Çetinkaya-Rundel Unit 6 - Simple linear regression LO 1. Define the explanatory variable as the independent variable (predictor), and the response variable

More information

Multiple Regression Introduction to Statistics Using R (Psychology 9041B)

Multiple Regression Introduction to Statistics Using R (Psychology 9041B) Multiple Regression Introduction to Statistics Using R (Psychology 9041B) Paul Gribble Winter, 2016 1 Correlation, Regression & Multiple Regression 1.1 Bivariate correlation The Pearson product-moment

More information

STAT 571A Advanced Statistical Regression Analysis. Chapter 8 NOTES Quantitative and Qualitative Predictors for MLR

STAT 571A Advanced Statistical Regression Analysis. Chapter 8 NOTES Quantitative and Qualitative Predictors for MLR STAT 571A Advanced Statistical Regression Analysis Chapter 8 NOTES Quantitative and Qualitative Predictors for MLR 2015 University of Arizona Statistics GIDP. All rights reserved, except where previous

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 y 1 2 3 4 5 6 7 x Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 32 Suhasini Subba Rao Previous lecture We are interested in whether a dependent

More information

STAT 3022 Spring 2007

STAT 3022 Spring 2007 Simple Linear Regression Example These commands reproduce what we did in class. You should enter these in R and see what they do. Start by typing > set.seed(42) to reset the random number generator so

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

σ σ MLR Models: Estimation and Inference v.3 SLR.1: Linear Model MLR.1: Linear Model Those (S/M)LR Assumptions MLR3: No perfect collinearity

σ σ MLR Models: Estimation and Inference v.3 SLR.1: Linear Model MLR.1: Linear Model Those (S/M)LR Assumptions MLR3: No perfect collinearity Comparison of SLR and MLR analysis: What s New? Roadmap Multicollinearity and standard errors F Tests of linear restrictions F stats, adjusted R-squared, RMSE and t stats Playing with Bodyfat: F tests

More information

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 2: Multiple Linear Regression Introduction

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 2: Multiple Linear Regression Introduction 22s:152 Applied Linear Regression Chapter 5: Ordinary Least Squares Regression Part 2: Multiple Linear Regression Introduction Basic idea: we have more than one covariate or predictor for modeling a dependent

More information

Chapter 13. Multiple Regression and Model Building

Chapter 13. Multiple Regression and Model Building Chapter 13 Multiple Regression and Model Building Multiple Regression Models The General Multiple Regression Model y x x x 0 1 1 2 2... k k y is the dependent variable x, x,..., x 1 2 k the model are the

More information

13 Simple Linear Regression

13 Simple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 3 Simple Linear Regression 3. An industrial example A study was undertaken to determine the effect of stirring rate on the amount of impurity

More information

STAT 350: Summer Semester Midterm 1: Solutions

STAT 350: Summer Semester Midterm 1: Solutions Name: Student Number: STAT 350: Summer Semester 2008 Midterm 1: Solutions 9 June 2008 Instructor: Richard Lockhart Instructions: This is an open book test. You may use notes, text, other books and a calculator.

More information

Stat 401B Final Exam Fall 2015

Stat 401B Final Exam Fall 2015 Stat 401B Final Exam Fall 015 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

MODELS WITHOUT AN INTERCEPT

MODELS WITHOUT AN INTERCEPT Consider the balanced two factor design MODELS WITHOUT AN INTERCEPT Factor A 3 levels, indexed j 0, 1, 2; Factor B 5 levels, indexed l 0, 1, 2, 3, 4; n jl 4 replicate observations for each factor level

More information

Coefficient of Determination

Coefficient of Determination Coefficient of Determination ST 430/514 The coefficient of determination, R 2, is defined as before: R 2 = 1 SS E (yi ŷ i ) = 1 2 SS yy (yi ȳ) 2 The interpretation of R 2 is still the fraction of variance

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as:

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as: 1 Joint hypotheses The null and alternative hypotheses can usually be interpreted as a restricted model ( ) and an model ( ). In our example: Note that if the model fits significantly better than the restricted

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Warm-up Using the given data Create a scatterplot Find the regression line

Warm-up Using the given data Create a scatterplot Find the regression line Time at the lunch table Caloric intake 21.4 472 30.8 498 37.7 335 32.8 423 39.5 437 22.8 508 34.1 431 33.9 479 43.8 454 42.4 450 43.1 410 29.2 504 31.3 437 28.6 489 32.9 436 30.6 480 35.1 439 33.0 444

More information

Data Analysis 1 LINEAR REGRESSION. Chapter 03

Data Analysis 1 LINEAR REGRESSION. Chapter 03 Data Analysis 1 LINEAR REGRESSION Chapter 03 Data Analysis 2 Outline The Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression Other Considerations in Regression Model Qualitative

More information

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model 1 Linear Regression 2 Linear Regression In this lecture we will study a particular type of regression model: the linear regression model We will first consider the case of the model with one predictor

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

STA121: Applied Regression Analysis

STA121: Applied Regression Analysis STA121: Applied Regression Analysis Linear Regression Analysis - Chapters 3 and 4 in Dielman Artin Department of Statistical Science September 15, 2009 Outline 1 Simple Linear Regression Analysis 2 Using

More information

The simple linear regression model discussed in Chapter 13 was written as

The simple linear regression model discussed in Chapter 13 was written as 1519T_c14 03/27/2006 07:28 AM Page 614 Chapter Jose Luis Pelaez Inc/Blend Images/Getty Images, Inc./Getty Images, Inc. 14 Multiple Regression 14.1 Multiple Regression Analysis 14.2 Assumptions of the Multiple

More information

Chapter 8: Correlation & Regression

Chapter 8: Correlation & Regression Chapter 8: Correlation & Regression We can think of ANOVA and the two-sample t-test as applicable to situations where there is a response variable which is quantitative, and another variable that indicates

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 28. SIMPLE LINEAR REGRESSION III Fitted Values and Residuals To each observed x i, there corresponds a y-value on the fitted line, y = βˆ + βˆ x. The are called fitted values. ŷ i They are the values of

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

Inference with Heteroskedasticity

Inference with Heteroskedasticity Inference with Heteroskedasticity Note on required packages: The following code requires the packages sandwich and lmtest to estimate regression error variance that may change with the explanatory variables.

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Inference. ME104: Linear Regression Analysis Kenneth Benoit. August 15, August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58

Inference. ME104: Linear Regression Analysis Kenneth Benoit. August 15, August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58 Inference ME104: Linear Regression Analysis Kenneth Benoit August 15, 2012 August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58 Stata output resvisited. reg votes1st spend_total incumb minister

More information

Chapter 8 Conclusion

Chapter 8 Conclusion 1 Chapter 8 Conclusion Three questions about test scores (score) and student-teacher ratio (str): a) After controlling for differences in economic characteristics of different districts, does the effect

More information

2. Outliers and inference for regression

2. Outliers and inference for regression Unit6: Introductiontolinearregression 2. Outliers and inference for regression Sta 101 - Spring 2016 Duke University, Department of Statistical Science Dr. Çetinkaya-Rundel Slides posted at http://bit.ly/sta101_s16

More information

Chapter 11: Linear Regression and Correla4on. Correla4on

Chapter 11: Linear Regression and Correla4on. Correla4on Chapter 11: Linear Regression and Correla4on Regression analysis is a sta3s3cal tool that u3lizes the rela3on between two or more quan3ta3ve variables so that one variable can be predicted from the other,

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Regression Analysis IV... More MLR and Model Building

Regression Analysis IV... More MLR and Model Building Regression Analysis IV... More MLR and Model Building This session finishes up presenting the formal methods of inference based on the MLR model and then begins discussion of "model building" (use of regression

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Part II { Oneway Anova, Simple Linear Regression and ANCOVA with R

Part II { Oneway Anova, Simple Linear Regression and ANCOVA with R Part II { Oneway Anova, Simple Linear Regression and ANCOVA with R Gilles Lamothe February 21, 2017 Contents 1 Anova with one factor 2 1.1 The data.......................................... 2 1.2 A visual

More information

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company Multiple Regression Inference for Multiple Regression and A Case Study IPS Chapters 11.1 and 11.2 2009 W.H. Freeman and Company Objectives (IPS Chapters 11.1 and 11.2) Multiple regression Data for multiple

More information

Simple Linear Regression Using Ordinary Least Squares

Simple Linear Regression Using Ordinary Least Squares Simple Linear Regression Using Ordinary Least Squares Purpose: To approximate a linear relationship with a line. Reason: We want to be able to predict Y using X. Definition: The Least Squares Regression

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression ST 430/514 Recall: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates).

More information

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA s:5 Applied Linear Regression Chapter 8: ANOVA Two-way ANOVA Used to compare populations means when the populations are classified by two factors (or categorical variables) For example sex and occupation

More information

No other aids are allowed. For example you are not allowed to have any other textbook or past exams.

No other aids are allowed. For example you are not allowed to have any other textbook or past exams. UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Sample Exam Note: This is one of our past exams, In fact the only past exam with R. Before that we were using SAS. In

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

Stat 412/512 TWO WAY ANOVA. Charlotte Wickham. stat512.cwick.co.nz. Feb

Stat 412/512 TWO WAY ANOVA. Charlotte Wickham. stat512.cwick.co.nz. Feb Stat 42/52 TWO WAY ANOVA Feb 6 25 Charlotte Wickham stat52.cwick.co.nz Roadmap DONE: Understand what a multiple regression model is. Know how to do inference on single and multiple parameters. Some extra

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

1 Introduction 1. 2 The Multiple Regression Model 1

1 Introduction 1. 2 The Multiple Regression Model 1 Multiple Linear Regression Contents 1 Introduction 1 2 The Multiple Regression Model 1 3 Setting Up a Multiple Regression Model 2 3.1 Introduction.............................. 2 3.2 Significance Tests

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

36-707: Regression Analysis Homework Solutions. Homework 3

36-707: Regression Analysis Homework Solutions. Homework 3 36-707: Regression Analysis Homework Solutions Homework 3 Fall 2012 Problem 1 Y i = βx i + ɛ i, i {1, 2,..., n}. (a) Find the LS estimator of β: RSS = Σ n i=1(y i βx i ) 2 RSS β = Σ n i=1( 2X i )(Y i βx

More information

CAS MA575 Linear Models

CAS MA575 Linear Models CAS MA575 Linear Models Boston University, Fall 2013 Midterm Exam (Correction) Instructor: Cedric Ginestet Date: 22 Oct 2013. Maximal Score: 200pts. Please Note: You will only be graded on work and answers

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

Multimodel Inference: Understanding AIC relative variable importance values. Kenneth P. Burnham Colorado State University Fort Collins, Colorado 80523

Multimodel Inference: Understanding AIC relative variable importance values. Kenneth P. Burnham Colorado State University Fort Collins, Colorado 80523 November 6, 2015 Multimodel Inference: Understanding AIC relative variable importance values Abstract Kenneth P Burnham Colorado State University Fort Collins, Colorado 80523 The goal of this material

More information

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I PubH 7405: REGRESSION ANALYSIS MLR: INFERENCES, Part I TESTING HYPOTHESES Once we have fitted a multiple linear regression model and obtained estimates for the various parameters of interest, we want to

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression 36-309/749 Experimental Design for Behavioral and Social Sciences Sep. 22, 2015 Lecture 4: Linear Regression TCELL Simple Regression Example Male black wheatear birds carry stones to the nest as a form

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall)

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) We will cover Chs. 5 and 6 first, then 3 and 4. Mon,

More information

Biostatistics 380 Multiple Regression 1. Multiple Regression

Biostatistics 380 Multiple Regression 1. Multiple Regression Biostatistics 0 Multiple Regression ORIGIN 0 Multiple Regression Multiple Regression is an extension of the technique of linear regression to describe the relationship between a single dependent (response)

More information

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species Lecture notes 2/22/2000 Dummy variables and extra SS F-test Page 1 Crab claw size and closing force. Problem 7.25, 10.9, and 10.10 Regression for all species at once, i.e., include dummy variables for

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Lecture 11: Simple Linear Regression

Lecture 11: Simple Linear Regression Lecture 11: Simple Linear Regression Readings: Sections 3.1-3.3, 11.1-11.3 Apr 17, 2009 In linear regression, we examine the association between two quantitative variables. Number of beers that you drink

More information

Statistics 5100 Spring 2018 Exam 1

Statistics 5100 Spring 2018 Exam 1 Statistics 5100 Spring 2018 Exam 1 Directions: You have 60 minutes to complete the exam. Be sure to answer every question, and do not spend too much time on any part of any question. Be concise with all

More information

Psychology Seminar Psych 406 Dr. Jeffrey Leitzel

Psychology Seminar Psych 406 Dr. Jeffrey Leitzel Psychology Seminar Psych 406 Dr. Jeffrey Leitzel Structural Equation Modeling Topic 1: Correlation / Linear Regression Outline/Overview Correlations (r, pr, sr) Linear regression Multiple regression interpreting

More information

Sections 7.1, 7.2, 7.4, & 7.6

Sections 7.1, 7.2, 7.4, & 7.6 Sections 7.1, 7.2, 7.4, & 7.6 Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1 / 25 Chapter 7 example: Body fat n = 20 healthy females 25 34

More information

Correlation & Simple Regression

Correlation & Simple Regression Chapter 11 Correlation & Simple Regression The previous chapter dealt with inference for two categorical variables. In this chapter, we would like to examine the relationship between two quantitative variables.

More information

Unbalanced Data in Factorials Types I, II, III SS Part 1

Unbalanced Data in Factorials Types I, II, III SS Part 1 Unbalanced Data in Factorials Types I, II, III SS Part 1 Chapter 10 in Oehlert STAT:5201 Week 9 - Lecture 2 1 / 14 When we perform an ANOVA, we try to quantify the amount of variability in the data accounted

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

1 The Classic Bivariate Least Squares Model

1 The Classic Bivariate Least Squares Model Review of Bivariate Linear Regression Contents 1 The Classic Bivariate Least Squares Model 1 1.1 The Setup............................... 1 1.2 An Example Predicting Kids IQ................. 1 2 Evaluating

More information

Regression. Bret Hanlon and Bret Larget. December 8 15, Department of Statistics University of Wisconsin Madison.

Regression. Bret Hanlon and Bret Larget. December 8 15, Department of Statistics University of Wisconsin Madison. Regression Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison December 8 15, 2011 Regression 1 / 55 Example Case Study The proportion of blackness in a male lion s nose

More information