Sampling Distributions

Size: px
Start display at page:

Download "Sampling Distributions"

Transcription

1 Merlise Clyde Duke University September 8, 2016

2 Outline Topics Normal Theory Chi-squared Distributions Student t Distributions Readings: Christensen Apendix C, Chapter 1-2

3 Prostate Example > library(lasso2); data(prostate) # n = 97, 9 variables > summary(lm(lpsa ~., data=prostate)) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) lcavol e-09 *** lweight ** age lbph svi ** lcp gleason pgg Signif. codes: 0 *** ** 0.01 * Residual standard error: on 88 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: STA721 onlinear 8 and Models 88 Sampling DF, Distributions p-value: < 2.2e-16

4 Summary of Distributions Models: Full Y = Xβ + ɛ Assume X is full rank with the first column of ones 1 n and p additional predictors r(x) = p + 1 ˆβ σ 2 N(β, σ 2 (X T X) 1 ) SSE σ 2 χ2 n r(x) ˆβ j β j SE( ˆβ j ) t n r(x) where SE( ˆβ) is the square root of the jth diagonal element of ˆσ 2 (X T X) 1 and ˆσ 2 is the unbiased estimate of σ 2

5 General Case W = µ + AZ with Z R d and A is n d

6 General Case W = µ + AZ with Z R d and A is n d E[W] = µ

7 General Case W = µ + AZ with Z R d and A is n d E[W] = µ Cov(W) = AA T 0

8 General Case W = µ + AZ with Z R d and A is n d E[W] = µ Cov(W) = AA T 0 W N(µ, Σ) where Σ = AA T If Σ is singular then there is no density (on R n ), but claim that W still has a multivariate normal distribution!

9 General Case W = µ + AZ with Z R d and A is n d E[W] = µ Cov(W) = AA T 0 W N(µ, Σ) where Σ = AA T If Σ is singular then there is no density (on R n ), but claim that W still has a multivariate normal distribution! Definition W R n has a multivariate normal distribution N(µ, Σ) if for any v R n v T Y has a normal distribution with mean v T µ and variance v T Σv

10 General Case W = µ + AZ with Z R d and A is n d E[W] = µ Cov(W) = AA T 0 W N(µ, Σ) where Σ = AA T If Σ is singular then there is no density (on R n ), but claim that W still has a multivariate normal distribution! Definition W R n has a multivariate normal distribution N(µ, Σ) if for any v R n v T Y has a normal distribution with mean v T µ and variance v T Σv see Lessons in Normal Theory in Sakai for videos using Characteristic functions

11 Linear Transformations are Normal If Y N n (µ, Σ) then for A m n AY N m (Aµ, AΣA T ) AΣA T does not have to be positive definite!

12 Equal in Distribution Multiple ways to define the same normal:

13 Equal in Distribution Multiple ways to define the same normal: Z 1 N(0, I n ), Z 1 R n and take A d n

14 Equal in Distribution Multiple ways to define the same normal: Z 1 N(0, I n ), Z 1 R n and take A d n Z 2 N(0, I p ), Z 2 R p and take B d p

15 Equal in Distribution Multiple ways to define the same normal: Z 1 N(0, I n ), Z 1 R n and take A d n Z 2 N(0, I p ), Z 2 R p and take B d p Define Y = µ + AZ 1

16 Equal in Distribution Multiple ways to define the same normal: Z 1 N(0, I n ), Z 1 R n and take A d n Z 2 N(0, I p ), Z 2 R p and take B d p Define Y = µ + AZ 1 Define W = µ + BZ 2

17 Equal in Distribution Multiple ways to define the same normal: Z 1 N(0, I n ), Z 1 R n and take A d n Z 2 N(0, I p ), Z 2 R p and take B d p Define Y = µ + AZ 1 Define W = µ + BZ 2 Theorem If Y = µ + AZ 1 and W = µ + BZ 2 then Y D = W if and only if AA T = BB T = Σ

18 Zero Correlation and Independence Theorem For a random vector Y N(µ, Σ) partitioned as [ ] ([ ] [ Y1 µ1 Σ11 Σ Y = N, 12 Y 2 µ 2 Σ 21 Σ 22 ])

19 Zero Correlation and Independence Theorem For a random vector Y N(µ, Σ) partitioned as [ ] ([ ] [ Y1 µ1 Σ11 Σ Y = N, 12 Y 2 µ 2 Σ 21 Σ 22 then Cov(Y 1, Y 2 ) = Σ 12 = Σ T 21 = 0 if and only if Y 1 and Y 2 are independent. ])

20 Independence Implies Zero Covariance Proof. Cov(Y 1, Y 2 ) = E[(Y 1 µ 1 )(Y 2 µ 2 ) T ]

21 Independence Implies Zero Covariance Proof. Cov(Y 1, Y 2 ) = E[(Y 1 µ 1 )(Y 2 µ 2 ) T ] If Y 1 and Y 2 are independent

22 Independence Implies Zero Covariance Proof. Cov(Y 1, Y 2 ) = E[(Y 1 µ 1 )(Y 2 µ 2 ) T ] If Y 1 and Y 2 are independent E[(Y 1 µ 1 )(Y 2 µ 2 ) T ] = E[(Y 1 µ 1 )E(Y 2 µ 2 ) T ] = 00 T = 0

23 Independence Implies Zero Covariance Proof. Cov(Y 1, Y 2 ) = E[(Y 1 µ 1 )(Y 2 µ 2 ) T ] If Y 1 and Y 2 are independent E[(Y 1 µ 1 )(Y 2 µ 2 ) T ] = E[(Y 1 µ 1 )E(Y 2 µ 2 ) T ] = 00 T = 0 therefore Σ 12 = 0

24 Zero Covariance Implies Independence Assume Σ 12 = 0 Proof Choose an [ A1 0 A = 0 A 2 ] such that A 1 A T 1 = Σ 11, A 2 A T 2 = Σ 22

25 Zero Covariance Implies Independence Assume Σ 12 = 0 Proof Choose an [ A1 0 A = 0 A 2 ] such that A 1 A T 1 = Σ 11, A 2 A T 2 = Σ 22 Partition Z = [ Z1 Z 2 ] ([ 01 N 0 2 ] [ I1 0, 0 I 2 ]) and µ = [ µ1 µ 2 ]

26 Zero Covariance Implies Independence Assume Σ 12 = 0 Proof Choose an [ A1 0 A = 0 A 2 ] such that A 1 A T 1 = Σ 11, A 2 A T 2 = Σ 22 Partition Z = [ Z1 Z 2 ] ([ 01 N 0 2 ] [ I1 0, 0 I 2 ]) and µ = [ µ1 µ 2 ] then Y D = AZ + µ N(µ, Σ)

27 Continued Proof. [ Y1 Y 2 ] [ D A1 Z = 1 + µ 1 A 2 Z 2 + µ 2 ]

28 Continued Proof. [ Y1 Y 2 ] [ D A1 Z = 1 + µ 1 A 2 Z 2 + µ 2 ] But Z 1 and Z 2 are independent

29 Continued Proof. [ Y1 Y 2 ] [ D A1 Z = 1 + µ 1 A 2 Z 2 + µ 2 ] But Z 1 and Z 2 are independent Functions of Z 1 and Z 2 are independent

30 Continued Proof. [ Y1 Y 2 ] [ D A1 Z = 1 + µ 1 A 2 Z 2 + µ 2 ] But Z 1 and Z 2 are independent Functions of Z 1 and Z 2 are independent Therefore Y 1 and Y 2 are independent

31 Continued Proof. [ Y1 Y 2 ] [ D A1 Z = 1 + µ 1 A 2 Z 2 + µ 2 ] But Z 1 and Z 2 are independent Functions of Z 1 and Z 2 are independent Therefore Y 1 and Y 2 are independent For Multivariate Normal Zero Covariance implies independence

32 Another Useful Result Corollary If Y N(µ, σ 2 I n ) and AB T = 0 then AY and BY are independent.

33 Another Useful Result Corollary If Y N(µ, σ 2 I n ) and AB T = 0 then AY and BY are independent. Proof. [ W1 W 2 ] = [ A B ] [ AY Y = BY ]

34 Another Useful Result Corollary If Y N(µ, σ 2 I n ) and AB T = 0 then AY and BY are independent. Proof. [ W1 W 2 ] = [ A B ] [ AY Y = BY ] Cov(W 1, W 2 ) = Cov(AY, BY) = σ 2 AB T

35 Another Useful Result Corollary If Y N(µ, σ 2 I n ) and AB T = 0 then AY and BY are independent. Proof. [ W1 W 2 ] = [ A B ] [ AY Y = BY ] Cov(W 1, W 2 ) = Cov(AY, BY) = σ 2 AB T AY and BY are independent if AB T = 0

36 of β If Y N(Xβ, σ 2 I n ) Then ˆβ N(β, σ 2 (X T X) 1 )

37 Unknown σ 2 ˆβ j β j, σ 2 N(β, σ 2 [(X T X) 1 ] jj )

38 Unknown σ 2 ˆβ j β j, σ 2 N(β, σ 2 [(X T X) 1 ] jj ) What happens if we substitute ˆσ 2 = e t e/(n r(x)) in the above?

39 Unknown σ 2 ˆβ j β j, σ 2 N(β, σ 2 [(X T X) 1 ] jj ) What happens if we substitute ˆσ 2 = e t e/(n r(x)) in the above? ( ˆβ j β j )/σ [(X T X) 1 ] jj e T e/(σ 2 (n r(x)) D = N(0, 1) χ 2 n r(x) /(n r(x) t(n r(x), 0, 1) Need to show that e T e/σ 2 has a χ 2 distribution and is independent of the numerator!

40 Central Student t Distribution Definition Let Z N(0, 1) and S χ 2 p with Z and S independent,

41 Central Student t Distribution Definition Let Z N(0, 1) and S χ 2 p with Z and S independent, then W = Z S/p has a (central) Student t distribution with p degrees of freedom

42 Central Student t Distribution Definition Let Z N(0, 1) and S χ 2 p with Z and S independent, then W = Z S/p has a (central) Student t distribution with p degrees of freedom See Casella & Berger or DeGroot & Schervish for derivation - nice change of variables and marginalization problem!

43 Chi-Squared Distribution Definition If Z N(0, 1) then Z 2 χ 2 1 degree of freedom) (A Chi-squared distribution with one

44 Chi-Squared Distribution Definition If Z N(0, 1) then Z 2 χ 2 1 degree of freedom) Density (A Chi-squared distribution with one f (x) = 1 Γ(1/2) (1/2) 1/2 x 1/2 1 e x/2 x > 0

45 Chi-Squared Distribution Definition If Z N(0, 1) then Z 2 χ 2 1 degree of freedom) Density (A Chi-squared distribution with one f (x) = 1 Γ(1/2) (1/2) 1/2 x 1/2 1 e x/2 x > 0 Characteristic Function E[e itz 2 ] = ϕ(t) = (1 2it) 1/2

46 Chi-Squared Distribution with p Degrees of Freedom iid If Z j N(0, 1) j = 1,... p then X Z T Z = p j Zj 2 χ 2 p

47 Chi-Squared Distribution with p Degrees of Freedom iid If Z j N(0, 1) j = 1,... p then X Z T Z = p j Zj 2 χ 2 p Characteristic Function ϕ X (t) = E[e it p j Z 2 j ]

48 Chi-Squared Distribution with p Degrees of Freedom iid If Z j N(0, 1) j = 1,... p then X Z T Z = p j Zj 2 χ 2 p Characteristic Function ϕ X (t) = E[e it p j Z 2 = p j=1 j ] E[e itz 2 j ]

49 Chi-Squared Distribution with p Degrees of Freedom iid If Z j N(0, 1) j = 1,... p then X Z T Z = p j Zj 2 χ 2 p Characteristic Function ϕ X (t) = E[e it p j Z 2 = = p j=1 j ] E[e itz 2 j ] p (1 2it) 1/2 j=1

50 Chi-Squared Distribution with p Degrees of Freedom iid If Z j N(0, 1) j = 1,... p then X Z T Z = p j Zj 2 χ 2 p Characteristic Function ϕ X (t) = E[e it p j Z 2 = = p j=1 j ] E[e itz 2 j ] p (1 2it) 1/2 j=1 = (1 2it) p/2

51 Chi-Squared Distribution with p Degrees of Freedom iid If Z j N(0, 1) j = 1,... p then X Z T Z = p j Zj 2 χ 2 p Characteristic Function ϕ X (t) = E[e it p j Z 2 = = p j=1 j ] E[e itz 2 j ] p (1 2it) 1/2 j=1 = (1 2it) p/2 A Gamma distribution with shape p/2 and rate 1/2, G(p/2, 1/2) f (x) = 1 Γ(p/2) (1/2) p/2 x p/2 1 e x/2 x > 0

52 Quadratic Forms Theorem Let Y N(µ, σ 2 I n ) with µ C(X) then if Q is a rank k orthogonal projection on to C(X), (Y T QY)/σ 2 χ 2 k Proof. For an orthogonal projection Q = UΛU T = U k U T k where C(Q) = C(U k ) and U T k U k = I k (Spectral Theorem)

53 Quadratic Forms Theorem Let Y N(µ, σ 2 I n ) with µ C(X) then if Q is a rank k orthogonal projection on to C(X), (Y T QY)/σ 2 χ 2 k Proof. For an orthogonal projection Q = UΛU T = U k U T k where C(Q) = C(U k ) and U T k U k = I k (Spectral Theorem) Y T QY = Y T U k U T k Y

54 Quadratic Forms Theorem Let Y N(µ, σ 2 I n ) with µ C(X) then if Q is a rank k orthogonal projection on to C(X), (Y T QY)/σ 2 χ 2 k Proof. For an orthogonal projection Q = UΛU T = U k U T k where C(Q) = C(U k ) and U T k U k = I k (Spectral Theorem) Y T QY = Y T U k U T k Y Z = U T k Y/σ N(UT k µ, UT k U k)

55 Quadratic Forms Theorem Let Y N(µ, σ 2 I n ) with µ C(X) then if Q is a rank k orthogonal projection on to C(X), (Y T QY)/σ 2 χ 2 k Proof. For an orthogonal projection Q = UΛU T = U k U T k where C(Q) = C(U k ) and U T k U k = I k (Spectral Theorem) Y T QY = Y T U k U T k Y Z = U T k Y/σ N(UT k µ, UT k U k) Z N(0, I k )

56 Quadratic Forms Theorem Let Y N(µ, σ 2 I n ) with µ C(X) then if Q is a rank k orthogonal projection on to C(X), (Y T QY)/σ 2 χ 2 k Proof. For an orthogonal projection Q = UΛU T = U k U T k where C(Q) = C(U k ) and U T k U k = I k (Spectral Theorem) Y T QY = Y T U k U T k Y Z = U T k Y/σ N(UT k µ, UT k U k) Z N(0, I k ) Z T Z χ 2 k

57 Quadratic Forms Theorem Let Y N(µ, σ 2 I n ) with µ C(X) then if Q is a rank k orthogonal projection on to C(X), (Y T QY)/σ 2 χ 2 k Proof. For an orthogonal projection Q = UΛU T = U k U T k where C(Q) = C(U k ) and U T k U k = I k (Spectral Theorem) Y T QY = Y T U k U T k Y Z = U T k Y/σ N(UT k µ, UT k U k) Z N(0, I k ) Z T Z χ 2 k Since U T Y/σ D = Z, YT QY σ 2 χ 2 k

58 Residual Sum of Squares Example Sum of Squares Error (SSE) Let Y N(µ, σ 2 I n ) with µ C(X). Because µ C(X), I P X is a projection on C(X)

59 Residual Sum of Squares Example Sum of Squares Error (SSE) Let Y N(µ, σ 2 I n ) with µ C(X). Because µ C(X), I P X is a projection on C(X) e T e σ 2 = (I 2 YT n P X ) Y χ 2 n r(x) σ

60 Estimated Coefficients and Residuals are Independent If Y N(Xβ, σ 2 I n ) Then Cov(ˆβ, e) = 0 which implies independence Functions of independent random variables are independent (show characteristic functions or densities factor)

61 Putting it all together ˆβ N(β, σ 2 (X T X) 1 ) ( ˆβ j β j )/σ[(x T X) 1 ] jj N(0, 1) e T e/σ 2 χ 2 n r(x) ˆβ and e are independent ( ˆβ j β j )/σ[(x T X) 1 ] jj e T e/(σ 2 (n r(x))) t(n r(x), 0, 1)

62 Inference 95% Confidence interval: ˆβ j ± t α/2 SE( ˆβ j )

63 Inference 95% Confidence interval: ˆβ j ± t α/2 SE( ˆβ j ) use qt(a, df) for t a quantile derive from pivotal quantity t = ( ˆβ j β j )/SE( ˆβ j ) where P(t (t α/2, t 1 α/2 )) = 1 α

64 Prostate Example xtable(confint(prostate.lm)) from library(mass) and library(xtable) 2.5 % 97.5 % (Intercept) lcavol lweight age lbph svi lcp gleason pgg

65 interpretation For a 1 unit increase in X j, expect Y to increase by ˆβ j ± t α/2 SE( ˆβ j ) for log transforms Y = exp(xβ + ɛ) = exp(x j β j ) exp(ɛ) if X = log(w j ) then look at 2-fold or % increases in W to look at multiplicative increase in median of Y ifcavol increases by 10% then we expect PSA to increase by 1.10 (CI ) = (1.0398%, %) or by 3.98 to 7.51 percent For a 10% increase in cancer volume, we are 95% confident that the PSA levels will increase by approximately 4 to 7.5 percent.

66 Derivation

Sampling Distributions

Sampling Distributions Merlise Clyde Duke University September 3, 2015 Outline Topics Normal Theory Chi-squared Distributions Student t Distributions Readings: Christensen Apendix C, Chapter 1-2 Prostate Example > library(lasso2);

More information

MLES & Multivariate Normal Theory

MLES & Multivariate Normal Theory Merlise Clyde September 6, 2016 Outline Expectations of Quadratic Forms Distribution Linear Transformations Distribution of estimates under normality Properties of MLE s Recap Ŷ = ˆµ is an unbiased estimate

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin Regression Review Statistics 149 Spring 2006 Copyright c 2006 by Mark E. Irwin Matrix Approach to Regression Linear Model: Y i = β 0 + β 1 X i1 +... + β p X ip + ɛ i ; ɛ i iid N(0, σ 2 ), i = 1,..., n

More information

A Significance Test for the Lasso

A Significance Test for the Lasso A Significance Test for the Lasso Lockhart R, Taylor J, Tibshirani R, and Tibshirani R Ashley Petersen June 6, 2013 1 Motivation Problem: Many clinical covariates which are important to a certain medical

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Interpretation, Prediction and Confidence Intervals

Interpretation, Prediction and Confidence Intervals Interpretation, Prediction and Confidence Intervals Merlise Clyde September 15, 2017 Last Class Model for log brain weight as a function of log body weight Nested Model Comparison using ANOVA led to model

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38 Preliminaries Copyright c 2018 Dan Nettleton (Iowa State University) Statistics 510 1 / 38 Notation for Scalars, Vectors, and Matrices Lowercase letters = scalars: x, c, σ. Boldface, lowercase letters

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Lecture 8: Fitting Data Statistical Computing, Wednesday October 7, 2015

Lecture 8: Fitting Data Statistical Computing, Wednesday October 7, 2015 Lecture 8: Fitting Data Statistical Computing, 36-350 Wednesday October 7, 2015 In previous episodes Loading and saving data sets in R format Loading and saving data sets in other structured formats Intro

More information

A significance test for the lasso

A significance test for the lasso 1 Gold medal address, SSC 2013 Joint work with Richard Lockhart (SFU), Jonathan Taylor (Stanford), and Ryan Tibshirani (Carnegie-Mellon Univ.) Reaping the benefits of LARS: A special thanks to Brad Efron,

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

Gauss Markov & Predictive Distributions

Gauss Markov & Predictive Distributions Gauss Markov & Predictive Distributions Merlise Clyde STA721 Linear Models Duke University September 14, 2017 Outline Topics Gauss-Markov Theorem Estimability and Prediction Readings: Christensen Chapter

More information

Ch4. Distribution of Quadratic Forms in y

Ch4. Distribution of Quadratic Forms in y ST4233, Linear Models, Semester 1 2008-2009 Ch4. Distribution of Quadratic Forms in y 1 Definition Definition 1.1 If A is a symmetric matrix and y is a vector, the product y Ay = i a ii y 2 i + i j a ij

More information

TMA4267 Linear Statistical Models V2017 (L10)

TMA4267 Linear Statistical Models V2017 (L10) TMA4267 Linear Statistical Models V2017 (L10) Part 2: Linear regression: Parameter estimation [F:3.2], Properties of residuals and distribution of estimator for error variance Confidence interval and hypothesis

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

STAT 462-Computational Data Analysis

STAT 462-Computational Data Analysis STAT 462-Computational Data Analysis Chapter 5- Part 2 Nasser Sadeghkhani a.sadeghkhani@queensu.ca October 2017 1 / 27 Outline Shrinkage Methods 1. Ridge Regression 2. Lasso Dimension Reduction Methods

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

A significance test for the lasso

A significance test for the lasso 1 First part: Joint work with Richard Lockhart (SFU), Jonathan Taylor (Stanford), and Ryan Tibshirani (Carnegie-Mellon Univ.) Second part: Joint work with Max Grazier G Sell, Stefan Wager and Alexandra

More information

Introduction to Statistics and R

Introduction to Statistics and R Introduction to Statistics and R Mayo-Illinois Computational Genomics Workshop (2018) Ruoqing Zhu, Ph.D. Department of Statistics, UIUC rqzhu@illinois.edu June 18, 2018 Abstract This document is a supplimentary

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

MIT Spring 2015

MIT Spring 2015 Regression Analysis MIT 18.472 Dr. Kempthorne Spring 2015 1 Outline Regression Analysis 1 Regression Analysis 2 Multiple Linear Regression: Setup Data Set n cases i = 1, 2,..., n 1 Response (dependent)

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Post-selection Inference for Forward Stepwise and Least Angle Regression

Post-selection Inference for Forward Stepwise and Least Angle Regression Post-selection Inference for Forward Stepwise and Least Angle Regression Ryan & Rob Tibshirani Carnegie Mellon University & Stanford University Joint work with Jonathon Taylor, Richard Lockhart September

More information

Distribution Assumptions

Distribution Assumptions Merlise Clyde Duke University November 22, 2016 Outline Topics Normality & Transformations Box-Cox Nonlinear Regression Readings: Christensen Chapter 13 & Wakefield Chapter 6 Linear Model Linear Model

More information

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A =

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A = Matrices and vectors A matrix is a rectangular array of numbers Here s an example: 23 14 17 A = 225 0 2 This matrix has dimensions 2 3 The number of rows is first, then the number of columns We can write

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84 Chapter 2 84 Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random variables. For instance, X = X 1 X 2.

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43 3. The F Test for Comparing Reduced vs. Full Models opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics 510 1 / 43 Assume the Gauss-Markov Model with normal errors: y = Xβ + ɛ, ɛ N(0, σ

More information

Lecture 1: Linear Models and Applications

Lecture 1: Linear Models and Applications Lecture 1: Linear Models and Applications Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction to linear models Exploratory data analysis (EDA) Estimation

More information

STA442/2101: Assignment 5

STA442/2101: Assignment 5 STA442/2101: Assignment 5 Craig Burkett Quiz on: Oct 23 rd, 2015 The questions are practice for the quiz next week, and are not to be handed in. I would like you to bring in all of the code you used to

More information

Some new ideas for post selection inference and model assessment

Some new ideas for post selection inference and model assessment Some new ideas for post selection inference and model assessment Robert Tibshirani, Stanford WHOA!! 2018 Thanks to Jon Taylor and Ryan Tibshirani for helpful feedback 1 / 23 Two topics 1. How to improve

More information

BIOS 2083 Linear Models c Abdus S. Wahed

BIOS 2083 Linear Models c Abdus S. Wahed Chapter 5 206 Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 9 for Applied Multivariate Analysis Outline Two sample T 2 test 1 Two sample T 2 test 2 Analogous to the univariate context, we

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u Interval estimation and hypothesis tests So far our focus has been on estimation of the parameter vector β in the linear model y i = β 1 x 1i + β 2 x 2i +... + β K x Ki + u i = x iβ + u i for i = 1, 2,...,

More information

Regularization Paths

Regularization Paths December 2005 Trevor Hastie, Stanford Statistics 1 Regularization Paths Trevor Hastie Stanford University drawing on collaborations with Brad Efron, Saharon Rosset, Ji Zhu, Hui Zhou, Rob Tibshirani and

More information

If you believe in things that you don t understand then you suffer. Stevie Wonder, Superstition

If you believe in things that you don t understand then you suffer. Stevie Wonder, Superstition If you believe in things that you don t understand then you suffer Stevie Wonder, Superstition For Slovenian municipality i, i = 1,, 192, we have SIR i = (observed stomach cancers 1995-2001 / expected

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

Linear Regression Model. Badr Missaoui

Linear Regression Model. Badr Missaoui Linear Regression Model Badr Missaoui Introduction What is this course about? It is a course on applied statistics. It comprises 2 hours lectures each week and 1 hour lab sessions/tutorials. We will focus

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 39 Stat 704 Data Analysis I Probability Review Dr. Yen-Yi Ho Department of Statistics, University of South Carolina A.3 Random Variables 2 / 39 def n: A random variable is defined as a function that

More information

Least Angle Regression, Forward Stagewise and the Lasso

Least Angle Regression, Forward Stagewise and the Lasso January 2005 Rob Tibshirani, Stanford 1 Least Angle Regression, Forward Stagewise and the Lasso Brad Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani Stanford University Annals of Statistics,

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression ST 430/514 Recall: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates).

More information

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31 Distributions of Quadratic Forms Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 31 Under the Normal Theory GMM (NTGMM), y = Xβ + ε, where ε N(0, σ 2 I). By Result 5.3, the NTGMM

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Multivariate Analysis and Likelihood Inference

Multivariate Analysis and Likelihood Inference Multivariate Analysis and Likelihood Inference Outline 1 Joint Distribution of Random Variables 2 Principal Component Analysis (PCA) 3 Multivariate Normal Distribution 4 Likelihood Inference Joint density

More information

General Linear Model: Statistical Inference

General Linear Model: Statistical Inference Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter 4), least

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

COMP 551 Applied Machine Learning Lecture 2: Linear regression

COMP 551 Applied Machine Learning Lecture 2: Linear regression COMP 551 Applied Machine Learning Lecture 2: Linear regression Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted for this

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Lecture 4 Multiple linear regression

Lecture 4 Multiple linear regression Lecture 4 Multiple linear regression BIOST 515 January 15, 2004 Outline 1 Motivation for the multiple regression model Multiple regression in matrix notation Least squares estimation of model parameters

More information

Lecture 11: Regression Methods I (Linear Regression)

Lecture 11: Regression Methods I (Linear Regression) Lecture 11: Regression Methods I (Linear Regression) Fall, 2017 1 / 40 Outline Linear Model Introduction 1 Regression: Supervised Learning with Continuous Responses 2 Linear Models and Multiple Linear

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that Linear Regression For (X, Y ) a pair of random variables with values in R p R we assume that E(Y X) = β 0 + with β R p+1. p X j β j = (1, X T )β j=1 This model of the conditional expectation is linear

More information

Lecture 11: Regression Methods I (Linear Regression)

Lecture 11: Regression Methods I (Linear Regression) Lecture 11: Regression Methods I (Linear Regression) 1 / 43 Outline 1 Regression: Supervised Learning with Continuous Responses 2 Linear Models and Multiple Linear Regression Ordinary Least Squares Statistical

More information

6. Multiple Linear Regression

6. Multiple Linear Regression 6. Multiple Linear Regression SLR: 1 predictor X, MLR: more than 1 predictor Example data set: Y i = #points scored by UF football team in game i X i1 = #games won by opponent in their last 10 games X

More information

High-dimensional data analysis

High-dimensional data analysis High-dimensional data analysis HW3 Reproduce Figure 3.8 3.10 and Table 3.3. (do not need PCR PLS Std Error) Figure 3.8 There is Profiles of ridge coefficients for the prostate cancer example, as the tuning

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

STAT 350. Assignment 6 Solutions

STAT 350. Assignment 6 Solutions STAT 350 Assignment 6 Solutions 1. For the Nitrogen Output in Wallabies data set from Assignment 3 do forward, backward, stepwise all subsets regression. Here is code for all the methods with all subsets

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

Regression #5: Confidence Intervals and Hypothesis Testing (Part 1)

Regression #5: Confidence Intervals and Hypothesis Testing (Part 1) Regression #5: Confidence Intervals and Hypothesis Testing (Part 1) Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #5 1 / 24 Introduction What is a confidence interval? To fix ideas, suppose

More information

Bayes Estimators & Ridge Regression

Bayes Estimators & Ridge Regression Readings Chapter 14 Christensen Merlise Clyde September 29, 2015 How Good are Estimators? Quadratic loss for estimating β using estimator a L(β, a) = (β a) T (β a) How Good are Estimators? Quadratic loss

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

Random Vectors and Multivariate Normal Distributions

Random Vectors and Multivariate Normal Distributions Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random 75 variables. For instance, X = X 1 X 2., where each

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

Chapter 3: Multiple Regression. August 14, 2018

Chapter 3: Multiple Regression. August 14, 2018 Chapter 3: Multiple Regression August 14, 2018 1 The multiple linear regression model The model y = β 0 +β 1 x 1 + +β k x k +ǫ (1) is called a multiple linear regression model with k regressors. The parametersβ

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Bayesian Linear Models

Bayesian Linear Models Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu 03/07/2018 Linear model For observations y 1,..., y n, the basic linear model is y i = x 1i β 1 +... + x pi β p + ɛ i, x 1i,..., x pi are predictors

More information

Math 3330: Solution to midterm Exam

Math 3330: Solution to midterm Exam Math 3330: Solution to midterm Exam Question 1: (14 marks) Suppose the regression model is y i = β 0 + β 1 x i + ε i, i = 1,, n, where ε i are iid Normal distribution N(0, σ 2 ). a. (2 marks) Compute the

More information

Dealing with Heteroskedasticity

Dealing with Heteroskedasticity Dealing with Heteroskedasticity James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Dealing with Heteroskedasticity 1 / 27 Dealing

More information