STAT 3022 Spring 2007

Size: px
Start display at page:

Download "STAT 3022 Spring 2007"

Transcription

1 Simple Linear Regression Example These commands reproduce what we did in class. You should enter these in R and see what they do. Start by typing > set.seed(42) to reset the random number generator so you will get the same results we had in class. (Remember that you don t enter the > or + that R uses as a prompt at the beginning of each line.) Now pick 50 x s between 1 and 25: > x <- sample( 25, 50, replace = TRUE ) We can make an approximately linear function of x by entering > y <- 4 * x * rnorm(x) This adds a random component to a line with slope 4 and y-intercept 17; the random part is normally distributed with mean 0 and standard deviation 25. Observe the data. > plot( x, y, las = 1 ) There is a general linear trend, but lots of scatter, too. Find the center of the data, i.e., x and ȳ, and add them to the graph. > xbar <- mean( x ) ; ybar <- mean( y ) ; data.frame( xbar, ybar ) > abline( v = xbar, lty = 3 ) ; axis( 3, at = xbar ) > abline( h = ybar, lty = 3 ) ; axis( 4, at = ybar ) Now we use least squares to fit a line to the data. We can draw that on our graph, and we can compare it to the true regression line. > output <- lm( y ~ x ) > abline( output ) # sample regression line # true (population) regression line > abline( 17, 4, lty = 2, col="red", lwd = 2) It looks like a pretty good fit, but remember that the line we get depends on the points we started with, and they are random. Suppose we started with the same true relation between x and y, that is, with y = 4x + 17 plus a random component which is normally distributed with mean 0 and standard deviation 25, and repeated the process of finding a line based on a sample of 50 points. Every time we do that, we have a different batch of points, so we get a different line, even though all the lines we get are supposed to estimate the same true line, namely y =4x We can use R to do this. Define a function to draw a sample of 50 points and compute the least-squares line. > do.it.again <- function(){ + y <- 4 * x * rnorm(x) + more.output <- lm( y ~ x ) + abline( more.output, col="gray" ) + } Now try it a few times to see how it works. Do lots more > for( i in 1:200 ){ do.it.again() } 1

2 Show the true line again. > abline( 17, 4, lty = 2, lwd = 3, col = "red" ) # true line It should look like this: y x Regression lines 2

3 More examples Here are R commands to do what is shown in some of the worked-out examples in the text. These commands may also be useful for doing some of the homework. These examples use the meat data from one of the case studies. > time <- c( 1, 1, 2, 2, 4, 4, 6, 6, 8, 8 ) > ph <- c( 7.02, 6.93, 6.42, 6.51, 6.07, 5.99, 5.59, 5.80, 5.51, 5.36 ) The first thing to do is to look at the data, and the second is to try fitting a regression model. > plot( time, ph, las = 1 ) # scatterplot of ph versus time > abline( lm( ph ~ time ) ) # ph time Line does not follow curvature of data There is evidence that the model is inadequate; perhaps a transformation would help. Try logarithm of time. > log.time <- log( time ) > meat.data <- data.frame( time, log.time, ph ) > meat <- lm( ph ~ log.time, data = meat.data ) 3

4 ph We ll use these transformed data. > summary( meat ) Call: lm(formula = ph ~ log.time, data = meat.data) Residuals: Min 1Q Median 3Q Max log.time Line fits transformed data much better Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-15 *** log.time e-08 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 8 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 2.695e-08 From this output we see that our estimated standard deviation is ˆσ = and our estimated slope coefficient is , with standard error So ph = log t for t between 1 and 8 hours. 4

5 Point Estimates and Standard Errors (Display 7.10) We can use the line to estimate the value of ph for any time between 1 and 8 hours, whether or not a specific time was one we had data for. Even though we had two observations with time 4 hours, we still use the line to estimate the mean ph for steers at time 4 hours, just as we would for times (such as 5 hours) where we did not have any observations. The point estimate is just the y-coordinate for a given value of time t. For example, we estimate that when t = 4 hours, ph = log 4 = (1.386) = 5.98 but we d like some idea of how reliable this is. We need to compute a standard error, and there are several ways to do that. One way involves the formula 1 SE[ˆµ{Y X 0 }]=ˆσ n + (X 0 X) 2 (n 1)s 2 X for the standard error at a specified X value (X 0 = log t =log4=1.386 in this example). This approach is shown in the text as Display 7.10 on page 187. The text also describes a computer centering trick to avoid having to do all the calculations shown in Display Here s how that works in R. We create an artificial variable, in this case by subtracting log 4 from log(time). > log.time.star <- log.time - log(4) Then fit a model using this instead of the original explanatory variable. > summary( lm( ph ~ log.time.star ) ) Call: lm(formula = ph ~ log.time.star) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** log.time.star e-08 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 8 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 2.695e-08 The only parts we want from this are the estimated intercept and its standard error ; they are the point estimate we already had (shown as 5.98 in Display 7.10) and its standard error (shown as in Display 7.10). 5

6 Confidence Intervals (Display 7.10) We can use the point estimate and its associated standard error to form a confidence interval for the mean ph of all steers measured at time 4 hours. The calculations are shown in the bottom of Display 7.10 and we can add this to our graph ph log.time 95% CI for mean ph at 4 hours after slaughter Remember that this is an estimate for the true mean value of all steers. What if we wanted to predict the ph for a single steer? The point estimate would be the same 5.98, but our uncertainty would be different. Even if we knew the exact true regression line, there would still be sampling variability about that line. That s what σ describes, after all. But we have only our estimated line, and the confidence interval we ve found describes only the variation between the true line and its estimates such as our line. 6

7 Prediction Intervals (Display 7.12) We can form a different interval that allows for additional variability. As before, there are several ways to do this. One way uses the formulas (from page 190) for standard error of prediction: SE[Pred{Y X 0 }]= ˆσ 2 + SE[ˆµ{Y X 0 }] 2 We can use the centering method to get SE[ˆµ{Y X 0 }] and that computer output also gives ˆσ, so this is really not too hard. For our example, we had > summary( lm( ph ~ log.time.star ) ) # same centering as before Call: lm(formula = ph ~ log.time.star) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** log.time.star e-08 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 8 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 2.695e-08 From this output we get SE[ˆµ{Y X 0 }]= ˆσ = We combine these to get SE for prediction > sqrt( ^ ^2 ) # SE for predicted value [1] This is shown as in Display The rest of that display shows how to form a 95% prediction interval, and we can use R to do that, too. > qt( /2, 8 ) # t critical value [1] > * # lower limit [1] > * # upper limit [1]

8 We can add this interval to our graph ph log.time 95% prediction interval for ph at 4 hours after slaughter This shows both the prediction interval and the confidence interval. We can think of the confidence interval as reflecting our uncertainty involving the location of the line itself, and the prediction interval incorporates the additional variability of points scattered about that line. R can do all this at once. The preceding material is useful, no matter what computer software you have. However, many packages, including R have built-in routines for these tasks: > predict( meat, data.frame( log.time = log(4) ), interval = "confidence" ) fit lwr upr [1,] Rounding these values, we have a point estimate of 5.98, and a confidence interval from 5.92 to > predict( meat, data.frame( log.time = log(4) ), interval = "prediction" ) fit lwr upr [1,] Here we still have the same point estimate of 5.98, but our prediction interval is from 5.78 to

Regression on Faithful with Section 9.3 content

Regression on Faithful with Section 9.3 content Regression on Faithful with Section 9.3 content The faithful data frame contains 272 obervational units with variables waiting and eruptions measuring, in minutes, the amount of wait time between eruptions,

More information

Regression and Models with Multiple Factors. Ch. 17, 18

Regression and Models with Multiple Factors. Ch. 17, 18 Regression and Models with Multiple Factors Ch. 17, 18 Mass 15 20 25 Scatter Plot 70 75 80 Snout-Vent Length Mass 15 20 25 Linear Regression 70 75 80 Snout-Vent Length Least-squares The method of least

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Handout 4: Simple Linear Regression

Handout 4: Simple Linear Regression Handout 4: Simple Linear Regression By: Brandon Berman The following problem comes from Kokoska s Introductory Statistics: A Problem-Solving Approach. The data can be read in to R using the following code:

More information

The Statistical Sleuth in R: Chapter 7

The Statistical Sleuth in R: Chapter 7 The Statistical Sleuth in R: Chapter 7 Linda Loi Ruobing Zhang Kate Aloisio Nicholas J. Horton January 21, 2013 Contents 1 Introduction 1 2 The Big Bang 2 2.1 Summary statistics and graphical display........................

More information

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson )

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson ) Tutorial 7: Correlation and Regression Correlation Used to test whether two variables are linearly associated. A correlation coefficient (r) indicates the strength and direction of the association. A correlation

More information

Regression. Marc H. Mehlman University of New Haven

Regression. Marc H. Mehlman University of New Haven Regression Marc H. Mehlman marcmehlman@yahoo.com University of New Haven the statistician knows that in nature there never was a normal distribution, there never was a straight line, yet with normal and

More information

Introduction to Linear Regression

Introduction to Linear Regression Introduction to Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Introduction to Linear Regression 1 / 46

More information

Regression and the 2-Sample t

Regression and the 2-Sample t Regression and the 2-Sample t James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Regression and the 2-Sample t 1 / 44 Regression

More information

We d like to know the equation of the line shown (the so called best fit or regression line).

We d like to know the equation of the line shown (the so called best fit or regression line). Linear Regression in R. Example. Let s create a data frame. > exam1 = c(100,90,90,85,80,75,60) > exam2 = c(95,100,90,80,95,60,40) > students = c("asuka", "Rei", "Shinji", "Mari", "Hikari", "Toji", "Kensuke")

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

Chapter 3 - Linear Regression

Chapter 3 - Linear Regression Chapter 3 - Linear Regression Lab Solution 1 Problem 9 First we will read the Auto" data. Note that most datasets referred to in the text are in the R package the authors developed. So we just need to

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

BIOSTATS 640 Spring 2018 Unit 2. Regression and Correlation (Part 1 of 2) R Users

BIOSTATS 640 Spring 2018 Unit 2. Regression and Correlation (Part 1 of 2) R Users BIOSTATS 640 Spring 08 Unit. Regression and Correlation (Part of ) R Users Unit Regression and Correlation of - Practice Problems Solutions R Users. In this exercise, you will gain some practice doing

More information

Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression

Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression Correlation Linear correlation and linear regression are often confused, mostly

More information

Analytics 512: Homework # 2 Tim Ahn February 9, 2016

Analytics 512: Homework # 2 Tim Ahn February 9, 2016 Analytics 512: Homework # 2 Tim Ahn February 9, 2016 Chapter 3 Problem 1 (# 3) Suppose we have a data set with five predictors, X 1 = GP A, X 2 = IQ, X 3 = Gender (1 for Female and 0 for Male), X 4 = Interaction

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

Introduction and Single Predictor Regression. Correlation

Introduction and Single Predictor Regression. Correlation Introduction and Single Predictor Regression Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Correlation A correlation

More information

Correlation and regression

Correlation and regression Correlation and regression Patrick Breheny December 1, 2016 Today s lab is about correlation and regression. It will be somewhat shorter than some of our other labs, as I would also like to spend some

More information

AMS 7 Correlation and Regression Lecture 8

AMS 7 Correlation and Regression Lecture 8 AMS 7 Correlation and Regression Lecture 8 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Suumer 2014 1 / 18 Correlation pairs of continuous observations. Correlation

More information

Stat 411/511 ESTIMATING THE SLOPE AND INTERCEPT. Charlotte Wickham. stat511.cwick.co.nz. Nov

Stat 411/511 ESTIMATING THE SLOPE AND INTERCEPT. Charlotte Wickham. stat511.cwick.co.nz. Nov Stat 411/511 ESTIMATING THE SLOPE AND INTERCEPT Nov 20 2015 Charlotte Wickham stat511.cwick.co.nz Quiz #4 This weekend, don t forget. Usual format Assumptions Display 7.5 p. 180 The ideal normal, simple

More information

1 The Classic Bivariate Least Squares Model

1 The Classic Bivariate Least Squares Model Review of Bivariate Linear Regression Contents 1 The Classic Bivariate Least Squares Model 1 1.1 The Setup............................... 1 1.2 An Example Predicting Kids IQ................. 1 2 Evaluating

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

1 Multiple Regression

1 Multiple Regression 1 Multiple Regression In this section, we extend the linear model to the case of several quantitative explanatory variables. There are many issues involved in this problem and this section serves only

More information

Multiple Regression Introduction to Statistics Using R (Psychology 9041B)

Multiple Regression Introduction to Statistics Using R (Psychology 9041B) Multiple Regression Introduction to Statistics Using R (Psychology 9041B) Paul Gribble Winter, 2016 1 Correlation, Regression & Multiple Regression 1.1 Bivariate correlation The Pearson product-moment

More information

lm statistics Chris Parrish

lm statistics Chris Parrish lm statistics Chris Parrish 2017-04-01 Contents s e and R 2 1 experiment1................................................. 2 experiment2................................................. 3 experiment3.................................................

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots.

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots. Homework 2 1 Data analysis problems For the homework, be sure to give full explanations where required and to turn in any relevant plots. 1. The file berkeley.dat contains average yearly temperatures for

More information

7. Linear Models 149. Y = f(x 1,x 2,...,x k )+"

7. Linear Models 149. Y = f(x 1,x 2,...,x k )+ 7. Linear Models 149 7 Linear Models In Chapter 6 we learned how to estimate one quantity based on its (known) relationship to other quantities. For example, we estimated the number of dimes in a sack

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

General Linear Statistical Models - Part III

General Linear Statistical Models - Part III General Linear Statistical Models - Part III Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Interaction Models Lets examine two models involving Weight and Domestic in the cars93 dataset.

More information

Model Modifications. Bret Larget. Departments of Botany and of Statistics University of Wisconsin Madison. February 6, 2007

Model Modifications. Bret Larget. Departments of Botany and of Statistics University of Wisconsin Madison. February 6, 2007 Model Modifications Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison February 6, 2007 Statistics 572 (Spring 2007) Model Modifications February 6, 2007 1 / 20 The Big

More information

Lab 3 A Quick Introduction to Multiple Linear Regression Psychology The Multiple Linear Regression Model

Lab 3 A Quick Introduction to Multiple Linear Regression Psychology The Multiple Linear Regression Model Lab 3 A Quick Introduction to Multiple Linear Regression Psychology 310 Instructions.Work through the lab, saving the output as you go. You will be submitting your assignment as an R Markdown document.

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

Simple Linear Regression: A Model for the Mean. Chap 7

Simple Linear Regression: A Model for the Mean. Chap 7 Simple Linear Regression: A Model for the Mean Chap 7 An Intermediate Model (if the groups are defined by values of a numeric variable) Separate Means Model Means fall on a straight line function of the

More information

BIOL 458 BIOMETRY Lab 9 - Correlation and Bivariate Regression

BIOL 458 BIOMETRY Lab 9 - Correlation and Bivariate Regression BIOL 458 BIOMETRY Lab 9 - Correlation and Bivariate Regression Introduction to Correlation and Regression The procedures discussed in the previous ANOVA labs are most useful in cases where we are interested

More information

Lecture 2 Linear Regression: A Model for the Mean. Sharyn O Halloran

Lecture 2 Linear Regression: A Model for the Mean. Sharyn O Halloran Lecture 2 Linear Regression: A Model for the Mean Sharyn O Halloran Closer Look at: Linear Regression Model Least squares procedure Inferential tools Confidence and Prediction Intervals Assumptions Robustness

More information

Solution to Series 3

Solution to Series 3 Prof. Nicolai Meinshausen Regression FS 2016 Solution to Series 3 1. a) The general least-squares regression estimator is given as Using the model equation, we get in this case ( ) X T x X (1)T x (1) x

More information

SLR output RLS. Refer to slr (code) on the Lecture Page of the class website.

SLR output RLS. Refer to slr (code) on the Lecture Page of the class website. SLR output RLS Refer to slr (code) on the Lecture Page of the class website. Old Faithful at Yellowstone National Park, WY: Simple Linear Regression (SLR) Analysis SLR analysis explores the linear association

More information

Quantitative Understanding in Biology 2.2 Fitting Model Parameters

Quantitative Understanding in Biology 2.2 Fitting Model Parameters Quantitative Understanding in Biolog 2.2 Fitting Model Parameters Jason Banfelder November 30th, 2017 Let us consider how we might fit a power law model to some data. simulating the power law relationship

More information

Linear Probability Model

Linear Probability Model Linear Probability Model Note on required packages: The following code requires the packages sandwich and lmtest to estimate regression error variance that may change with the explanatory variables. If

More information

Warm-up Using the given data Create a scatterplot Find the regression line

Warm-up Using the given data Create a scatterplot Find the regression line Time at the lunch table Caloric intake 21.4 472 30.8 498 37.7 335 32.8 423 39.5 437 22.8 508 34.1 431 33.9 479 43.8 454 42.4 450 43.1 410 29.2 504 31.3 437 28.6 489 32.9 436 30.6 480 35.1 439 33.0 444

More information

Chapter 16: Understanding Relationships Numerical Data

Chapter 16: Understanding Relationships Numerical Data Chapter 16: Understanding Relationships Numerical Data These notes reflect material from our text, Statistics, Learning from Data, First Edition, by Roxy Peck, published by CENGAGE Learning, 2015. Linear

More information

Week 7 Multiple factors. Ch , Some miscellaneous parts

Week 7 Multiple factors. Ch , Some miscellaneous parts Week 7 Multiple factors Ch. 18-19, Some miscellaneous parts Multiple Factors Most experiments will involve multiple factors, some of which will be nuisance variables Dealing with these factors requires

More information

STAT 215 Confidence and Prediction Intervals in Regression

STAT 215 Confidence and Prediction Intervals in Regression STAT 215 Confidence and Prediction Intervals in Regression Colin Reimer Dawson Oberlin College 24 October 2016 Outline Regression Slope Inference Partitioning Variability Prediction Intervals Reminder:

More information

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference.

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference. Understanding regression output from software Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals In 1966 Cyril Burt published a paper called The genetic determination of differences

More information

Chapter 5 Exercises 1

Chapter 5 Exercises 1 Chapter 5 Exercises 1 Data Analysis & Graphics Using R, 2 nd edn Solutions to Exercises (December 13, 2006) Preliminaries > library(daag) Exercise 2 For each of the data sets elastic1 and elastic2, determine

More information

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species Lecture notes 2/22/2000 Dummy variables and extra SS F-test Page 1 Crab claw size and closing force. Problem 7.25, 10.9, and 10.10 Regression for all species at once, i.e., include dummy variables for

More information

Lecture 19: Inference for SLR & Transformations

Lecture 19: Inference for SLR & Transformations Lecture 19: Inference for SLR & Transformations Statistics 101 Mine Çetinkaya-Rundel April 3, 2012 Announcements Announcements HW 7 due Thursday. Correlation guessing game - ends on April 12 at noon. Winner

More information

Biostatistics 380 Multiple Regression 1. Multiple Regression

Biostatistics 380 Multiple Regression 1. Multiple Regression Biostatistics 0 Multiple Regression ORIGIN 0 Multiple Regression Multiple Regression is an extension of the technique of linear regression to describe the relationship between a single dependent (response)

More information

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters Objectives 10.1 Simple linear regression Statistical model for linear regression Estimating the regression parameters Confidence interval for regression parameters Significance test for the slope Confidence

More information

Lecture 8: Fitting Data Statistical Computing, Wednesday October 7, 2015

Lecture 8: Fitting Data Statistical Computing, Wednesday October 7, 2015 Lecture 8: Fitting Data Statistical Computing, 36-350 Wednesday October 7, 2015 In previous episodes Loading and saving data sets in R format Loading and saving data sets in other structured formats Intro

More information

Regression Analysis: Exploring relationships between variables. Stat 251

Regression Analysis: Exploring relationships between variables. Stat 251 Regression Analysis: Exploring relationships between variables Stat 251 Introduction Objective of regression analysis is to explore the relationship between two (or more) variables so that information

More information

Inferences on Linear Combinations of Coefficients

Inferences on Linear Combinations of Coefficients Inferences on Linear Combinations of Coefficients Note on required packages: The following code required the package multcomp to test hypotheses on linear combinations of regression coefficients. If you

More information

Math 2311 Written Homework 6 (Sections )

Math 2311 Written Homework 6 (Sections ) Math 2311 Written Homework 6 (Sections 5.4 5.6) Name: PeopleSoft ID: Instructions: Homework will NOT be accepted through email or in person. Homework must be submitted through CourseWare BEFORE the deadline.

More information

Chapter 8: Correlation & Regression

Chapter 8: Correlation & Regression Chapter 8: Correlation & Regression We can think of ANOVA and the two-sample t-test as applicable to situations where there is a response variable which is quantitative, and another variable that indicates

More information

Correlation and Regression

Correlation and Regression Correlation and Regression Marc H. Mehlman marcmehlman@yahoo.com University of New Haven All models are wrong. Some models are useful. George Box the statistician knows that in nature there never was a

More information

An introduction to plotting data

An introduction to plotting data An introduction to plotting data Eric D. Black California Institute of Technology v2.0 1 Introduction Plotting data is one of the essential skills every scientist must have. We use it on a near-daily basis

More information

R 2 and F -Tests and ANOVA

R 2 and F -Tests and ANOVA R 2 and F -Tests and ANOVA December 6, 2018 1 Partition of Sums of Squares The distance from any point y i in a collection of data, to the mean of the data ȳ, is the deviation, written as y i ȳ. Definition.

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

Generating OLS Results Manually via R

Generating OLS Results Manually via R Generating OLS Results Manually via R Sujan Bandyopadhyay Statistical softwares and packages have made it extremely easy for people to run regression analyses. Packages like lm in R or the reg command

More information

Foundations of Correlation and Regression

Foundations of Correlation and Regression BWH - Biostatistics Intermediate Biostatistics for Medical Researchers Robert Goldman Professor of Statistics Simmons College Foundations of Correlation and Regression Tuesday, March 7, 2017 March 7 Foundations

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

Regression. Bret Hanlon and Bret Larget. December 8 15, Department of Statistics University of Wisconsin Madison.

Regression. Bret Hanlon and Bret Larget. December 8 15, Department of Statistics University of Wisconsin Madison. Regression Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison December 8 15, 2011 Regression 1 / 55 Example Case Study The proportion of blackness in a male lion s nose

More information

> modlyq <- lm(ly poly(x,2,raw=true)) > summary(modlyq) Call: lm(formula = ly poly(x, 2, raw = TRUE))

> modlyq <- lm(ly poly(x,2,raw=true)) > summary(modlyq) Call: lm(formula = ly poly(x, 2, raw = TRUE)) School of Mathematical Sciences MTH5120 Statistical Modelling I Tutorial 4 Solutions The first two models were looked at last week and both had flaws. The output for the third model with log y and a quadratic

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 370 Regression models are used to study the relationship of a response variable and one or more predictors. The response is also called the dependent variable, and the predictors

More information

Chapter 5 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (April 24, 2004)

Chapter 5 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (April 24, 2004) Chapter 5 Exercises 1 Data Analysis & Graphics Using R Solutions to Exercises (April 24, 2004) Preliminaries > library(daag) Exercise 2 The final three sentences have been reworded For each of the data

More information

Chapter 12: Linear regression II

Chapter 12: Linear regression II Chapter 12: Linear regression II Timothy Hanson Department of Statistics, University of South Carolina Stat 205: Elementary Statistics for the Biological and Life Sciences 1 / 14 12.4 The regression model

More information

Inference with Simple Regression

Inference with Simple Regression 1 Introduction Inference with Simple Regression Alan B. Gelder 06E:071, The University of Iowa 1 Moving to infinite means: In this course we have seen one-mean problems, twomean problems, and problems

More information

ANOVA (Analysis of Variance) output RLS 11/20/2016

ANOVA (Analysis of Variance) output RLS 11/20/2016 ANOVA (Analysis of Variance) output RLS 11/20/2016 1. Analysis of Variance (ANOVA) The goal of ANOVA is to see if the variation in the data can explain enough to see if there are differences in the means.

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

MODELS WITHOUT AN INTERCEPT

MODELS WITHOUT AN INTERCEPT Consider the balanced two factor design MODELS WITHOUT AN INTERCEPT Factor A 3 levels, indexed j 0, 1, 2; Factor B 5 levels, indexed l 0, 1, 2, 3, 4; n jl 4 replicate observations for each factor level

More information

Diagnostics and Transformations Part 2

Diagnostics and Transformations Part 2 Diagnostics and Transformations Part 2 Bivariate Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University Multilevel Regression Modeling, 2009 Diagnostics

More information

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics January, 2018 Work all problems. 60 points needed to pass at the Masters level, 75 to pass at the PhD

More information

Multiple comparison procedures

Multiple comparison procedures Multiple comparison procedures Cavan Reilly October 5, 2012 Table of contents The null restricted bootstrap The bootstrap Effective number of tests Free step-down resampling While there are functions in

More information

Part II { Oneway Anova, Simple Linear Regression and ANCOVA with R

Part II { Oneway Anova, Simple Linear Regression and ANCOVA with R Part II { Oneway Anova, Simple Linear Regression and ANCOVA with R Gilles Lamothe February 21, 2017 Contents 1 Anova with one factor 2 1.1 The data.......................................... 2 1.2 A visual

More information

Comparing Nested Models

Comparing Nested Models Comparing Nested Models ST 370 Two regression models are called nested if one contains all the predictors of the other, and some additional predictors. For example, the first-order model in two independent

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

1 Introduction 1. 2 The Multiple Regression Model 1

1 Introduction 1. 2 The Multiple Regression Model 1 Multiple Linear Regression Contents 1 Introduction 1 2 The Multiple Regression Model 1 3 Setting Up a Multiple Regression Model 2 3.1 Introduction.............................. 2 3.2 Significance Tests

More information

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model 1 Linear Regression 2 Linear Regression In this lecture we will study a particular type of regression model: the linear regression model We will first consider the case of the model with one predictor

More information

Multiple Linear Regression (solutions to exercises)

Multiple Linear Regression (solutions to exercises) Chapter 6 1 Chapter 6 Multiple Linear Regression (solutions to exercises) Chapter 6 CONTENTS 2 Contents 6 Multiple Linear Regression (solutions to exercises) 1 6.1 Nitrate concentration..........................

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Simulating MLM. Paul E. Johnson 1 2. Descriptive 1 / Department of Political Science

Simulating MLM. Paul E. Johnson 1 2. Descriptive 1 / Department of Political Science Descriptive 1 / 76 Simulating MLM Paul E. Johnson 1 2 1 Department of Political Science 2 Center for Research Methods and Data Analysis, University of Kansas 2015 Descriptive 2 / 76 Outline 1 Orientation:

More information

STAT 572 Assignment 5 - Answers Due: March 2, 2007

STAT 572 Assignment 5 - Answers Due: March 2, 2007 1. The file glue.txt contains a data set with the results of an experiment on the dry sheer strength (in pounds per square inch) of birch plywood, bonded with 5 different resin glues A, B, C, D, and E.

More information

Exam 3 Practice Questions Psych , Fall 9

Exam 3 Practice Questions Psych , Fall 9 Vocabular Eam 3 Practice Questions Psch 3101-100, Fall 9 Rather than choosing some practice terms at random, I suggest ou go through all the terms in the vocabular lists. The real eam will ask for definitions

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall)

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) We will cover Chs. 5 and 6 first, then 3 and 4. Mon,

More information

Examples of fitting various piecewise-continuous functions to data, using basis functions in doing the regressions.

Examples of fitting various piecewise-continuous functions to data, using basis functions in doing the regressions. Examples of fitting various piecewise-continuous functions to data, using basis functions in doing the regressions. David. Boore These examples in this document used R to do the regression. See also Notes_on_piecewise_continuous_regression.doc

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 7: Dummy Variable Regression So far, we ve only considered quantitative variables in our models. We can integrate categorical predictors by constructing artificial

More information

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 2: Multiple Linear Regression Introduction

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 2: Multiple Linear Regression Introduction 22s:152 Applied Linear Regression Chapter 5: Ordinary Least Squares Regression Part 2: Multiple Linear Regression Introduction Basic idea: we have more than one covariate or predictor for modeling a dependent

More information

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation y = a + bx y = dependent variable a = intercept b = slope x = independent variable Section 12.1 Inference for Linear

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

Data Analysis Using R ASC & OIR

Data Analysis Using R ASC & OIR Data Analysis Using R ASC & OIR Overview } What is Statistics and the process of study design } Correlation } Simple Linear Regression } Multiple Linear Regression 2 What is Statistics? Statistics is a

More information

De-mystifying random effects models

De-mystifying random effects models De-mystifying random effects models Peter J Diggle Lecture 4, Leahurst, October 2012 Linear regression input variable x factor, covariate, explanatory variable,... output variable y response, end-point,

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

22 Approximations - the method of least squares (1)

22 Approximations - the method of least squares (1) 22 Approximations - the method of least squares () Suppose that for some y, the equation Ax = y has no solutions It may happpen that this is an important problem and we can t just forget about it If we

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

The Big Picture. Model Modifications. Example (cont.) Bacteria Count Example

The Big Picture. Model Modifications. Example (cont.) Bacteria Count Example The Big Picture Remedies after Model Diagnostics The Big Picture Model Modifications Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison February 6, 2007 Residual plots

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information