The Influence of Processing-History on the Main Melting Temperature and Secondary Melting Temperature Using DSC. Stephen Sansoterra

Size: px
Start display at page:

Download "The Influence of Processing-History on the Main Melting Temperature and Secondary Melting Temperature Using DSC. Stephen Sansoterra"

Transcription

1 The Influence of Processing-History on the Main Melting Temperature and Secondary Melting Temperature Using DSC Abstract: Stephen Sansoterra Canfield High School, 100 Cardinal Drive, Canfield Ohio Polymers are in a majority of commercial products, and are synthesized in various ways. DSC was used to analyze the melting temperatures of Low Density Polyethylene (LDPE), cellulose acetate, and polypropylene (PP). Two melting cycles were completed in order to look for differences which allude to a processing-history of a commercial polymer. In every sample, there was a processing-history that was indicated by differences in heat absorption between the two melting cycles in each sample. This allows further research in how various processes affect the Differential Scanning Calorimetry (DSC) graphs when compared to a specific sample. Introduction: Polymers are used globally for the packaging of food and commercial goods. Some common polymers used are polyolefin, polyester, polyamide, polyvinyl chloride, polyvinylidene chloride, and polystyrene. Polymer research and development is very important because we come into contact everyday with polymers in products such as grocery store bags to water bottles, to plastic wrappers. Every polymer has unique properties that revolve around its own specific structure. Even tiny changes in structure can affect a large variety of properties, decreasing functionality. An endothermic reaction is a reaction in which the reactants absorb energy whereas an exothermic reaction involves the release of energy into the system. Semi crystalline polymers are molecules that have interspersed amorphous regions (linear, non- crystalline regions). Processing-history is how a polymer was synthesized and handled during production. Hypothesis- Can a difference in Tm1 values and Tm2 values indicate a processing-history based on the amount of energy absorbed by the sample? 1

2 Experiments: Several polymer samples from everyday items were prepared. A sample was created from a Ziploc bag, a popcorn bag wrapper, a name badge, and a bag labelled PE-LD Ziploc Bag PE-LD Bag Popcorn Bag Wrapper Name Badge Differential Scanning Calorimetry (DSC): DSC is a tool used to measure the glass transition, melting, and crystallization temperatures of a polymer while it is heated or cooled. The samples examined show specific melting and crystallization peaks based on the polymer within the sample that is being examined. Two heating cycles were done on each sample, with one cooling cycle done in between. The TA instruments DSC (Model Q2000) was used for each of the DSC measurements. Low mass Aluminum sample pans were used for analysis, and the sample was prepared to be between 2 and 3 milligrams. Samples were heated and cooled at a rate of 10 degrees Celsius per minute. TA Universal Analysis was then used for deeper analysis of the peaks to prepare the DSC data found in this report. Fourier Transform Infrared Spectroscopy (FTIR): FTIR is a technique that creates a graph that indicates specific functional groups within a molecule based on the absorption of infrared light and the vibration of the molecules that is caused by the absorption of energy. A specific peak found in many FTIR graphs is a carbon- hydrogen bond that occurs at about 3000 cm -1. Each molecule has its own fingerprint region of the graph which is used for the identification of specific molecules and polymers. The Perkin- Elmer (Model Spectrum Two) was used to take FTIR spectrum for the wavelength range of 4000 to 700 cm -1 for each sample. The samples were prepared by taping polymer film over a paper business card with a 3 cm in diameter circular aperture. 2

3 Results: FTIR was done on every sample in order to determine what polymer was within each of the four samples. The FTIR was then compared to data from the European Commission to better understand what polymer was being examined. Ziploc Bag FTIR PE-LD Bag FTIR Both the Ziploc Bag and the PE-LD Bag had a very similar FTIR graph as an FTIR graph of LDPE created and analyzed by the European Commission. The only difference highlighted on the two graphs was within the fingerprint region, and was a small peak. This along with DSC data 3

4 discussed later in the paper indicates that the LPDE in the PE-LD bag had less branching than the LPDE within the Ziploc bag. The next graphs show the similarity between the results from our FTIR graphs compared to FTIR graphs of strictly the polymer thought to make up each sample. The peaks are nearly identical, but as in the case in polypropylene, the peaks are out of proportion. Also noted in the popcorn bag wrapper from the FTIR of polypropylene is the presence of large waves that just were caused by the denseness of our samples. Peaks were even more out of proportion compared to the 4

5 cellulose acetate. However, the two graphs look quite similar, with some small differences within the fingerprint region. Popcorn Bag Wrapper (Polypropylene) FTIR Spectrum of Name Badge FTIR Spectrum of Cellulose Acetate After a major component of our samples was determined, DSC was then used to investigate the differences between the main and secondary melting temperatures of each sample. Tm1 of the PE-LD 5

6 Main Melting Temp. Secondary Melting Temp o C o C Tm2 of PE-LD Bag 6

7 Main Melting Temp o C 7

8 Secondary Melting Temp. Minor Shoulder Peak o C o C 8

9 When looking at the first cycle (Tm1), there are significant differences from the third cycle (Tm2) such as the presence of a small third peak. The peaks are indicative of several different regions of various levels of crystallinity within the polymer. This means that one region of crystallinity had changed when melting for the second time after recrystallizing. It also means that the processing-history behind the molecule required a different amount of energy the first time it was melted, resulting in a different peak structure from when the sample was melted a second time during cycle three of the DSC. A similar graph was constructed from a DSC of the same polymer from a different source. T m1 of Ziploc Bag Main Melting Temp. Secondary Melting Temp o C o C 9

10 T m2 of Ziploc Bag Main Melting Temp. Secondary Melting Temp o C o C Both the PE-LD bag and the Ziploc bag exhibit melting peaks in roughly the same spot. However the main peak is at a temperature of degrees Celsius, which contrasts the main peak temperature difference of the PE-LD bag ( degrees Celsius). The lower melting peak temperature in the Ziploc bag is indicative of longer, branched chains. This is consistent with the differences found between the FTIR graphs. An interesting feature of the Tm1 graph of the Ziploc bag is that, just like in the graphs of the PE-LD bag, there is a more unstructured line leading up to the melting point when moving from left to right. This also shows that there is a processinghistory of the polymer noted by the different amounts of energy that are needed to perform the first melting of the sample when compared to the second. T m1 of Popcorn Bag Wrapper Main Melting Temp o C 10

11 T m2 of Popcorn Bag Wrapper Main Melting Temp o C The DSC graphs for the popcorn bag wrapper have a single peak as opposed to the double peaks of the Ziploc and PE-LD bag. This indicates that there is one region of crystallization. Another interesting feature is the significant difference between the two melting temperature graphs in the popcorn bag wrapper. The marked regions show the much more extensive processing-history that this polymer had over the Ziploc bag and the PE-LD bag. T m1 of Name Badge Main Melting Temp o C 11

12 T m2 of Name Badge No Melting Peak For the Name Badge, a crosslink polymer was formed from the degradation of the cellulose acetate within the name badge. In between 250 and 300 degrees Celsius, the heat was too much for the polymer and a completely new product was formed. This explains why in the second heating of the sample, there was no melting peak because there was a completely different molecule within the DSC machine. Conclusion: The FTIR graphs were created and used to compare the samples to pure polymers. The comparisons were similar, except for small differences within the fingerprint region due to the samples not being single pure polymers. Another small difference was the presence in our FTIR graphs of large waves along the top of the graph due to the high density of our samples, however using DSC served as a powerful method to identify different plastics. The DSC results showed that there was a processing-history of each sample that affected the Tm1 graph. This was shown in each sample as a significant difference between both times the samples were melted; one example being the degrees Celsius Tm1 compared to the degrees Celsius Tm2 of the Popcorn bag wrapper. The DSC also yielded results about the thermal degradation of polymers as shown by the name badge. It had become a completely new molecule because it was over heated. This was shown through the unique Tm1 graph, and the second heating graph that had no melting peak because the structure of the cellulose acetate was thermally altered. DSC allowed us to see the difference between LDPE and HDPE while FTIR did not, however FTIR is still a powerful tool to quickly scan the sample and allow us to identify different plastics. After examining the DSC results, the hypothesis was deemed correct as a processing-history was observed in the melting temperature graphs of every sample. In the future it would be interesting to pursue how the various processes used for commercial polymer production alter the DSC graphs as compared to a pure sample. 12

13 Acknowledgement: I would like to thank both of my parents, my fellow high school colleagues, Dr. Ma, Dr. Ryu, Sara, Casey, Miriam, Ben, Louis, Theodore, the Science Department at Canfield High School, Ms. Cannel, Mr. Pavlansky, Research in Polymers Program at Rensselaer Polytechnic Institute, and the National Science Foundation (Award Number ) References: 1. M. A. Peltzer and C. Simoneau OLC Identification of Polymeric Materials European Commission, Joint Research Centre, Institute for Health and Consumer Protection (ISBN ), Publications Office of the European Union, Luxembourg (2013). 2. Thomas, L.C. Characterization of Melting Phenomena in Linear Low Density Polyethylene by Modulated DSC. TA Instruments Inc. 3. Chordiya MA, Gangurde HH, Senthilkumaran K, Kothari LP. Formulation development and in vitro evaluation of gastrorelentive hollow microspheres of famotidine. Int J Pharma Investig 2011;1:

The vibrational spectroscopy of polymers

The vibrational spectroscopy of polymers D. I. BOWER Reader in Polymer Spectroscopy Interdisciplinary Research Centre in Polymer Science & Technology Department of Physics, University of Leeds W.F. MADDAMS Senior Visiting Fellow Department of

More information

Measurement techniques

Measurement techniques Measurement techniques 1 GPC GPC = gel permeation chromatography GPC a type of size exclusion chromatography (SEC), that separates analytes on the basis of size. The column used for GPC is filled with

More information

Polymer Chemistry Research Experience. Support: NSF Polymer Program NSF (PI: Chang Ryu)/RPI Polymer Center

Polymer Chemistry Research Experience. Support: NSF Polymer Program NSF (PI: Chang Ryu)/RPI Polymer Center Polymer Chemistry Research Experience. Support: NSF Polymer Program NSF-1308617 (PI: Chang Ryu)/RPI Polymer Center Student Name: Michael Hyams Student Affiliation (City, State): Mamaroneck, NY Picture

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

Lecture 25 POLYMERS. April 19, Chemistry 328N

Lecture 25 POLYMERS. April 19, Chemistry 328N Lecture 25 POLYMERS Wallace Carothers April 19, 2016 Paul Flory Wallace Hume Carothers 1896-1937 Carothers at Dupont 1.Commercializion of Nylon https://www.chemheritage.org/ Nylon was first used for fishing

More information

Fourier transform infrared spectroscopy (FTIR) is a method used to obtain an infrared

Fourier transform infrared spectroscopy (FTIR) is a method used to obtain an infrared Fourier Transform Infrared Spectroscopy: Low Density Polyethylene, High Density Polyethylene, Polypropylene and Polystyrene Eman Mousa Alhajji North Carolina State University Department of Materials Science

More information

Lecture 26 Classification

Lecture 26 Classification Lecture 26 Classification April 24, 2018 Industrial Influence: Trade Names PVC poly (vinylidene chloride) Saran wrap PVC poly (vinyl chloride) Pipe and records PET poly (ethylene teraphthalate) Coke bottles,

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14 Thermal Methods We will examine three thermal analytical techniques: Thermogravimetric Analysis (TGA) CHEM*3440 Chemical Instrumentation Topic 14 Thermal Analysis Differential Thermal Analysis (DTA) Differential

More information

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FTIR

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FTIR Analysis of Polymers and Plastics Quality Control & Failure Analysis Innovation with Integrity FTIR Quality Control for Cost-Efficiency Plastics are used in countless products such as automotive parts,

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

MECHANICAL AND THERMAL PROPERTIES OF COMMERCIAL MULTILAYER PET/PP FILM IRRADIATED WITH ELECTRON-BEAM

MECHANICAL AND THERMAL PROPERTIES OF COMMERCIAL MULTILAYER PET/PP FILM IRRADIATED WITH ELECTRON-BEAM 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 MECHANICAL AND

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers SCH4U Synthesis and Polymers Synthesis Reactions and Addition and Condensation Polymers ADDITION POLYMERS ADDITION POLYMERS A + A + A + A A A A A monomers polymer + + + ethylene (ethene) polyethylene

More information

Aging behavior of polymeric absorber materials for solar thermal collectors

Aging behavior of polymeric absorber materials for solar thermal collectors Aging behavior of polymeric absorber materials for solar thermal collectors Susanne Kahlen, Gernot M. Wallner, Reinhold W. Lang July, 211 Introduction Plastics based collectors 2 SOLARNOR all-polymeric

More information

Can you imagine a world without plastics? Plastic soft drink containers,

Can you imagine a world without plastics? Plastic soft drink containers, 21 Polymer Parts R EA D I N G Can you imagine a world without plastics? Plastic soft drink containers, bags, pens, DVDs, and computer and television parts are just a few things made of plastics that would

More information

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer.

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. 1.8 Polymers The General Structure of Polymers A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. Many biological molecules,

More information

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FT-IR

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FT-IR Analysis of Polymers and Plastics Quality Control & Failure Analysis Innovation with Integrity FT-IR Reliable quality control is essential to achieve a cost-saving production of high quality plastic products.

More information

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics Fairfax Science Olympiad Tryouts 2018 Name: _ Score: /75 MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics In questions 1-6, draw a diagram of the named functional group. Use R to denote the

More information

Thermochemistry. The study of energy changes that occur during chemical reactions and changes in state.

Thermochemistry. The study of energy changes that occur during chemical reactions and changes in state. Energy Thermochemistry The study of energy changes that occur during chemical reactions and changes in state. The Nature of Energy Energy - the ability to do work or produce heat Energy is stored in the

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Can We Identify Unknown Plastics Using Infrared Spectroscopy?

Can We Identify Unknown Plastics Using Infrared Spectroscopy? ACTVTY Can We dentify Unknown Plastics Using nfrared Spectroscopy? LEARNNG GOALS a To become familiar with infrared (R) spectroscopy To relate R spectra to the bonds present in different polymers To identify

More information

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization Introduction of Polymers Polymer - The word polymer is the Greek word : poly means many and mer means unit or parts, A Polymer is a large molecule that comprises repeating structural units joined by the

More information

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures Dr. Coates 14.1 Introduction Naturally occurring polymers Wood, rubber, cotton, wool, leather, silk Synthetic polymers Plastics,

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

Polymers on the Crime Scene

Polymers on the Crime Scene Polymers on the Crime Scene Valerio Causin Polymers on the Crime Scene Forensic Analysis of Polymeric Trace Evidence Valerio Causin Università di Padova Padova, Italy ISBN 978-3-319-15493-0 DOI 10.1007/978-3-319-15494-7

More information

EFFECT OF CO 2 LASER RADIATION ON SURFACE PROPERTIES OF SYNTHETIC FIBRES F. Esteves, H. Alonso ABSTRACT

EFFECT OF CO 2 LASER RADIATION ON SURFACE PROPERTIES OF SYNTHETIC FIBRES F. Esteves, H. Alonso ABSTRACT EFFECT OF CO 2 LASER RADIATION ON SURFACE PROPERTIES OF SYNTHETIC FIBRES F. Esteves, H. Alonso ABSTRACT Chemical treatment methods are most often used in the present for polymer surface modification; however,

More information

Bust-A-Myth Particles of Matter and Heat Transfer. Students will use the online Research Gadget and experimentation to bust or confirm the myth:

Bust-A-Myth Particles of Matter and Heat Transfer. Students will use the online Research Gadget and experimentation to bust or confirm the myth: ACTIVITY Bust-A-Myth Particles of Matter and Heat Transfer Approximate Classroom Time: 100-150 minutes Students will use the online Research Gadget and experimentation to bust or confirm the myth: A winter

More information

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed Thermal Methods of Analysis Theory, General Techniques and Applications Prof. Tarek A. Fayed 1- General introduction and theory: Thermal analysis (TA) is a group of physical techniques in which the chemical

More information

APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION. Wei Xie TA Instruments

APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION. Wei Xie TA Instruments APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION Wei Xie TA Instruments Abstract Thermal Analysis is the generic name for a series of measurement techniques traditionally used

More information

Why do cold packs get cold?

Why do cold packs get cold? Assignment #5 Temperature in Reactions LO: To determine which solute dissolves most endothermically and exothermically in water. EQ: What makes an endothermic reaction feel cold? (explain using bonds and

More information

Chapter 14: Polymer Structures

Chapter 14: Polymer Structures Chapter 14: Polymer Structures ISSUES TO ADDRESS... What are the general structural and chemical characteristics of polymer molecules? What are some of the common polymeric materials, and how do they differ

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

VOCs Emissions and Structural Changes of Polypropylene During Multiple Melt Processing

VOCs Emissions and Structural Changes of Polypropylene During Multiple Melt Processing VOCs Emissions and Structural Changes of Polypropylene During Multiple Melt Processing Q. Xiang, M. Xanthos*, S. Mitra and S. H. Patel* Department of Chemical Engineering, Chemistry and Environmental Science

More information

POLYAMIDE-6,9 WITH CARBAZOLE

POLYAMIDE-6,9 WITH CARBAZOLE Chapter 5 POLYAMIDE-6,9 WITH CARBAZOLE CONTENTS 5.1 Introduction 174 5.2 Thermogravimetric Analysis 175 5.3 Differential Scanning Calorimetry 176 5.3.1 Pan Melt Blending 176 5.3.1.1 Melting Temperatures

More information

Thermal Methods of Analysis

Thermal Methods of Analysis Thermal Methods of Analysis Calorie-something we know What is calorie? Can you see or touch a calorie? How is it measured? Working out in gym Change in weight Loss of calories-burning of fat? (10 km=500calories/9cal

More information

Analytical Testing Services Commercial Price List ManTech International Corporation January 2018

Analytical Testing Services Commercial Price List ManTech International Corporation January 2018 Analytical ing Services Commercial List ManTech International Corporation January 2018 TABLE OF CONTENTS MECHANICAL TENSILE TESTING... 1 DIFFERENTIAL SCANNING CALORIMETRY (DSC)... 2 THERMOMECHANICAL ANALYSIS

More information

Ahmet Gürses. Introduction to Polymer Clay Nanocomposites

Ahmet Gürses. Introduction to Polymer Clay Nanocomposites Ahmet Gürses Introduction to Polymer Clay Nanocomposites Introduction to Polymer Clay Nanocomposites Introduction to Polymer Clay Nanocomposites Ahmet Gürses Published by Pan Stanford Publishing Pte.

More information

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase Liquid Crystal - Liquid crystals (LCs) are a state of matter that have properties between those of a conventional liquid and those of a solid crystal. (Fourth state of matter) Liquid Crystal Orientation

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy IR Spectroscopy Used to identify organic compounds IR spectroscopy provides a 100% identification if the spectrum is matched. If not, IR at least provides information about the types

More information

What Do You Think? Investigate GOALS

What Do You Think? Investigate GOALS Activity 7 Polymers GOALS In this activity you will: Make a polymer-based material that has properties different from other states of matter that you have studied. Observe the material s properties and

More information

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas Thermochemistry Part 1 Notes States of Matter and Intermolecular Forces (IMF) Chemistry HP At the end of this unit, students should be able to: Describe the various states of matter in terms of kinetic

More information

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature Thermal Transitions: Crystallization, Melting and the Glass Transition This lecture: Crystallization and Melting Next Lecture: The Glass Transition Temperature Today: Why do polymers crystallize in a chain

More information

Packing of Atoms in Solids [5]

Packing of Atoms in Solids [5] Packing of Atoms in Solids [5] Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, ordered packing Energy typical neighbor bond length typical neighbor bond

More information

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION Paper # 164-8P Pittsburgh Conference 24 T. Wampler, C. Zawodny, L. Mancini CDS Analytical, Inc 465 Limestone Road, Oxford,

More information

transpec Instant Polymer Analyser Webinar starting soon

transpec Instant Polymer Analyser Webinar starting soon transpec Instant Polymer Analyser Webinar starting soon transpec Instant Polymer Analyser Rapid Measurement of Flame Retardants and Additives Agenda Background Introduction to transpec Features, benefits

More information

DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC

DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC Problem A scientist is having difficulty in interpreting DSC results on a sample of polystyrene film. The sample exhibits a complex

More information

Common Definition of Thermal Analysis

Common Definition of Thermal Analysis Thermal Analysis References Thermal Analysis, by Bernhard Wunderlich Academic Press 1990. Calorimetry and Thermal Analysis of Polymers, by V. B. F. Mathot, Hanser 1993. Common Definition of Thermal Analysis

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 221 lecture 19/2 Polymers Outline Introduction Molecular Structure and Configurations Polymer s synthesis Molecular weight of polymers Crystallinity You may think of polymers as being a relatively modern invention however

More information

Section 16.3 Phase Changes

Section 16.3 Phase Changes Section 16.3 Phase Changes Solid Liquid Gas 3 Phases of Matter Density of Matter How packed matter is (The amount of matter in a given space) Solid: Liquid: Gas: High Density Medium Density Low Density

More information

Supplementary Material

Supplementary Material Supplementary Material Title: Optical Characterization of Non-Covalent Interaction between Non-Conjugated Polymers and Chemically Converted Graphene Author: Yufei Wang A, Xueliang Hou A, Chi Cheng A, Ling

More information

DuPont Tedlar PVF Based Backsheets Performance comparison vis-avis PVDF and PET based backsheets

DuPont Tedlar PVF Based Backsheets Performance comparison vis-avis PVDF and PET based backsheets DuPont Tedlar PVF Based Backsheets Performance comparison vis-avis PVDF and PET based backsheets Backsheet Deemed Most Critical Material to Protect Solar Module Most Critical Component Crystalline Silicone

More information

240EQ016 - Polymers and Biopolymers

240EQ016 - Polymers and Biopolymers Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 713 - EQ - Department of Chemical Engineering MASTER'S DEGREE IN CHEMICAL ENGINEERING

More information

Preliminary Chemistry

Preliminary Chemistry Name: Preliminary Chemistry Lesson 6 Water In Theory. This booklet is your best friend. Success is Contagious. Synergy Chemistry. 0466 342 939 garyzhanghsc@gmaiil.com www.hscsynergyeducation.weebly.com

More information

I. 16. Coloration of Polyethylene Terephthalate (PET) Film by 3MeV Proton Beams

I. 16. Coloration of Polyethylene Terephthalate (PET) Film by 3MeV Proton Beams CYRIC Annual Report 2001 I. 16. Coloration of Polyethylene Terephthalate (PET) Film by 3MeV Proton Beams Matsuyama S., Ishii K., Yamazaki H., Endoh H., Yuki H., Satoh T., Sugihara S., Amartaivan Ts., Tanaka

More information

Experiment 5. Synthetic Polymers.

Experiment 5. Synthetic Polymers. Experiment 5. Synthetic Polymers. References: Brown & Foote, Chapters 24 INTRODUCTION: A polymer (Greek: polys + meros = many parts) is a giant or macromolecule made up of repeating structural units. The

More information

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into.

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. 5.7: Polymers Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. Polymers are large molecules that are made by linking together

More information

Overview of Maleic-Anhydride-Grafted Polyolefin Coupling Agents

Overview of Maleic-Anhydride-Grafted Polyolefin Coupling Agents Overview of Maleic-Anhydride-Grafted Polyolefin Coupling Agents A guide to understanding their uses, benefits, functions, selection, and developments Louis W. Martin, Addcomp North America Inc. Fundamentals

More information

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC)

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC) Metal Structure Atoms held together by metallic bonding Crystalline structures in the solid state, almost without exception BCC, FCC, or HCP unit cells Bodycentered cubic (BCC) Chromium, Iron, Molybdenum,

More information

4. Every CHANGE in matter includes a change in, which is conserved in a chemical reaction and. TRANSFORMED from one form to another.

4. Every CHANGE in matter includes a change in, which is conserved in a chemical reaction and. TRANSFORMED from one form to another. Part C: Lesson 1.4 - Read pages 20-29 to answer these questions. Add to notes - 1. A physical change alters the form or appearance of matter, such as Change in size, a change in SIZE or. SHAPE shape, or

More information

MICRODENSITY OF PLASTICS

MICRODENSITY OF PLASTICS MICRODENSITY OF PLASTICS Introduction: Density is defined as the mass per unit volume of a substance. It is one of the most important properties used in the identification of substances. However, if the

More information

Electronic materials and components-polymer types

Electronic materials and components-polymer types Introduction Electronic materials and components-polymer types Polymer science is a broad field that includes many types of materials which incorporate long chain structures with many repeated units. One

More information

Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change

Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change Leonard C. Thomas TA Instruments, 109 Lukens Drive, New Castle, DE 19720, USA ABSTRACT MDSC provides the

More information

A New Age of Innovation in Plastics

A New Age of Innovation in Plastics A New Age of Innovation in Plastics Custom Polyolefins by Molecular Design: Dr. Jim Stevens Research Fellow The Dow Chemical Company JCS 12/02/2008 Page 1 Polyethylene is Everywhere Global demand exceeds

More information

THE USE OF ESTERIFIED LIGNIN FOR SYNTHESIS OF DURABLE COMPOSITES

THE USE OF ESTERIFIED LIGNIN FOR SYNTHESIS OF DURABLE COMPOSITES THE USE OF ESTERIFIED LIGNIN FOR SYNTHESIS OF DURABLE COMPOSITES Olsson, S., 1 Östmark, E., 1,2, Ibach, R.E., 3 Clemons, C.M., 3 Segerholm, K.B., 1, 4 & Englund, F. 1 ABSTRACT Lignin is a natural polymer

More information

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals?

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? Cellulose Amylose Amylopectin Glycogen 2. Which of the following is not a semisynthetic polymer?

More information

Chemistry Notes. Daniel P

Chemistry Notes. Daniel P Chemistry Notes Daniel P Contents 1 Introduction 3 2 Production of Materials 4 2.1 Ethylene and its Uses...................................... 4 1. Chemical Equations...................................

More information

Radiation Effects on Poly(propylene) (PP)/Ethylene Vinyl Acetate Copolymer (EVA) Blends

Radiation Effects on Poly(propylene) (PP)/Ethylene Vinyl Acetate Copolymer (EVA) Blends Effects on Poly(propylene) (PP)/Ethylene Vinyl Acetate Copolymer (EVA) Blends Siqin Dalai,* Chen Wenxiu Department of Chemistry, Beijing Normal University, Beijing 100875, China Received 22 March 2001;

More information

Thermal and Mechanical Properties of EPR and XLPE Cable Compounds

Thermal and Mechanical Properties of EPR and XLPE Cable Compounds F E A T U R E A R T I C L E Thermal and Mechanical Properties of EPR and XLPE Cable Compounds Key Words: EPR, TRXLPE, thermal conductivity/resistivity, thermal diffusivity, heat capacity, thermal expansion,

More information

Conclusion and Future Work

Conclusion and Future Work Chapter 7 7. Chapter 7 and Future Work Chapter 7 Abstract This chapter gives the details of correlations of the spectroscopic investigation results with those available from other studies and also summarizes

More information

#30 Thermochemistry: Heat of Solution

#30 Thermochemistry: Heat of Solution #30 Thermochemistry: Heat of Solution Purpose: You will mix different salts with water and note any change in temperature. Measurements using beakers will be compared to measurements using polystyrene

More information

Physico-chemical characterization and comparison of fluorinated commercial Ski-Waxes.

Physico-chemical characterization and comparison of fluorinated commercial Ski-Waxes. SKI-WAX 2013. Physico-chemical characterization and comparison of fluorinated commercial Ski-Waxes. Luca Fambri, Riccardo Ceccato, Emanuela Callone and Denis Lorenzi Department of Industrial Engineering,

More information

Thermal analysis unlocks the secrets of elastomers

Thermal analysis unlocks the secrets of elastomers 4450 CR AN WO O D P AR K W AY C LEVELAN D, OH IO 44128 WW W. N SLAN ALYTICAL. C OM Thermal analysis unlocks the secrets of elastomers By Brian Bacher and Michael Walker, NSL Analytical Services, and Alan

More information

Chapter 31. Thermal Methods

Chapter 31. Thermal Methods Chapter 31. Thermal Methods Thermal analysis: Physical property of a substance or its reaction products is measured as a function of temperature. * TGA: Thermogravimetric Analysis ( 熱重分析法 ) * DTA: Differential

More information

Infrared Spectroscopy

Infrared Spectroscopy Reminder: These notes are meant to supplement, not replace, the laboratory manual. Infrared Spectroscopy History and Application: Infrared (IR) radiation is simply one segment of the electromagnetic spectrum

More information

Experiment 15: Exploring the World of Polymers

Experiment 15: Exploring the World of Polymers 1 Experiment 15: Exploring the World of Polymers bjective: In this experiment, you will explore a class of chemical compounds known as polymers. You will synthesize and modify polymers, test their properties

More information

CHM Salicylic Acid Properties (r16) 1/11

CHM Salicylic Acid Properties (r16) 1/11 CHM 111 - Salicylic Acid Properties (r16) 1/11 Purpose In this lab, you will perform several tests to attempt to confirm the identity and assess the purity of the substance you synthesized in last week's

More information

Report of an interlaboratory comparison from the European Reference Laboratory for Food Contact Materials:

Report of an interlaboratory comparison from the European Reference Laboratory for Food Contact Materials: Report of an interlaboratory comparison from the European Reference Laboratory for Food Contact Materials: ILC002 2013 Identification of Polymeric Materials 2013 Mercedes A. Peltzer and Catherine Simoneau

More information

Chemistry. Understanding Water V. Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02)

Chemistry. Understanding Water V. Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02) Chemistry Understanding Water V Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02) 9211 2610 info@keystoneeducation.com.au keystoneeducation.com.au Water has a higher heat capacity than many

More information

N E W S L E T T E R F R O M TO S H V I N A N A LY T I C A L P V T. LT D.

N E W S L E T T E R F R O M TO S H V I N A N A LY T I C A L P V T. LT D. N E W S L E T T E R F R O M TO S H V I N A N A LY T I C A L P V T. LT D. AUGUST 204 TABLE OF CONTENTS Evaluation of Light Intensity Graph and Particle Size Distribution of Mixture Particle Application

More information

4. In this electrochemical cell, the reduction half reaction is

4. In this electrochemical cell, the reduction half reaction is Exam 3 CHEM 1100 Version #1 Student: 1. A monomer is a polymer made from only one component. a single polymer chain. a polymer molecule that only contains a single element. a small molecule used to make

More information

Techniques useful in biodegradation tracking and biodegradable polymers characterization

Techniques useful in biodegradation tracking and biodegradable polymers characterization Techniques useful in biodegradation tracking and biodegradable polymers characterization Version 1 Wanda Sikorska and Henryk Janeczek 1 Knowledge on biodegradable polymers structures is essential for the

More information

CHARACTERISATION OF NANOPARTICLE THROUGH SEM, FTIR, XRD & DSC

CHARACTERISATION OF NANOPARTICLE THROUGH SEM, FTIR, XRD & DSC Indian Institute of Technology Kharagpur From the SelectedWorks of Ajit Behera 2011 CHARACTERISATION OF NANOPARTICLE THROUGH SEM, FTIR, XRD & DSC Ajit Behera, Indian Institute of Technology - Kharagpur

More information

Radical Reactions. Radical = a substance with at least one unpaired electron. Radicals are very reactive substances.

Radical Reactions. Radical = a substance with at least one unpaired electron. Radicals are very reactive substances. Objective 14 Apply Reactivity Principles to Radical Reactions: Identify radical reaction conditions Describe mechanism Use curved arrows for common radical steps to predict product Radical Reactions Radical

More information

Introduction to Polymers

Introduction to Polymers 2008 29 minutes Teacher Notes: Jodie Ashby B.Sc.,B.Ed. Program Synopsis This program looks at polymers all around us and investigates both synthetic and naturally occurring polymers. Students will see

More information

An Introduction to Polymer Physics

An Introduction to Polymer Physics An Introduction to Polymer Physics Why & What Why do you choose this course? What do you know about polymer (physics)? Wentao Hao College of Chemical Engineering Hefei University of 2 Physics Physics (Greek(

More information

Universal Standard Protocols for Temperature and Material Characterization Calibration with Pharmaceuticals by Thermal Analysis

Universal Standard Protocols for Temperature and Material Characterization Calibration with Pharmaceuticals by Thermal Analysis Universal Standard Protocols for Temperature and Material Characterization Calibration with Pharmaceuticals by Thermal Analysis Abstract: Manik Pavan.Maheswaram, Dhruthiman.Mantheni, Shravan Thakur Singh,

More information

Quiz Act # s Study Guide

Quiz Act # s Study Guide Name: Activity #15-Families of Elements 1.) Define an element Quiz Act # s 15-21 Study Guide 2.) Whether something is in the solid, liquid, or gas form is known as its state of matter. Is an elements state

More information

Unit B Analysis Questions

Unit B Analysis Questions Unit B Analysis Questions ACTIVITY 12 1. What two types of information do you think are the most important in deciding which material to use to make drink containers? Explain. 2. What additional information

More information

applying a unique combination of disciplines consulting, preclinical, toxicology,

applying a unique combination of disciplines consulting, preclinical, toxicology, NAMSA is a Medical Research Organization (MRO), accelerating product development through integrated laboratory, clinical and consulting services. Driven by our regulatory expertise, NAMSA's MRO Approach

More information

Marine bio-inspired underwater contact adhesion

Marine bio-inspired underwater contact adhesion Marine bio-inspired underwater contact adhesion Sean K. Clancy, Antonio Sodano, Dylan J. Cunningham, Sharon S. Huang, Piotr J. Zalicki, Seunghan Shin, * and B. Kollbe Ahn * Marine Science Institute, University

More information

Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers

Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers Module Topic 9.2 Production of Materials 9.2.A Synthetic Polymers Name Date Ethene 1. Match the statement on the left with the most appropriate answer

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Supplementary Information for: Scrambling Reaction between Polymers Prepared by Step-growth and Chain-growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing

More information

Science of Slime. Fig. 1 Structure of poly (vinyl alcohol)

Science of Slime. Fig. 1 Structure of poly (vinyl alcohol) Name: Science of Slime Understanding the structure of a material and how it behaves is a large part of what chemists and materials scientists do for a living. Scientists and engineers cannot use new materials

More information