Polymer Processing HANSER. Modeling and Simulation. Tim Osswald Juan P. Hernández-Ortiz. Hanser Publishers, Munich Hanser Publications, Cincinnati

Size: px
Start display at page:

Download "Polymer Processing HANSER. Modeling and Simulation. Tim Osswald Juan P. Hernández-Ortiz. Hanser Publishers, Munich Hanser Publications, Cincinnati"

Transcription

1 Tim Osswald Juan P. Hernández-Ortiz Polymer Processing Modeling and Simulation Sample Chapter 2: Processing Properties ISBNs HANSER Hanser Publishers, Munich Hanser Publications, Cincinnati

2 CHAPTER 2 PROCESSING PROPERTIES Didyou ever consider viscoelasticity? Arthur Lodge 2.1 THERMAL PROPERTIES The heat flow through a material can be defined by Fourier s law of heat conduction. Fourier s law can be expressed as q x = k x T x (2.1) where q x is theenergy transport perunitarea in the x direction, k x thethermal conductivity and T/ x thetemperaturegradient. At theonset of heating, thepolymerresponds solely as aheat sink, and the amount of energy per unit volume, Q,stored in the material before reaching steady state conditions can be approximated by Q = ρc p T (2.2) where ρ is thedensity of thematerial, C p the specific heat, and T thechange in temperature. Thematerial properties found in eqns.(2.1) and(2.2) areoften written as onesingleproperty,

3 38 PROCESSING PROPERTIES Table2.1: ThermalProperties for Selected Polymeric Materials Polymer Specific Specific Thermal Coeff. Thermal Max gravity heat conduc. therm. diffusivity temp. expan. kj/kg/k W/m/K µ m/m/k (m 2 /s)10 7 o C ABS CA EP PA PA66-30% glass PC PE-HD PE-LD PET PF PMMA POM copom a PP PPO b PS PTFE upvc c ppvc d SAN UPE Steel a Polyacetal copolymer; b Polyphenylene oxide copolymer; c Unplasticized PVC; d Plasticized PVC namely the thermaldiffusivity, α, which for an isotropicmaterial is defined by α = k ρc p (2.3) Typical values of thermal properties for selected polymers are shown in Table 6.1 [7, 17]. For comparison, the properties for stainless steel are also shown at the end of the list. It should bepointed out that the material properties ofpolymers are not constant and may vary with temperature, pressure or phase changes. This section will discuss each of these properties individually and present examples of some of the most widely used polymers and measurement techniques. For amore in-depthstudy of thermal propertiesofpolymers the reader is encouraged to consult theliterature [24,46, 66] Thermal Conductivity When analyzing thermal processes, thethermal conductivity, k, isthe mostcommonlyused propertythat helpsquantifythe transport of heat through amaterial. Bydefinition,energy is transported proportionally to the speed of sound. Accordingly, thermal conductivity

4 THERMAL PROPERTIES PET Thermal conductivity, W/m/k PIB NR PMMA PVC PBMA Temperature (K) Figure 2.1: Thermal conductivity of various materials. follows the relation k C p ρul (2.4) where u is the speed of sound and l the molecular separation. Amorphous polymers show an increase inthermal conductivity with increasing temperature, up to the glass transition temperature, T g.above T g,the thermal conductivity decreases with increasingtemperature. Figure 2.1 [24] presents the thermal conductivity, below the glass transition temperature, for various amorphous thermoplasticsasafunctionoftemperature. Due to the increase in density upon solidification of semi-crystalline thermoplastics, the thermal conductivity is higher in the solid state than in the melt. In the melt state, however, the thermal conductivity of semi-crystalline polymers reduces to that of amorphous polymers as can be seen in Fig. 2.2 [40]. Furthermore, it is not surprising that the thermal conductivity of melts increases with hydrostatic pressure. This effectis clearly shown in Fig. 2.3[19]. As long as thermosetsare unfilled, their thermal conductivity is very similar to amorphous thermoplastics. Anisotropy in thermoplastic polymers also plays asignificant role inthe thermal conductivity. Highly drawn semi-crystallinepolymer samplescan have a muchhigher thermalconductivityas a resultofthe orientationofthe polymerchains in thedirectionofthe draw. For amorphous polymers, the increase in thermal conductivity in the direction of the draw is usually not higher than two. Figure 2.4[24]presents the thermal conductivity in the directionsparalleland perpendicularto thedrawforhighdensity polyethylene, polypropylene, and polymethyl methacrylate. Asimple relation exists between the anisotropic and the isotropic thermal conductivity [39]. This relation is written as = 3 k k k (2.5) where thesubscripts and represent thedirections paralleland perpendicular to thedraw, respectively.

5 Thermal conductivity k, W/m/K 40 PROCESSING PROPERTIES HDPE 0.3 LDPE PA 6 PC 0.2 PS PP Temperature, T ( C) Figure 2.2: Thermal conductivity of various thermoplastics. Variation in thermal conductivity(k/k 1bar ) T = 230 C PP HDPE LDP E PS PC Pressure, P(bar) Figure 2.3: Influence of pressure onthermal conductivity of various thermoplastics.

6 THERMAL PROPERTIES PE-HD k /k iso k /k iso PMMA PMMA PP PP PE-HD Draw ratio Figure 2.4: Thermal conductivity as afunction ofdraw ratio in the directions perpendicular and parallel tothe stretchfor various oriented thermo-plastics. 0.7 Thermal conductivity, k (W/m/K) PE-LD + Quartz powder 60% wt PE-LD + GF (40% wt) ll -orientation PE-LD + GF (40% wt) -orientation PE-LD Temperature, T ( C) Figure 2.5: Influence of filleronthe thermal conductivity of PE-LD. The higher thermal conductivity of inorganicfillers increases the thermal conductivity of filledpolymers. Nevertheless, asharp decreaseinthermal conductivity around the melting temperature of crystalline polymers can still be seen with filled materials. The effect of filler on thermal conductivity for PE-LD is shown in Fig. 2.5 [22]. This figure shows the effect of fiber orientationaswellasthe effect of quartzpowder on thethermal conductivity of lowdensity polyethylene. Figure 2.6demonstrates theinfluence of gascontent on expanded or foamed polymers, and theinfluence of mineral content on filled polymers. There are various models available to compute the thermal conductivity of foamed or filled plastics[39,47, 51]. Aruleofmixtures,suggestedbyKnappe [39], commonlyused

7 Thermal conductivity, kw/m/k 42 PROCESSING PROPERTIES Polymer in metal Closed cells Opencells Metal in polymer Foams Polymer/meta Volume fraction Volume fraction of gas of metal Figure 2.6: Thermal conductivity of plastics filledwith glass or metal. to compute thermal conductivity of composite materials is written as k c = 2 k m + k f 2 φ f ( k m k f ) 2 k m + k f + φ f ( k m k f ) k m (2.6) where, φ f is the volume fraction offiller, and k m, k f and k c are the thermal conductivity of thematrix, filler and composite,respectively. Figure 2.7compares eqn. (2.6) with experimental data[2] for an epoxy filled with copper particlesofvariousdiameters. Thefigurealso comparesthedatatotheclassicmodelgiven by Maxwell [47] whichiswritten as k f 1 k c = 1+3φ k m f k f k m (2.7) +2 k m In addition, amodel derivedbymeredith andtobias [51] applies toacubicarray of spheres inside amatrix. Consequently, itcannot be used for volumetric concentration above 52% since the spheres will touch at that point. However, their model predicts the thermal conductivity very well up to 40% by volume of particle concentration. When mixing several materials the followingvariation ofknappe s model applies 1 n i =1 2 φ k m k i i 2 k k c = m + k i 1+ (2.8) n i =1 2 φ k m k i i 2 k m + k i where k i is thethermal conductivity of thefiller and φ i its volume fraction. Thisrelationis useful for glassfiberreinforced composites(frc) with glassconcentrations up to 50% by volume. Thisisalso valid for FRC with unidirectional reinforcement. However,one must differentiate between the direction longitudinal to the fibers and that transverse to them.

8 THERMAL PROPERTIES Thermal conductivity, k(w/m/k) Experimental data (Temperature 300K) 100 µm 46 µm 25 µm 11 µm Knappe Maxwell Concentration, φ (%) Figure 2.7: Thermal conductivity versus volume concentration ofmetallic particlesofanepoxy resin. Solid lines represent predictions using Maxwell and Knappe models. For high fiber content, one can approximatethe thermal conductivity of the composite by the thermal conductivity of the fiber. The thermal conductivity can be measured using the standard tests ASTM C177 and DIN A new method currently being balloted (ASTM D20.30) is preferred by most peopletoday Specific Heat The specific heat, C,represents the energy required to change the temperature of a unit mass ofmaterial by one degree. It can be measured at either constant pressure, C p,or constant volume, C v. Since the specific heat at constant pressure includes the effect of volumetric change, it is larger than the specific heat at constant volume. However, the volume changes of a polymer with changing temperatures have a negligible effect on the specific heat. Hence, one can usually assume that the specific heat at constant volume or constant pressure are the same. It is usually true that specific heat only changes modestly in therange of practical processing and design temperatures of polymers. However,semicrystalline thermoplastics display a discontinuity in the specific heat at the melting point of the crystallites. This jump or discontinuity in specific heat includes the heat that is required to melt the crystallites which is usually called the heat of fusion. Hence, specific heat is dependenton the degreeof crystallinity. Valuesof heat of fusionfor typical semi-crystalline polymers are shownintable 2.2. The chemical reaction that takes place during solidification ofthermosets also leads to considerable thermal effects. In a hardened state, their thermal data are similar to the ones of amorphousthermoplastics. Figure2.8showsthespecific heatgraphsforthethreepolymer categories.

9 44 PROCESSING PROPERTIES Table2.2: Heat of Fusion of Various Thermoplastic Polymers [66] Polymer λ (kj/kg) T m ( o C) Polyamide Polyamide Polyethylene Polypropylene Polyvinylchloride Specific heat, C p (KJ/kg) Polystyrene Polyvinyl chloride Polycarbonate a) Amorphous thermoplastics UHMWPE HDPE LDPE b) Semi-crystalline thermoplastics 2.4 Before curing 1.6 After curing 0.8 c) Thermosets (phenolic type 31) Temperature, T ( C) Figure 2.8: Specific heat curves for selected polymers of the three general polymer categories.

10 THERMAL PROPERTIES 45 3 Specific heat, Cp (KJ/kg/K) 2 1 PC PC + GF 0 % 10% 20 % 30 % ( C ) Temperature, T Figure 2.9: Generated specific heat curves for afilledand unfilledpolycarbonate. Courtesy of Bayer AG,Germany. For filled polymer systems with inorganic and powdery fillers, arule ofmixtures 1 can be written as C p ( T )=(1 ψ f ) C p m ( T )+ψ f C p f ( T ) (2.9) where ψ f represents the weight fractionofthe filler and C p m and C p f the specific heat of the polymermatrixand the filler, respectively. As an exampleofusing eqn. (2.9), Fig. 2.9 shows aspecific heat curveofanunfilledpolycarbonateand its corresponding computed specific heat curves for 10%,20%,and 30% glassfiber content. Inmostcases,temperature dependence of C p on inorganicfillers is minimal and need not be takenintoconsideration. The specific heat of copolymers can be calculated using the molefractionofthe polymer components. C p copolymer = σ 1 C p 1 + σ 2 C p 2 (2.10) where σ 1 and σ 2 are the mole fractions of the comonomer components and C p 1 and C p 1 thecorresponding specific heats Density The density or its reciprocal,the specific volume,is a commonly used property forpolymeric materials. The specific volume is often plotted as a function of pressure and temperature in what is known as a pvt diagram. Atypical pvt diagram for an unfilled and filled amorphous polymer isshown, using polycarbonateasanexample, in Figs and 2.11 The two slopes in the curves represent the specific volume of the melt and of the glassy amorphous polycarbonate, separated by the glasstransition temperature. Figure 2.12 presents the pvt diagramfor polyamide66 as an example of a typical semicrystallinepolymer. Figure2.13showsthe pvt diagramforpolyamide66filled with 30% 1 Valid up to 65% filler content by volume.

11 Specific volume, cm /g 3 46 PROCESSING PROPERTIES Pressure, P (bar) Specific volume, V( cm 3 /g) PC Temperature, T ( C) Figure 2.10: pvt diagram for a polycarbonate. Courtesy of Bayer AG, Germany Pressure, P (bar) PC + 20% GF Temperature, T ( C) Figure 2.11: Germany. pvt diagram forapolycarbonate filledwith 20% glass fiber. Courtesy of Bayer AG,

12 THERMAL PROPERTIES Pressure, P ( bar ) Specific volume, v ( cm 3 /g) 0.95 PA Temperature, T ( C) Figure 2.12: pvt diagram for apolyamide 66. Courtesy of Bayer AG,Germany. glass fiber. The curves clearly show the melting temperature (i.e., T m 250 o Cfor the unfilledpa66cooled at 1bar,which marks thebeginning of crystallizationasthe material cools). Itshouldalso comeasno surprisethattheglass transitiontemperaturesarethesame for the filled and unfilled materials. When carrying out die flow calculations, the temperature dependence of the specific volume must often be dealt with analytically. At constant pressures, the density of pure polymers can be approximated by ρ ( T )=ρ α t ( T T 0 ) (2.11) where ρ 0 is thedensity at reference temperature,t 0,and α t is thelinear coefficientofthermal expansion. Foramorphouspolymers,eqn. (2.11) is valid onlyforthe linearsegments(i.e., below orabove T g ), and for semi-crystalline polymers it is only valid for temperatures above T m.the density of polymers filled with inorganicmaterialscan be computed at any temperature usingthe following ruleofmixtures ρ c ( T )= ρ m ( T ) ρ f ψρ m ( T )+(1 ψ ) ρ f (2.12) where ρ c, ρ m and ρ f are the densities of the composite, polymer and filler, respectively, and ψ is theweightfractionoffiller.

Plastics Testing and Characterization Industrial Applications

Plastics Testing and Characterization Industrial Applications Alberto Naranjo C., Maria del Pilar Noriega E., Tim A. Osswald, Alejandro Rojan, Juan Diego Sierra M. Plastics Testing and Characterization Industrial Applications ISBN-10: 3-446-41315-4 ISBN-13: 978-3-446-41315-3

More information

Plastics Testing and Characterization Industrial Applications

Plastics Testing and Characterization Industrial Applications Alberto Naranjo C., Maria del Pilar Noriega E., Tim A. Osswald, Alejandro Rojan, Juan Diego Sierra M. Plastics Testing and Characterization Industrial Applications ISBN-10: 3-446-41315-4 ISBN-13: 978-3-446-41315-3

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

Improved Approximations in Thermal Properties for Single Screw Extrusion

Improved Approximations in Thermal Properties for Single Screw Extrusion Improved Approximations in Thermal Properties for Single Screw Extrusion Modified on Friday, 01 May 2015 11:49 PM by mpieler Categorized as: Paper of the Month Improved Approximations in Thermal Properties

More information

DELO - Stefano Farina

DELO - Stefano Farina Pretreatments of plastics AIPI - Milano, 15 May 2014 DELO - Stefano Farina Suitable and unsuitable materials 35 30 30 25 compression shear strength [MPa] 25 20 15 KB 45952 PB 4494 KB 45952 PB 4494 PUR

More information

Note: Brief explanation should be no more than 2 sentences.

Note: Brief explanation should be no more than 2 sentences. Her \Hmher UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April 26, 2017 DURATION: 2 and /2 hrs MSE245 - HiS - Second Year - MSE Organic Material Chemistry & Processing

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

COMPATIBILIZERS VISCOSITY CHAIN EXTENDERS MODIFIERS XIBOND BLEND OPTIMIZERS COUPLING AGENTS SURFACE MODIFIERS

COMPATIBILIZERS VISCOSITY CHAIN EXTENDERS MODIFIERS XIBOND BLEND OPTIMIZERS COUPLING AGENTS SURFACE MODIFIERS COMPATIBILIZERS CHAIN EXTENDERS VISCOSITY MODIFIERS XIBOND BLEND OPTIMIZERS SURFACE MODIFIERS COUPLING AGENTS XIBOND Blend Optimizers At Polyscope, we offer a wide range of polymer additives for the compounding

More information

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics Fairfax Science Olympiad Tryouts 2018 Name: _ Score: /75 MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics In questions 1-6, draw a diagram of the named functional group. Use R to denote the

More information

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

Polymeric Materials. Sunan Tiptipakorn, D.Eng. Polymeric Materials Sunan Tiptipakorn, D.Eng. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaen Saen Campus, Nakorn Phathom, 73140 Thailand. Introduction Material

More information

Lecture 25 POLYMERS. April 19, Chemistry 328N

Lecture 25 POLYMERS. April 19, Chemistry 328N Lecture 25 POLYMERS Wallace Carothers April 19, 2016 Paul Flory Wallace Hume Carothers 1896-1937 Carothers at Dupont 1.Commercializion of Nylon https://www.chemheritage.org/ Nylon was first used for fishing

More information

OMNISTAB POLYMER ADDITIVES. Specialty Chemicals

OMNISTAB POLYMER ADDITIVES. Specialty Chemicals Specialty Chemicals OMNISTAB POLYMER ADDITIVES The Partners in Chemicals entities have a wide product range covering needs for raw materials and additives used in most of the main industries. Our OMNISTAB

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

Chapter 14: Polymer Structures

Chapter 14: Polymer Structures Chapter 14: Polymer Structures ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they differ

More information

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers SCH4U Synthesis and Polymers Synthesis Reactions and Addition and Condensation Polymers ADDITION POLYMERS ADDITION POLYMERS A + A + A + A A A A A monomers polymer + + + ethylene (ethene) polyethylene

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

Generation of microplastic particles

Generation of microplastic particles S1 File. Microplastic particles: Generation, stock suspensions, particle quantification and characterization Generation of microplastic particles Microplastic particles for feeding experiments were produced

More information

The rate of oxygen consumption from a cone calorimeter as an original criterion of evaluation of the fire risk for the Resin Kit polymers

The rate of oxygen consumption from a cone calorimeter as an original criterion of evaluation of the fire risk for the Resin Kit polymers European Journal of Environmental and Safety Sciences 2014 2(2): 23-27 ISSN 1339-472X European Science and Research Institute (Original Research Paper) The rate of oxygen consumption from a cone calorimeter

More information

Measurement of heat transfer coefficients for polymer processing simulation

Measurement of heat transfer coefficients for polymer processing simulation Measurement of heat transfer coefficients for polymer processing simulation Polymeric Materials IAG Wednesday 12 March 2008 Angela Dawson, Martin Rides and Crispin Allen Heat transfer coefficient Heat

More information

Electronic materials and components-polymer types

Electronic materials and components-polymer types Introduction Electronic materials and components-polymer types Polymer science is a broad field that includes many types of materials which incorporate long chain structures with many repeated units. One

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office ours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Polymers Applications

More information

Company Businness Units

Company Businness Units Rev.no. 23M, 23.1.2019 Company Businness Units FUNCTIONAL POWDERS FUNCTIONAL MODIFIERS MASTERBATCHES POLYMER ALLOYS R & D COMPATIBILIZERS & COUPLING AGENTS Products Pipeline 2018 Compatibilizers are used

More information

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 0.732. This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination number

More information

Simple Methods for Identification of Plastics

Simple Methods for Identification of Plastics Dietrich Braun Simple Methods for Identification of Plastics 5 th Edition Braun Simple Methods for Identification of Plastics Dietrich Braun Simple Methods for Identification of Plastics 5 th Edition

More information

SUBJECT: Polymer Chemistry. STAFF NAME: DrA.Vijayabalan and S.Immanuel. UNIT-I (Part-A)

SUBJECT: Polymer Chemistry. STAFF NAME: DrA.Vijayabalan and S.Immanuel. UNIT-I (Part-A) SUBJECT: Polymer Chemistry SUB.CODE: ECH618 STAFF NAME: DrA.Vijayabalan and S.Immanuel UNIT-I (Part-A) 1. Polymers are obtained by which of the following polymerization reaction. (a) Addition (c) Both

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

Aging behavior of polymeric absorber materials for solar thermal collectors

Aging behavior of polymeric absorber materials for solar thermal collectors Aging behavior of polymeric absorber materials for solar thermal collectors Susanne Kahlen, Gernot M. Wallner, Reinhold W. Lang July, 211 Introduction Plastics based collectors 2 SOLARNOR all-polymeric

More information

Materials of Engineering ENGR 151 POLYMER STRUCTURES

Materials of Engineering ENGR 151 POLYMER STRUCTURES Materials of Engineering ENGR 151 POLYMER STRUCTURES LEARNING OBJECTIVES Understand different molecular and crystal structures of polymers What are the general structural and chemical characteristics of

More information

Hygrothermal stresses in laminates

Hygrothermal stresses in laminates Hygrothermal stresses in laminates Changing environment conditions (temperature and moisture) have an important effect on the properties which are matrix dominated. Change in temperaturet and moisture

More information

Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules

Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules CHAPTER 14 POLYMER STRUCTURES PROBLEM SOLUTIONS Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules 14.1 On the basis of the structures presented in this chapter, sketch repeat unit

More information

Appendix A: The Names of Polymers and Polymeric Materials

Appendix A: The Names of Polymers and Polymeric Materials Appendix A: The Names of Polymers and Polymeric Materials Every newcomer to the study of polymers is inevitably troubled by the profusion of names for individual polymer materials. Some of the difficulties

More information

Packing of Atoms in Solids [5]

Packing of Atoms in Solids [5] Packing of Atoms in Solids [5] Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, ordered packing Energy typical neighbor bond length typical neighbor bond

More information

Polymer Reaction Engineering

Polymer Reaction Engineering Polymer Reaction Engineering Polymerization Techniques Bulk Solution Suspension Emulsion Interfacial Polymerization Solid-State Gas-Phase Plasma Polymerization in Supercritical Fluids Bulk Polymerization

More information

Thermal analysis unlocks the secrets of elastomers

Thermal analysis unlocks the secrets of elastomers 4450 CR AN WO O D P AR K W AY C LEVELAN D, OH IO 44128 WW W. N SLAN ALYTICAL. C OM Thermal analysis unlocks the secrets of elastomers By Brian Bacher and Michael Walker, NSL Analytical Services, and Alan

More information

CREATING TOMORROW S SOLUTIONS HEAT-SEALABLE COATINGS I PRINTING INKS I INDUSTRIAL COATINGS VINNOL SURFACE COATING RESINS PRODUCT OVERVIEW

CREATING TOMORROW S SOLUTIONS HEAT-SEALABLE COATINGS I PRINTING INKS I INDUSTRIAL COATINGS VINNOL SURFACE COATING RESINS PRODUCT OVERVIEW CREATING TOMORROW S SOLUTIONS HEAT-SEALABLE COATINGS I PRINTING INKS I INDUSTRIAL COATINGS VINNOL SURFACE COATING RESINS PRODUCT OVERVIEW 1 Viscosity Flexibility Thermal-activation temperature Solubility

More information

A Semianalytical Model for the Simulation of Polymers

A Semianalytical Model for the Simulation of Polymers A Semianalytical Model for the Simulation of Polymers Paul Du Bois 3, Stefan Kolling 1, Markus Feucht 1 & André Haufe 2 1 DaimlerChrysler AG, Sindelfingen, Germany 2 Dynamore GmbH, Stuttgart, Germany 3

More information

Rheology/Viscometry. Viscometry

Rheology/Viscometry. Viscometry Viscometry Capillary viscometry is considered as the most accurate method for the determination of the viscosity of Newtonian liquids. By this technique the time is measured a certain volume needs to flow

More information

The Influence of Processing-History on the Main Melting Temperature and Secondary Melting Temperature Using DSC. Stephen Sansoterra

The Influence of Processing-History on the Main Melting Temperature and Secondary Melting Temperature Using DSC. Stephen Sansoterra The Influence of Processing-History on the Main Melting Temperature and Secondary Melting Temperature Using DSC Abstract: Stephen Sansoterra Canfield High School, 100 Cardinal Drive, Canfield Ohio Polymers

More information

HIGH PRESSURE CAPILLARY RHEOMETRY ON WOOD PLASTIC COMPOSITES WITH VARIATION OF WOOD CONTENT AND MATRIX POLYMER ABSTRACT

HIGH PRESSURE CAPILLARY RHEOMETRY ON WOOD PLASTIC COMPOSITES WITH VARIATION OF WOOD CONTENT AND MATRIX POLYMER ABSTRACT URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-170:9 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 HIGH PRESSURE CAPILLARY RHEOMETRY

More information

Anisotropy in Natural Fibres and its Influence on Composite Performance. Jim Thomason

Anisotropy in Natural Fibres and its Influence on Composite Performance. Jim Thomason Anisotropy in Natural Fibres and its Influence on Composite Performance Jim Thomason Thermoplastic Composites Growth Strong continuing growth Attractive & Improving Performance to Price Ratio Clean processing

More information

4. In this electrochemical cell, the reduction half reaction is

4. In this electrochemical cell, the reduction half reaction is Exam 3 CHEM 1100 Version #1 Student: 1. A monomer is a polymer made from only one component. a single polymer chain. a polymer molecule that only contains a single element. a small molecule used to make

More information

Downloaded from Unit - 15 POLYMERS. Points to Remember

Downloaded from   Unit - 15 POLYMERS. Points to Remember Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM. Course Title: Polymer Chemistry (Code: )

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM. Course Title: Polymer Chemistry (Code: ) GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM Course Title: Polymer (Code: 3322301) Diploma Programme in which this course is offered Plastic Engineering Semester in which offered

More information

Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems

Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems Plasticheskie Massy, No.,, pp. 19 Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems Yu. V. Zelenev, V. A. Ivanovskii, and D.

More information

The vibrational spectroscopy of polymers

The vibrational spectroscopy of polymers D. I. BOWER Reader in Polymer Spectroscopy Interdisciplinary Research Centre in Polymer Science & Technology Department of Physics, University of Leeds W.F. MADDAMS Senior Visiting Fellow Department of

More information

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FTIR

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FTIR Analysis of Polymers and Plastics Quality Control & Failure Analysis Innovation with Integrity FTIR Quality Control for Cost-Efficiency Plastics are used in countless products such as automotive parts,

More information

Company Businness Units

Company Businness Units Rev.no. 1p, 22.11.2018 Company Businness Units FUNCTIONAL POWDERS FUNCTIONAL MODIFIERS MASTERBATCHES POLYMER ALLOYS R & D POLYMER POWDER - GRAFTABOND Products Pipeline 2018 Polymer powder based on MP-UHMWPE

More information

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham Structure, dynamics and heterogeneity: solid-state NMR of polymers Jeremy Titman, School of Chemistry, University of Nottingham Structure, dynamics and heterogeneity Structure Dynamics conformation, tacticity,

More information

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures Dr. Coates 14.1 Introduction Naturally occurring polymers Wood, rubber, cotton, wool, leather, silk Synthetic polymers Plastics,

More information

Material Testing Overview (THERMOPLASTICS)

Material Testing Overview (THERMOPLASTICS) Material Testing Overview (THERMOPLASTICS) Table of Contents Thermal Conductivity... 3 Specific Heat... 4 Transition Temperature and Ejection Temperature... 5 Shear Viscosity... 7 Pressure-Volume-Temperature

More information

1.04 Fundamentals of Transport Phenomena in Polymer Membranes

1.04 Fundamentals of Transport Phenomena in Polymer Membranes AU3 a5 1.4 Fundamentals of Transport Phenomena in Polymer Membranes D R Paul, University of Texas at Austin, Austin, TX, USA ª 2 Elsevier B.V. All rights reserved. 1.4.1 Introduction 1 1.4.2 Diffusion

More information

Heat Transfer in Polymers

Heat Transfer in Polymers Heat Transfer in Polymers Martin Rides, Angela Dawson 27 April 2005 Heat Transfer in Polymers - summary Introduction Heat Transfer Coefficient Thermal Conductivity Thermal Imaging Industrial Demonstrations

More information

PHYSICS OF SOLID POLYMERS

PHYSICS OF SOLID POLYMERS PYSIS OF SOLID POLYMERS Professor Goran Ungar WU E, Department of hemical and Biological Engineering Recommended texts: G. Strobl, The Physics of Polymers, Springer 996 (emphasis on physics) U. Gedde,

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

Polymer engineering syllabus (BSc)

Polymer engineering syllabus (BSc) Polymer engineering syllabus (BSc) First semester Math 1 Physics 1 Physics 1 lab General chemistry General chemistry lab workshop Second semester Math 2 Physics 2 Organic chemistry 1 Organic chemistry

More information

Temperature Field Simulation of Polymeric Materials During Laser Machining Using COSMOS / M Software

Temperature Field Simulation of Polymeric Materials During Laser Machining Using COSMOS / M Software Temperature Field Simulation of Polymeric Materials During Laser Machining Using COSMOS / M Software LIBUŠE SÝKOROVÁ, OLDŘICH ŠUBA, MARTINA MALACHOVÁ, JAKUB ČERNÝ Department of Production Engineering Tomas

More information

Presentation shared files at:

Presentation shared files at: Forrest Schultz, PhD Wisconsin State Science Olympiad Director Director, 2016 Science Olympiad National Tournament Chemistry National Rules Committee Professor, Department of Chemistry and Physics University

More information

Materials Engineering with Polymers

Materials Engineering with Polymers Unit 73: Unit code Materials Engineering with Polymers K/616/2556 Unit level 4 Credit value 15 Introduction This unit will provide students with the necessary background knowledge and understanding of

More information

Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany

Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany SUPPORTING INFORMATION Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany Authors Sascha Klein,, Eckhard Worch, Thomas P. Knepper*, Department

More information

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology Viscoelasticity, Creep and Oscillation Experiment Basic Seminar Applied Rheology Overview Repetition of some basic terms Viscoelastic behavior Experimental approach to viscoelasticity Creep- and recovery

More information

Broadband Dielectric Spectroscopy as a Tool for Polymer Analysis

Broadband Dielectric Spectroscopy as a Tool for Polymer Analysis Broadband Dielectric Spectroscopy as a Tool for Polymer Analysis September 13, 2011 Yoshimichi OHKI Waseda University 1 INTRODUCTION Dielectric behavior of a polymer various kinetic motions displacement,

More information

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization Introduction of Polymers Polymer - The word polymer is the Greek word : poly means many and mer means unit or parts, A Polymer is a large molecule that comprises repeating structural units joined by the

More information

Contents. Principles: Theory and Practice

Contents. Principles: Theory and Practice Contents Part I Principles: Theory and Practice 1 Physical Principles of Scanning Probe Microscopy Imaging... 3 1.1 Introduction... 3 1.2 The Physical Principles of Atomic Force Microscopy... 4 1.2.1 Forces

More information

*These are the vinyl for MAX Bepop Cutting/printing machines. We have 100mm (4in) and 200mm(8in) width models available in North America.

*These are the vinyl for MAX Bepop Cutting/printing machines. We have 100mm (4in) and 200mm(8in) width models available in North America. The English translation of Bepop standard vinyl (indoor use) technical datasheet 100mm (4in) / 200mm (8in) width Color 100mm(4in) width 200mm(8in) width Black SL-S111N Black SL-S201N Black White SL-S112N

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

Engineering Materials

Engineering Materials Engineering Materials A polymer is a large molecule composed of repeating structural units. poly- The word polymer is derived from the Greek words meaning "many"; and - meros meaning "part". Plastic and

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

Thermal Resistance-Based Bounds for the Effective Conductivity of Composite Thermal Interface Materials

Thermal Resistance-Based Bounds for the Effective Conductivity of Composite Thermal Interface Materials Thermal Resistance-Based Bounds for the Effective Conductivity of Composite Thermal Interface Materials Abstract Thermally enhanced greases made of dispersions of small conductive particles suspended in

More information

Ahmet Gürses. Introduction to Polymer Clay Nanocomposites

Ahmet Gürses. Introduction to Polymer Clay Nanocomposites Ahmet Gürses Introduction to Polymer Clay Nanocomposites Introduction to Polymer Clay Nanocomposites Introduction to Polymer Clay Nanocomposites Ahmet Gürses Published by Pan Stanford Publishing Pte.

More information

Chapter 2: INTERMOLECULAR BONDING (4rd session)

Chapter 2: INTERMOLECULAR BONDING (4rd session) Chapter 2: INTERMOLECULAR BONDING (4rd session) ISSUES TO ADDRESS... Secondary bonding The structure of crystalline solids 1 REVIEW OF PREVIOUS SESSION Bonding forces & energies Interatomic vs. intermolecular

More information

_ TA221 Brochure: Thermal Analysis & Rheology Systems Product Overview. _ TA006 Product Bulletin: Mechanical Cooling Accessory for TMA 2940

_ TA221 Brochure: Thermal Analysis & Rheology Systems Product Overview. _ TA006 Product Bulletin: Mechanical Cooling Accessory for TMA 2940 THERMAL ANALYSIS _ TA264 Brochure: Q Series DSC _ TA263 Brochure: Q Series TGA & SDT _ TA284 Brochure: Q Series DMA _ TA028 Brochure: TMA 2940 _ TA057 Brochure: DEA 2970 _ TA243 Brochure: µta 2990 _ TA098

More information

LFA for Thermal Diffusivity and Conductivity of Metals, Ceramics and Polymers

LFA for Thermal Diffusivity and Conductivity of Metals, Ceramics and Polymers Analyzing & Testing Business Unit LFA for Thermal Diffusivity and Conductivity of Metals, Ceramics and Polymers Ramón Arauz Lombardia, Service & Applications NETZSCH-Gerätebau GmbH, Branch Office Barcelona,

More information

Polymers on the Crime Scene

Polymers on the Crime Scene Polymers on the Crime Scene Valerio Causin Polymers on the Crime Scene Forensic Analysis of Polymeric Trace Evidence Valerio Causin Università di Padova Padova, Italy ISBN 978-3-319-15493-0 DOI 10.1007/978-3-319-15494-7

More information

Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

International Polymer Science and Technology

International Polymer Science and Technology Page 1 of 11 SMITHERS GROUP MENU International Polymer Science and Authors Instructions for Authors Access Logged into International Polymer Science and. Click Here To Logout Back Search Search Journals

More information

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College

More information

Stichwortverzeichnis. Peter Kennedy, Rong Zheng. Flow Analysis of Injection Molds. ISBN (Buch): ISBN (E-Book):

Stichwortverzeichnis. Peter Kennedy, Rong Zheng. Flow Analysis of Injection Molds. ISBN (Buch): ISBN (E-Book): Stichwortverzeichnis Peter Kennedy, Rong Zheng Flow Analysis of Injection Molds ISBN (Buch): 978-1-56990-512-8 ISBN (E-Book): 978-1-56990-522-7 For further information and order see http://www.hanser-fachbuch.de/978-1-56990-512-8

More information

Lecture 26 Classification

Lecture 26 Classification Lecture 26 Classification April 24, 2018 Industrial Influence: Trade Names PVC poly (vinylidene chloride) Saran wrap PVC poly (vinyl chloride) Pipe and records PET poly (ethylene teraphthalate) Coke bottles,

More information

Polypropylene. Monomer. mer

Polypropylene. Monomer. mer Polymer Polymer: Maromolecule built-up by the linking together of a large no. of small molecules Ex. Nucleic acid, paper, bakelite,pvc Monomer: The small molecule which combine with each other Mer: The

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Common Definition of Thermal Analysis

Common Definition of Thermal Analysis Thermal Analysis References Thermal Analysis, by Bernhard Wunderlich Academic Press 1990. Calorimetry and Thermal Analysis of Polymers, by V. B. F. Mathot, Hanser 1993. Common Definition of Thermal Analysis

More information

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FT-IR

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FT-IR Analysis of Polymers and Plastics Quality Control & Failure Analysis Innovation with Integrity FT-IR Reliable quality control is essential to achieve a cost-saving production of high quality plastic products.

More information

Physical Chemistry of Polymers (4)

Physical Chemistry of Polymers (4) Physical Chemistry of Polymers (4) Dr. Z. Maghsoud CONCENTRATED SOLUTIONS, PHASE SEPARATION BEHAVIOR, AND DIFFUSION A wide range of modern research as well as a variety of engineering applications exist

More information

POLYMER STRUCTURES ISSUES TO ADDRESS...

POLYMER STRUCTURES ISSUES TO ADDRESS... POLYMER STRUTURES ISSUES TO ADDRESS... What are the basic microstructural features? ow are polymer properties effected by molecular weight? ow do polymeric crystals accommodate the polymer chain? Melting

More information

On Relationship between PVT and Rheological Measurements of Polymer Melts

On Relationship between PVT and Rheological Measurements of Polymer Melts ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 3, 2005 On Relationship between PVT and Rheological Measurements of Polymer Melts Tomas Sedlacek, Peter Filip 2, Peter Saha Polymer Centre, Faculty

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2 Polymers Outline Introduction Molecular Structure and Configurations Polymer s synthesis Molecular weight of polymers Crystallinity You may think of polymers as being a relatively modern invention however

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) MEQ, MQ, DEQuim, DQuim 2 nd semester 2017/2018, IST-UL Science and Technology of Polymers (2 nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 1 Block 1 Fundamentals of Macromolecular

More information

TECHNICAL NOTEBOOK No.1. GPC LF series columns. Linear calibration curves over a wide molecular weight range. TECHNICAL NOTEBOOK. No.

TECHNICAL NOTEBOOK No.1. GPC LF series columns. Linear calibration curves over a wide molecular weight range. TECHNICAL NOTEBOOK. No. TECNICAL NOTEBOOK No.1 GPC LF series columns Linear calibration curves over a wide molecular weight range. TECNICAL NOTEBOOK No.1 Contents 1. Introduction 1 2. Shodex GPC LF series 2.1. Specifications

More information

This name hints at how polymers are made

This name hints at how polymers are made Chapter- I Many + Parts This name hints at how polymers are made POLYMERS (the whole train) are made out of MONOMERS (individual cars of the train) joined together. repeat unit H H H H H H C C C C C

More information

DEVELOP WEAR-RESISTANT POLYMERIC COMPOSITES BY USING NANOPARTICLES

DEVELOP WEAR-RESISTANT POLYMERIC COMPOSITES BY USING NANOPARTICLES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DEVELOP WEAR-RESISTANT POLYMERIC COMPOSITES BY USING NANOPARTICLES 1 Abstract L. Chang 1 *, K. Friedrich 2 1 School of Aerospace, Mechanical & Mechatronic

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

Finite Element Modeling of a Thermoplastic Seal at High Temperature and Pressure

Finite Element Modeling of a Thermoplastic Seal at High Temperature and Pressure Finite Element Modeling of a Thermoplastic Seal at High Temperature and Pressure Jorgen Bergstrom 1, Ph.D. Brun Hilbert 2, Ph.D., P.E. Email: jorgen@polymerfem.com 1 Veryst Engineering, LLC Needham, MA

More information

Covalent Compounds 1 of 30 Boardworks Ltd 2016

Covalent Compounds 1 of 30 Boardworks Ltd 2016 Covalent Compounds 1 of 30 Boardworks Ltd 2016 Covalent Compounds 2 of 30 Boardworks Ltd 2016 What are covalent bonds? 3 of 30 Boardworks Ltd 2016 When atoms share pairs of electrons, they form covalent

More information

Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites

Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites Daniel H. Builes, Hugo Hernández, Laida Cano, Agnieszka Tercjak Group Materials + Technologies Polymeric

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature Thermal Transitions: Crystallization, Melting and the Glass Transition This lecture: Crystallization and Melting Next Lecture: The Glass Transition Temperature Today: Why do polymers crystallize in a chain

More information